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RHEOLOGY

Are particle gels “‘glasses’?

Abstract We propose an analogy
between a new type of glass, recently
found within the mode coupling
theory framework, and a particle
gel, experimentally observed in col-
loidal suspensions where the parti-
cles have attractive interactions. We
report the study of a colloidal system
model, made of particles with hard
core interacting via an attractive
square-well potential. The well-
width has a range much shorter than
the particle diameter. We find new
phenomena in the temperature-
composition plane related to the
width of the attractive interactions,
namely a re-entrant behaviour in the
‘phase’ diagram and a coexistence
line between two types of glasses.
One has been identified as the com-
monly studied colloidal glass and the

other as a new type, the ‘attractive’
glass, that can be viewed as a particle
gel. The coexistence line terminates
at an end-point, named A3, after
which the gel and the colloidal glass
become indistinguishable. We also
show characteristic features of the
normalised density correlators, for
the gel at a relatively low density and
close to this singularity point, where
the gel and the colloidal glass start to
coexist. For the latter it is remark-
able to note that the density corre-
lators show a logarithmic time
decay.
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Introduction

Systems of colloidal particles have long been of both
practical and scientific importance, and there has been a
considerable growth of knowledge in recent years in the
area of dense colloidal systems. However, particle gels
and the process of gelation itself have not been much
studied at a very fundamental level, despite the practical
importance of this part of the field. The reason is
probably that there are few theoretical approaches within
which to rationalise the information. We present here a
new way of viewing these systems, based on develop-
ments already well established in glass theory.

For colloidal particle systems with short-range at-
tractions, it was quite natural to argue by analogy to all

of the phenomena present for molecules. Thus, we expect
to find liquids, gases, and crystals, and perhaps some sort
of dense but imperfectly packed or glassy state. This
perspective, whilst quite reasonable in many regards,
does not take into account the great difference in energy
scales and length scales between molecules and colloidal
particles. The hard core of a colloidal particle might be
on the scale of a micron, and the attraction, tunable using
a variety of solvents and other additives, might have a
range of only a few percent of this [1, 2, 3]. Typically,
though not always, the repulsion is very hard and short-
ranged, being mainly derived from the material proper-
ties of the particle itself. In addition, the flexibility in the
use of solvents and additives may lead to very strong
effective attractions, and this combined with the large
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mass of the particle means that attractive interactions
might easily overcome the tendency of the particles to
disperse, even if the true entropic interaction balance is
more favourable to a dispersion. So, far from being a rare
occurrence, much effort is devoted to preventing colloi-
dal particles from “collapsing” into a condensed phase, a
precipitate, or a ““gel”, the result usually considered to be
poorly characterised, or characterisable. Thus, whilst
there are clear analogies between molecular behaviour
and colloidal systems, we may also need to look again
more carefully at the nature and prominence of all the
phenomena, and we may expect new features to emerge
and a change in the relative importance of existing
phenomena. In fact, as we will show, the result of such a
reexamination may well lead us to be able to systematise
colloidal phenomena long considered to be inconvenient,
rather than scientifically interesting.

We chose as a model of attractive colloidal particles
the square-well potential. Such a choice was driven by
two reasons: firstly, the square-well potential is a good
approximation for many colloidal systems (i.e. colloids
with depletion interaction, grafted colloids, etc. and,
secondly, it possesses many relevant characteristics of a
vast range of potentials i.e. hard-core repulsion and
short-range interaction). This model has been widely
used to describe interacting colloidal solutions and, to
some extent, phenomena such as depletion interaction
and grafted colloids are well represented by it [3-7].

Our idea is that the glass theoretical framework, in
particular the mode-coupling theory (MCT) [8], that has
been introduced and extensively used to describe the
glass transition for both simple liquids and colloidal
systems, can also be extended to describe other nonerg-
odic states of matter, such as particle gels. The new
results recently found for a Yukawa [9, 10] and a square-
well potential [11] for an ‘attractive glass’, that will be
discussed later in detail led us to propose an analogy
between this nonergodic state and a gel. In brief, we
propose that the ergodic state (fluid) can be considered to
be a sol phase, the “repulsive’ glass, also discussed later,
is the commonly studied colloidal glass (hard-sphere
type), and the “attractive” glass is a particle gel. Thus,
what follows will be discussed in these terms.

Mode-coupling theory

We have already alluded to the fact that we use glass
theory to study the square-well potential. The reason is
that we shall be looking for transitions to a nonergodic
state that could represent the process of gelation. The
most practical theory to use in this respect is MCT, which
has previously been shown to describe colloidal glasses
driven by packing forces or pure repulsive interactions
and, indeed, has been found to be in very good agreement
with experiments [12]. The theory is, in outline, as follows.

