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Abstract

We calculate for a binary mixture of Lennard-Jones particles the time dependence of the solution of the mode-
coupling equations in which the full wave vector dependence is taken into account. In addition we also take into ac-
count the short time dynamics, which we model with a simple memory kernel. We find that the so obtained solution
agrees very well with the time and wave vector dependence of the coherent and incoherent intermediate scattering
functions as determined from molecular dynamics computer simulations. Furthermore we calculate the wave vector
dependence of the Debye—Waller factor for a realistic model of silica and compare these results with the ones obtained
from a simulation of this model. We find that if the contribution of the three point correlation function to the vertices of
the memory kernel are taken into account, the agreement between theory and simulation is very good. Hence we
conclude that mode coupling theory is able to give a correct quantitative description of the caging phenomena in fragile
as well as strong glass-forming liquids.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction plained very well by means of the so-called mode-
coupling theory of the glass transition (MCT) [2].
In the vicinity of this bend the dynamics of the

system changes qualitatively in that the particles

In the last decade our understanding of the
dynamics of supercooled liquids has made signifi-

cant progress [1]. In particular it has been shown
that for fragile glass formers the bend one observes
if one plots the logarithm of the viscosity as a
function of the inverse temperature can be ex-

* Corresponding author. Tel.: +33-4 67 14 93 26; fax: +33-4
67 14 34 98.
E-mail address: kobe@ldv.univ-montp2.fr (W. Kob).

start to experience strong caging effects, i.e. they
are temporarily trapped by the particles that sur-
round them. MCT gives a self-consistent descrip-
tion of the dynamics of the particles inside this
cage as well as how the particles leave this cage, i.e.
of the structural relaxation of the supercooled
liquid. In the past the predictions of this theory
have been checked in many experiments as well as
computer simulations and it was found that MCT
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is indeed able to give a qualitatively correct des-
cription of the relaxation dynamics [2].

However, in principle the theory is supposed to
give not only a qualitative description of the re-
laxation dynamics of supercooled liquids, but also
a quantitative one, if the static properties of the
system are known with sufficiently high precision.
This attractive feature originates directly from the
way the theory is (or can be) derived, namely the
Mori-Zwanzig formalism in which one obtains
equations of motion for slow variables which in-
volve their static values. Thus, once these static
values are known one can, in principle, determine
their time dependence. In particular it is possible to
calculate from the knowledge of the static struc-
ture factor the time dependence of the coherent
and incoherent intermediate scattering functions,
F(q,t) and F,(q,t), respectively, where ¢ is the
wave vector. Unfortunately, in the past these types
of calculations have been done only for very few
systems, since on the one hand they are quite in-
volved and on the other hand they require as input
structural data with very high quality (better than
1%) [3-9]. In the present paper we expand these
type of calculations in two directions. On the one
hand we solve for a simple glass-forming system, a
binary Lennard-Jones mixture (BMLIJ), the full
time and wave vector dependence of the MCT
equations, including a realistic short time dy-
namics, and compare them with results from com-
puter simulations of the same system. On the other
hand we calculate the g-dependence of the non-
ergodicity parameters (NEP) for silica (SiO,), a
glass former whose structure is given by an open
tetrahedral network and who is the prototype of a
strong glass former, and compare also these results
with the ones from simulations of the same system.

2. Theory

In this section we summarize the MCT equa-
tions that are needed to calculate the quantities
discussed in Section 4. In order to keep this pre-
sentation as simple as possible we will discuss only
the equation for the case of a one-component
system, although in reality we have used the equa-
tions for a two-component system, since the BMLJ

as well as SiO, belong to this class. The full binary
equations can be found in Refs. [3,10,11].

The intermediate scattering function can be
defined by F(q,¢) = (dp(q,0)dp(q, ?)) where dp are
the density fluctuations. F(g,t) obeys the exact
equation of motion

Flg,1) + @ (q)F (q.1)
+/M(q,I)F(q,t—r)dr:0, (1)
0

where the frequency Q is given by Q* = ¢*%gT/
(mS(q)). Here m and S(g) are the mass of the
particles and the static structure factor respec-
tively. The function M(q,¢) in Eq. (1) is the so-
called memory function and it is useful to write it
as follows:

M(q,t) = M5 (q, 1) + {MMTIF (k,1)](q)
— MMTFP (k. 1)](q) }- (2)

Here MRES(q,¢) is that part of the memory func-
tion which is responsible for the dynamics of
the system at very short times, i.e. after the parti-
cles have left the ballistic regime. The functional
MMCT[F(k,1)] is the usual memory kernel of MCT
which depends on the static structure factor as well
as on the three point correlation function c;(q, k)
[2]. Also it contains a short time part. But since we
want to describe this time regime by means of
MRES (g, 1), we have to subtract out this part from
MMCT[F (k. t)]. This is done in the last term of Eq.
(2), where F® is a function which decays rapidly to
zero, but has the correct behavior at short times
[10].

