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Gaussian density fluctuations and mode coupling theory
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Abstract. – The equations of motion for the density modes of a fluid, derived from Newton’s
equations, are written as a linear generalized Langevin equation. The constraint imposed by
the fluctuation-dissipation theorem is used to derive an exact form for the memory function.
The resulting equations, solved under the assumption that the noise, and consequently density
fluctuations, of the liquid are Gaussian distributed, are equivalent to the random phase approx-
imation for the static structure factor and to the well-known ideal mode coupling theory (MCT)
equations for the dynamics. This finding suggests that MCT is a theory of fluid dynamics that
becomes exact in a mean-field limit.

The description of the dynamics of supercooled liquids is one of the most intriguing goals in
condensed-matter physics. Different approaches have been pursued in the last decades [1–7],
originating both from the physics of liquids and from the physics of disordered systems. Many
of these approaches strongly suggest that two different mechanisms for the decay of fluctu-
ations are active in two different temperature ranges. A crossover temperature Tc separates
the region of “weak” supercooling from the region of “strong” supercooling.

The description of the long-time dynamics and the associated evaluation of the trans-
port coefficients in the strong supercooling region (below Tc) has proved to be an extremely
difficult task [2, 4, 8]. The thermodynamic description of the liquid state between Tc and
the calorimetric glass transition has been attempted, but no well-defined connection between
thermodynamics and dynamics has been achieved as yet. In the weak supercooling regime,
detailed predictions for the space and time dependence of the long-time decay of density corre-
lations have been formulated using the ideal mode coupling theory (MCT) [1], one of the first
approaches to identify the existence of the crossover temperature. The agreement of MCT pre-
dictions with experimental findings [9,10] and molecular dynamics simulations [11–13] —both
for atomic and molecular models— supports the view that MCT is indeed able to describe
the slow dynamics in weak supercooled states.
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Despite its remarkable practical success, the presence of apparently uncontrolled approxi-
mations in the derivation of the MCT equations makes it difficult to gain insights into possible
improvements of the theory. The aim of this letter is to present a new derivation of the ideal
MCT equations, starting from the microscopic equations for the evolution of the density (New-
ton’s equations) and writing them as a linear generalized Langevin equation. A formally exact
expression for the memory kernel is derived and, on making the approximation that the noise
in the Langevin equation is Gaussian, the standard MCT equations are obtained. Note that
the proposition of Gaussian noise implies that the density fluctuations are also Gaussian [14].
The outcome of the present approach offers a route to MCT that involves clear and known
approximations for statics and dynamics. At the same time it suggests how MCT equations
can be developed for more complex systems such as molecules and polymers.

The density of a system composed of N particles located at positions rj is ρ(r, t) ≡∑N
j=1 δ(r − rj(t)). The Fourier transform of ρ(r, t) is ρk(t) ≡

∑N
j=1 eik·rj(t). In the case of a

pairwise additive potential, the time evolution of ρk(t) can be written as [15]

ρ̈k(t) = −
∑

j

(k · ṙj(t))2eik·rj(t) − 1
mV

∑
k′

vk′(k · k′)ρk−k′(t)ρk′(t) , (1)

where vk is the Fourier transform of the pair potential. Equation (1) is the Newton equation
for the variables ρk(t).

The equation of motion for the density (eq. (1)) can be rewritten as

ρ̈k(t) + ω2
kρk(t) = Fk(t) , (2)

where the linear term in ρk(t), that represents the elementary excitations of the system,
has been explicitly isolated. These excitations can be interpreted as “phonons”, that would
oscillate with frequencies ω2

k if no interaction force amongst them were present. Combining
eqs. (1) and (2) the residual force Fk(t) has the formal expression

Fk(t) = ω2
kρk(t)−

∑
j

(k · ṙj(t))2eik·rj(t) − 1
mV

∑
k′

vk′(k · k′)ρk−k′(t)ρk′(t) . (3)

The value of ω2
k that results in the least residual interaction between phonons, i.e. the one

for which ∂〈|Fk|2〉/∂ω2
k = 0, is [15,16]

ω2
k =

k2

βmSk
. (4)

This choice for ω2
k is also imposed by requiring the correct short-time limit of eq. (1) [17].

The minimization principle produces an orthogonality condition between the force and the
density variables at all times [15],

〈ρ−k(t)Fk(t)〉 = 0 . (5)

Substituting the expression for Fk(t) (eq. (3)) in this orthogonality condition leads to the
exact Yvon-Born-Green (YBG) equation [18]

Sk = 1− β

Nk2V

∑
k′

vk′(k · k′)〈ρ−k(t)ρk−k′(t)ρk′(t)〉 , (6)
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where Sk ≡ 〈ρ−kρk〉/N is the static structure factor, β ≡ 1/kBT , kB is the Boltzmann
constant, T is the temperature and the symbols 〈· · ·〉 indicate equilibrium averages.