The MCT equations of motions for the normalised
density correlators, @ (1) = (pj;(t)pq>/<|pq|2), for a colloi-
dal system [13] are

‘Cq(ﬁq(t)-i-(ﬁq(t)+/0tmq(t—t’)¢q(ﬂ)dt’ =0, (1)

where 1, =vS(q)/ (vg)?, with S(g) being the static
structure factor, v the thermal velocity, and the approx-
imation of the instantaneous friction is the constant v.
The kernel my , is given as my(t) = F ,({®r(¢)}), where
the mode-coupling functional # is,
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where ¢, = (1 -8 1/p is the Fourier-transformed direct
correlation function. In order to locate and characterise
the gel phase we define the nonergodicity parameter (or
Edwards—Anderson parameter) as the long-time limit of
the density—density correlation function,
Jq = lim;_o ®,4(¢). It is clear that if the system is ergodic
the correlation function will decay to zero after a certain
time; in contrast when the system is in a nonergodic
regime, the density fluctuations will not be able to relax
and, consequently, the function £, will have a finite value.
Indeed, the fact that from dynamic light scattering ®,(c0)
is nonzero, is a frequent observation as the gel transition
is crossed. We numerically solved Eq. (1) on a grid of
2000 equally spaced g values extending up to go = 72; f; is
obtained by an iterative solution of the bifurcation
equation,
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that corresponds to the long time limit of Eq. (1). From
Eq. (4) is evident that f, =0 is always a solution but it is
not always a stable one: at the transition a new solution
Jf4 # 0 emerges owing to the formation of a nonergodic
phase. The most striking feature of MCT is the fact that
it can produce dynamics using as an input only static
quantities (i.e. static structure factor and number densi-
ty). Therefore it is possible, by only providing the
structure factor of the system, to locate the ergodic—
nonergodic transitions. This brief exploration of the
MCT results is not by any means exhaustive and for
greater insight we suggest the reader explore the litera-
ture [8, 14].

Results

For the interaction of the colloidal particles we have
chose a square-well potential,
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where = (kgT)~', where kg is Boltzmann’s constant. In
order to obtain the structure factors we solved the
Percus—Yevick equation for this model; details of this
procedure can be found in Ref. [11]. In contrast to the
hard-sphere case, where the volume fraction, ¢, is the
only control parameter, the ratio u/kgT between the well
depth and the temperature and the well width, A¢, are
important control parameters as well. In what follows
will make use, in order to characterise the width of the
attraction, of  the adimensional parameter
e =A/(A + g). We remind the reader that for polymer-
induced depletion interactions the well width is con-
trolled by the size of the polymer and the well depth
increases with polymer concentration.

The “phase” diagram for the case ¢ = 0.03 in the
thermodynamic plane (¢, T) is represented in Figs. 1 and
2; the lower density region is reproduced in Fig. 1,
whereas the high density regime is shown in Fig. 2. In
Fig. 1 we present the sol-gel (fluid—attractive glass)
transition line together with the underlying gas-liquid
spinodal. It is remarkable to note that the gel transition
line in this region lies above the coexistence curve. This
type of behaviour may indeed have been observed
experimentally for effective potentials with a very narrow
range of attractions [1, 5]. We believe that in this region
the attractive gel is a space-spanning structure of
particles strongly attached to each other; however, we
caution the reader that on the left-hand side of the critical
point and in its vicinity, we cannot accept blindly the
MCT results. Further work is necessary to elucidate this
region. Some of these concerns have been addressed in
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Fig. 1 Sol-gel transition line at low packing fraction for € = 3%

Ref. [15] while discussing the number of bonds present in
these gel states.

In Fig. 2 firstly we note that for 7' — oo we recover the
glass-transition packing fraction, already found in MCT,
for hard spheres (i.e. ¢, ~ 0.516). In this case the kinetic
arrest is understandable in terms of a cage effect, i.e. each
particle is trapped in a cage formed by its near
neighbours and consequently the system is frozen. This
is what we call “repulsive’ glass, commonly manifested
as the typical colloidal glass [12]. By decreasing the
temperature, the attractions start to be relevant and the
packing fraction at which the system freezes becomes
larger than the hard-sphere one. This unusual reentrant
behaviour continues up to a certain temperature where
the line joins another branch of the transition line. The
latter line extends towards lower densities and along it
the arrest is due to the attraction, i.e. at low temperatures
the transition is driven by the fact that the particles tend
to stick together. We have named this second state the
“attractive” glass or particle gel. The process of the
arrest, glass or gel formation, is then driven by repulsion
along the “vertical” line and by attraction on the
“horizontal” one. The vertical repulsive line is explained
by the fact that glassification is driven by the hard core,
which lacks any energy scale, whilst the attractive line,
being fairly horizontal, implies that there is a single,
fairly well characterized energy scale that drives the gel
formation. These simple observations essentially deter-
mine much of the shape of the phase diagram as a vertical
line at roughly ¢ ~ 0.52% and a horizontal line at the
characteristic energy (temperature) scale of gelation. An
interesting feature to emphasise is the presence of a
characteristic reentrant behaviour, corresponding to the
presence of a liquid phase between the two glassy phases.
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Fig. 2 Same as Fig. 1 for high packing fraction. A5 is the endpoint of
the gel-repulsive glass transion line
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This behaviour is encountered in MCT calculations for
different kinds of attractive potentials and was shown to
be strictly related to the choice of a very narrow well
width [9, 16, 11].