For the regular memory function MRES (g, 1) one
can make different type of Ansatzes. One which
seems to work well at high temperatures is given
by [12]

M"™%(q,1) = u(q)/ cosh(B(q)1). (3)
Here a(q) and f(q) are parameters which can be
calculated via sum rules from the static structure
factor and other static quantities which can be
measured in a computer simulation [10,13]. Hence
they are not adjustable fit parameters.

Egs. (1)-(3) are a self-contained set of equations
of motion from which one thus can calculate the
full time and wave vector dependence of F(g, 1),
and similar equations exist for the incoherent
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intermediate scattering function Fy(q,¢). We have
solved these equations by discretizing g-space
into 100 points that covered the g-range up to
three to four times the location of the main peak in

S(q)-

3. Models and details of the simulations

The first model investigated is a 80:20 mixture
of Lennard-Jones particles. In the following we
will call the majority and minority species A and B
particles, respectively. Both of them have the same
mass m and they interact via a potential V3 =
4ep](045/7)" = (0,3/7)%), o, B € {A,B}. The pa-
rameters ¢,s and o,; are given by eap = 1.0, oaa =
1.0, €EAB — 15, OAB — 08, €EBB = 05, and OBB —
0.88. This potential is truncated and shifted at a
distance o,4. In the following we will use o4 and
eaa as the unit of length and energy, respectively
(setting the Boltzmann constant kg = 1.0). Time
will be measured in units of \/mGZA 1/48ean. In the
past the structural and dynamical properties of
this system have been studied in great detail
[14,15]. More detail on this can be found in Ref.
[16].

For the present work we only needed to deter-
mine the three point correlation function c¢; since
the time and temperature dependence of F(q,t)
and F(q,t), as well as the one of S(g), can be
found in the mentioned literature. For this we
simulated a system of 800 A particles and 200 B
particles in a box with volume (9.4)*. The total
time of this simulation was about 10® time steps
from which we obtained roughly 12,000 indepen-
dent configurations. This large number was nec-
essary to determine c¢; with sufficient precision.
Due to this large computational effort we did this
calculation only for one temperature, 7 = 1.0.
Thus in the following we will assume that the
temperature dependence of ¢; is weak.

The second model we study is amorphous silica,
SiO,. For this we use the potential proposed by
van Beest et al. which has the functional form [17]

2
q.qpe Cup
¢a/§(r) = rlf + Azxﬁ exp(fBoc/?r) - }"6/

o, B € [Si, 0. 4)

The values of the constants g,, g4, Aup, Byg, and Cyp
can be found in Ref. [17]. The potential has been
truncated and shifted at 5.5 A. In the past it has
been shown that this potential is able to give a
reliable description of silica in its molten phase as
well as in the glass (see [18-20] and references
therein). For the present calculations to determine
c3 we used 600 ions in a box with volume (20.4 A)*.
The total length of the simulation was 2 x 107 time
steps, from which we obtained at 4000 K around
2000 independent configurations.

4. Results

We start by considering first the dynamics of
the BMLJ at intermediate and high temperatures.
In this 7-range it can be expected that the effect of
the memory kernel of MCT is not relevant and
thus we will set it to zero. In Fig. 1 we show the
time dependence of Fxa(q,t) for various tempera-
tures. The wave vector is 7.25, the location of the
main peak in Saa(q). The dashed lines with sym-
bols are the result of the simulation whereas the
full lines are the prediction of the theory. As can be
seen, the theory works very well at high tempera-
tures but starts to break down at intermediate

1.4 : :
theory (only reg. kernel)

e~ ——e simulation

1.2 4

Faa(a,t)+x

1.0 3 ' :
0.8 3
0.6 3
0.4 ' . 3
0.2 AAcorr.

i g=7.25 E
0.0 1 . 1 3

Fig. 1. Time dependence of the coherent intermediate scatter-
ing function for the A particles in the BMLJ system for different
temperatures as obtained from the simulation (dashed lines
with symbols) and as predicted from the theory if the MCT
kernel is not taken into account (solid lines). For clarity some of
the curves have been shifted vertically.
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temperatures in that it underestimated the corre-
lation function at intermediate times. Thus we see
that even at the intermediate temperature 7 = 1.0,
which is more than twice the MCT temperature
T. = 0.435, cage effects become important.