Following the spirit of the Zwanzig-Mori (ZM) formalism [19], the residual force can be
written as the sum of two contributions: i) a term of dissipative origin, containing a memory
function dependent on time; ii) a general random noise term. Hence,

Fk(t) = −
∫ t

0

γk(t − t′)∂t′ρk(t′)dt′ + fk(t) , (7)

where γk(t) acts as memory function of the system and fk(t) as fluctuating force. Note that the
choice in eq. (7) for the residual force satisfies the orthogonality condition, eq. (5). The func-
tions fk(t) and γk(t) are not independent. Indeed, they must satisfy the fluctuation-dissipation
theorem (FDT) to guarantee that the long-time evolution of the system is consistent with the
correct Boltzmann equilibrium distribution. This requires that the autocorrelation function
of fk(t) is proportional to the memory function γk(t). Also, the average over the noise is zero.
Thus, following [20]

〈fk(t)〉 = 0 (8)

〈f−k(t)fk(t′)〉
〈|ρ̇k|2〉 = γk(t − t′) . (9)

As a result of all these formal assignments Newton’s equations for the density fluctuations are
rewritten in a form similar to a linear generalized Langevin equation as

ρ̈k(t) + ω2
k ρk(t) +

∫ t

0

γk(t − t′)∂t′ρk(t′)dt′ = fk(t) . (10)

Note that the transition from the Newton’s equations to the generalized Langevin equation
is associated with a transition from averages over the initial conditions to averages over the
realization of the noise (defined in eqs. (8)-(10)). FDT guarantees that the dynamics generated
by this stochastic process leads to thermodynamic equilibrium. Using eq. (9), we calculate
the explicit exact form for the memory function [21] as

γk(t) =
βm

Nk2

[(
k2

βm

)2

(n2c2
k−1)NSk(t)+

〈∑
l

∑
m

(k · ṙl(0))2e−ik·rl(0)(k · ṙm(t))2eik·rm(t)

〉
+

+
1

(mV )2
∑
k′

∑
k′′

vk′vk′′(k · k′)(−k · k′′)〈ρ−k−k′′(0)ρk′′(0)ρk−k′(t)ρk′(t)〉+

+
nk2

βm2V
ck

∑
k′

vk′(k · k′)〈ρ−k(0)ρk−k′(t)ρk′(t)〉+

+
nk2

βm2V
ck

∑
k′′

vk′′(−k · k′′)〈ρ−k−k′′(0)ρk′′(0)ρk(t)〉 −

− k2

βm
nNck

∫ t

0

dt′γk(t − t′)∂t′Sk(t′)−

− 1
mV

∑
k′

vk′(−k · k′)
∫ t

0

dt′γk(t − t′)〈ρ−k−k′(0)ρk′(0)ρ̇k(t′)〉
]

. (11)
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Equations (8)-(11) constitute an exact definition of the noise process and have been obtained
by using only FDT and the causality relation 〈ρ−k(0)fk(t)〉 = 0. These equations have the
same content as the equations derived in the ZM formalism [19]. To explicitly evaluate the
γk(t) function, approximations have to be made on the stochastic processes ρk(t) and fk(t),
i.e. the density and the noise [22].

In this letter, a simple approximation is considered. We assume that fk(t) is an additive
Gaussian process. This is the major approximation, since the assumption of a Gaussian
process and the linearity of eq. (10) imply that ρk(t) is also a Gaussian process. As shown
in eqs. (3) and (7), the true fk(t) is a non-linear function of ρk(t). This indicates that in an
exact theory both quantities cannot be simultaneously Gaussian distributed [4].

A less significant approximation consists in averaging over the velocities neglecting the
fluctuations in the single-particle kinetic energy, i.e. assuming

〈∑
l

∑
m

(k · ṙl(0))2e−ik·rl(0)(k · ṙm(t))2eik·rm(t)

〉
≈ k4

β2m2
NSk(t) . (12)

The Gaussian nature of the noise ensures certain simplifications in the properties of ρk(t) and
this allows to calculate the multiple averages in eq. (11). Together with the approximation
in eq. (12), this allows to derive an expression for γk(t) which requires as input the density-
density correlation functions. As a result, the Gaussian approximation in the density gives

γk(t) =
nβ

mV k2

∑
k′ �=k

{v2
k′(k · k′)2 + vk′vk−k′(k · k′)(k · (k − k′))}S|k−k′|(t)Sk′(t) +

+
k2n2

βm
(ck + βvk)2Sk(t)− n(ck + βvk)

∫ t

0

dt′γk(t − t′)∂t′Sk(t′) . (13)