Another important feature emerging from Fig. 2 is
the presence of a transition line between the two
nonergodic states. Crossing it, the system passes from a
repulsive glass to a gel abruptly, as the nonergodicity
parameter shows a discontinuous behaviour. Thus, this
line corresponds to the remarkable phenomenon of a gel—
repulsive glass coexistence. It would be interesting to
have unambiguous confirmation of this phenomenon, in
the light of the current predictions [6].

The “order parameter” of the transition is the
nonergodicity parameter. It shows very different beha-
viour in the two types of arrested states. For a repulsive
glass, it remains almost unchanged with temperature,
whereas for a gel it varies consistently, and in particular
its range increases by decreasing the temperature. The
range of f, is related to the localisation length of the
particles [17]. Thus, while for a repulsive glass this length
(i.e. the size of the cage) remains almost the same with
varying temperature, for the attractive gel the particles
become more and more localised, strengthening the
attractions between them. The latter phenomenon is the
indication that in the gel the particle arrest is due to
the formation of bonds between particles at close
distance. Indeed, the bond formation has been seen as
an important issue for colloidal aggregation and it has
been studied within MCT [9, 10, 15]. It is important to
note that the glass—glass transition line presents an end
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Fig. 3 Correlators @(f) for ¢=10.0 at constant packing fraction
@ =0.340349 for various temperatures, close to and at the sol-particle
gel transition. A typical two-step relaxation is developed the closer the
system is to the transition temperature, Ty, finally approaching a
nonzero plateau at 7 itself

point (labeled 43 in MCT notation) after which the two
gels become indistinguishable (i.e. f; varies continuously).

The behaviour of the phase diagram on varying the
range of the attractions has been studied in Ref. [11].
Here, we limit ourselves to report the most important
features of that study. Firstly, the typical reentrant
behaviour that have discussed for ¢ =3% tends to
vanish, increasing the attractive range. A second and
more important feature is related to the behaviour of the
gel-repulsive glass transition line. For values of € roughly
between 3 and 4% this line shrinks and eventually, for a
certain value (i.e. € >~ 4.11%), the end point A5 touches
the sol—gel transition line, giving origin to a very peculiar
point, corresponding to a higher-order singularity in
MCT and is thus referred as the A4 point [11].

The importance of finding these singularities 45 and
Ay lies in the fact that in the proximity of them MCT
predicts for the intermediate scattering function, ®,(?),
instead of the typical two-step relaxation scenario [§] a
very peculiar logarithmic decay.

For € > 4.11% the A, singularity disappears and the
transition between the gel and a repulsive glass becomes
continuous along the transition curve.

The behaviour of ®,(f) at the constant packing
fraction value @ =0.340349 is shown in Fig. 3. The data
correspond to the wave vector ¢=10.0, with the
temperature being varied as indicated in the figure. In
the phase diagram (Fig. 1), the case represented can be
found to be far both from the underlying critical point
for the gas—liquid transition and from the singularity A4;.
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Fig. 4 Correlators ®,(7) for ¢=10.0 at constant temperature
T=1.0132 for various packing fractions, close to and at the matching
point between the sol—particle gel line and the sol-repulsive glass line.
A logarithmic decay is observed for various decades in time, and
approaching the transition (®,=0.536270), the presence of the two
different types of arrested states is also eviden
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Thus, it represents a typical two-step relaxation function,
as predicted from MCT [8], for a sol-particle gel
transition which is more evident the closer the system is
to the transition temperature 7, =0.44637.

In contrast to the previous case, we show the
behaviour of the intermediate scattering function close
to the singularity A4; (Fig. 2). To see the relaxation
dynamics, we approach from the fluid side at constant
temperature 7=1.0132, corresponding to the crossing
point of the sol-repulsive glass line with the sol-particle
gel one. Here, we vary the packing fraction, as reported
in the figure, and we always refer to the wave vector
¢ =10.0. It is possible to observe a logarithmic decay of
®,(r) over a number of decades in time (e.g. at
® =0.531468 it holds for about 5 decades). There may
be an early indication of such behaviour in recent work
[18]. Then, going closer and closer to the transition, the
presence of two different types of arrested states starts to
become evident, as the correlators seem to develop a
double-plateau structure.

Conclusions

We have sought to introduce the reader to the broad
developments that are taking place in connecting the
traditional science of nonergodic systems, as glasses, to
the world of disordered soft matter, and in particular
particle gels. It would appear that the methods used in
glass theory are also applicable to soft interactions where
attractions dominate the loss of ergodicity. If this
proposition turns out to be correct, it seems likely that
we can interpret particle gels as glasses of a novel type,
the so-called attractive glass. The ramifications of this
connection are extensive and most have yet to be
appreciated. At the most simplistic level, we now have
the machinery to calculate the ““phase’ or state diagrams
of the system, their dynamics and transport coefficients
and other properties. Also, we can expect to find in
experiments all of the traditional phenomena of the two-
step relaxation as we approach gelation, as illustrated in
Fig. 3 and, possibly, of the peculiar logarithmic decay
predicted within our theoretical model (Fig. 4).
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