The previous expression still contains the Fourier transform of the pair potential vk. As is
well known [17, 18], once the Gaussian approximation for the density has been made, the
YBG equation (eq. (6)) can be consistently solved [23], providing the so-called random phase
approximation (RPA) [17, 24], ck = −βvk, between the direct correlation function ck ≡ (1 −
1/S(k))/n and the potential vk. Eliminating in eq. (13) vk in favor of ck, one obtains

γk(t)
MCT

=
n

βmk2V

∑
k′ �=k

{(k ·k′)2c2
k′ +(k ·k′)(k · (k−k′))ck′ck−k′}S(|k−k′|, t)S(k′, t) . (14)

γk(t)
MCT

coincides with the memory function that has been calculated originally in ref. [1]
within the ideal MCT framework.

The reader may note that the choice of a Gaussian process for ρk(t), if used directly in eqs.
(2)-(3), implies that the time evolution of the density-density correlation function is described
by undamped harmonic modes [24, 25] with frequency ωk. In this approximation there is
no interaction between the modes and hence, strictly speaking, γk(t) = 0. In the present
derivation, the memory kernel is not zero, since the assumption that the noise is Gaussian is
introduced only after the residual interactions are constrained to be a noise and dissipation
and a formally correct expression for γk(t) (eq. (11)) is derived. This apparent contradiction
is a consequence of the fact that the same approximations made before constraining phase
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space to have the Mori-type properties are not equivalent to those made after this fundamental
constraint is forced upon the system. Therefore, the division of the residual forces between
density waves into a dissipative and noise term is fundamental. This step, whilst not always
acceptable, is a conventional approach to dealing with complex many-body forces, and the
fact that the integrable motions have been clearly removed from the interactions prior to this
division is quite satisfying.

The present calculations show the following.
i) The single assumption of Gaussian properties for ρk(t) and fk(t) allows one to derive

MCT. All approximations used in the conventional MCT are exact in this limit. Hence, MCT
can be seen as a minimum, as an exact theory in the RPA limit and a fully consistent mean-
field approximation to the dynamics of a complex system. Thus, the MCT dynamics is in
the same class of universality as mean-field dynamics. This possibility was suggested some
time ago on the basis of the analogies between the equations describing the schematic MCT
models and the dynamics of the order parameter in disordered p-spin models, solved under
strict mean-field approximation [5, 26].

ii) The present approach offers a more direct interpretation to the uncontrolled approxima-
tion intrinsic in the conventional MCT. Indeed, as clearly stated in ref. [1], a priori estimations
of the quality of the conventional MCT are not known. The derivation of the basic equations
does not include any systematic expansion scheme. In the present approach, the more trans-
parent approximations suggest that improvement over the MCT predictions is feasible. In
particular, it is possible to eliminate vk in eq. (11) by implementing higher-order approxima-
tions for the triplet correlation function. For example, it is possible to implement in the present
scheme the Singwi-Sjölander (STLS) closure [27], which introduces controlled corrections to
the Gaussian statistics. Work is in progress on this topic.

iii) In the RPA, the equation for the memory kernel, eq. (11), simplifies and the integral
contributions cancel out. This simplification does not occur in general. It may be shown [28]
that these terms provide a renormalization of the memory at infinite time. It can also be
shown that these terms are dropped in the conventional MCT, when projecting onto the
density pair subspace. In the present approach, these terms can be added to the conventional
MCT result. This will provide a consistent expression for the short-time memory function.

iv) An interesting aspect of the Götze MCT derivation is that it does not enforce the
consistency conditions between static and dynamics and therefore the input structure factors
do not have to be RPA in origin (and indeed, “exact” direct correlation functions calcu-
lated from simulation data are often used as input in the theoretical calculations [11, 13]).
In the conventional MCT approach, vk disappears because of the Gaussian approximation
in calculating the normalization matrix of the projection [1]. If consistency between statics
and dynamics were enforced, the RPA would have followed, as discussed above. Moreover,
Kawasaki [4] has recently presented a derivation of MCT based on the (quadratic) density
functional Ramakrishnan-Yussouf free energy of a liquid, where the effective interaction be-
tween the density pairs is exactly −c(k)/β, suggesting that it is possible to correct the theory,
without fundamentally affecting the universality class of its dynamics. Perhaps the answer to
the intriguing question of why this is successful lies in formulating higher corrections to the
YBG and memory kernel equations.

v) Finally, the present calculation opens a new route to MCT, and may provide an approach
to develop an improved MCT description of the dynamics of deep supercooled liquids as well
as extensions in order to deal with more complex systems, like molecules [13, 29–31] and
polymers [32]. This is a strategy actively pursued, and it will be most interesting to see the
outcome.
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