In order to see whether the memory kernel
MMCT is able to take into account these effects we
have solved Egs. (1)-(3) by taking now into ac-
count also this contribution to the memory func-
tion M(q,t). In doing this we had to face a
problem which we had encountered already some
time ago [7], namely that MCT is not able to
predict reliably the value of the critical tempera-
ture T,. For the BMLJ the simulations show that
T. =~ 0.435 [14], whereas the theory predicts a value
around 0.92 [7]. This means that the theory is not
able to predict correctly the absolute value of the
time scale for the a-relaxation, although it is able
to predict the shape of the correlation functions
(see below). Therefore we had to use one adjust-
able parameter, a temperature which we will de-
note by 7y, which is the temperature at which the
vertices in the MCT-functional MMT are evalu-
ated. The value of 7, was adjusted such that the
time scale for Fxa(q,t) for g =7.25 was repro-
duced correctly.

In Fig. 2 we show the time dependence of the
coherent as well as the incoherent intermediate
scattering function for ¢ = 7.25 and 9.98, the lo-
cation of the first peak and the first minimum in
Saa(q), respectively. The temperature is 2.0, i.e. a
value for which we find that the regular memory
kernel is no longer able to give a good description
of the relaxation dynamics (see Fig. 1). From this
figure we see that in general the agreement between
the simulation and the theory is very good in that
the shape of the curves as well as their position is
correctly predicted. (The discrepancy found for
Faa(g =9.98,1), where the theory predicts a pro-
nounced shoulder at around ¢ =2 whereas the
simulation shows only a weak shoulder in that
time regime, is probably related to the fact that the
description of the short time dynamics is not yet
completely adequate [10].) Thus we conclude that
MCT is indeed able to give a correct description of
the relaxation dynamic of the system at interme-
diate temperatures, i.e. at temperatures where the
cage effect starts to become noticeable.

full MCT
e ——e simulation

0.4 -

0.2 1 1260

00 1+,

10°  10' . 10

Fig. 2. Time dependence of the coherent and incoherent in-
termediate scattering function of the BMLIJ system for two
wave vectors at 7 = 2.0. The dashed line with the symbols are
the results from the simulation and the solid lines are the pre-
diction of the theory in which the MCT kernel has been taken
into account.

We now check whether this conclusion is also
correct if the temperature is so low that the cage
effect becomes very important. For this we have
solved the MCT equations for 7T = 0.466, i.e. a
temperature for which the relaxation dynamics is
about 10* times slower than the one at high 7. The
time dependence of Fas(g,f) and of Fj(q,t) as
predicted from the theory is shown in Fig. 3. Also
included are the results from the computer simu-
lations from Ref. [14]. As in the case of interme-
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Fig. 3. Same as Fig. 2 but now for 7 = 0.466.
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diate temperatures, Fig. 2, we find that also for this
T the agreement between theory and simulation is
very good. The main discrepancy is again seen for
Faa(gq,t) at ¢ =9.98, and the reason for it is the
same as the one given above. All in all we thus
conclude that for this system the theory is indeed
able to predict the full time and wave vector de-
pendence of the coherent and incoherent scattering
function.

The temperature dependence of the relaxation
time of the BMLJ system shows significant devi-
ations from an Arrhenius law [14]. As mentioned
above, these deviations are believed to be related
to a change in the transport mechanism of the
particles which show a hopping type of motion at
low temperatures whereas at high 7 they show a
more collective/flow-like behavior. It is of interest
that recently it has been suggested that even silica
shows such a crossover in the transport mecha-
nism, although this crossover occurs at relatively
high temperatures (around 3300 K) [18]. Therefore
one might ask whether MCT is able to give a re-
liable description of the relaxation dynamics of
this important glass-forming system also. Note
that from a structural point of view the BMLJ
system and amorphous silica are very different,
since the former one resembles the random close
packing of hard spheres whereas the latter is given
by an open network structure similar to the con-
tinuous random tetrahedral network proposed long
time ago by Zachariasen [21]. Since, as pointed out
in Section 1, MCT uses only structural informa-
tion to predict the dynamics, it is of great interest
to see whether the theory is also able to give a
correct quantitative description if the structure is
very different from the one of closed packed hard
spheres.

To check this we have calculated for amor-
phous silica the wave vector dependence of the
NEPs, i.e. the height of the plateau in the inter-
mediate scattering function at intermediate times
(see, e.g., Fig. 3). Before we discuss the results, we
have to mention a technical point which makes the
calculation of the NEP for the case of silica much
harder than for the case of the BMLJ. In Section 2
we mentioned that the memory kernel of the MCT
contains only static quantities, namely the static
structure factor S(¢) and the three point correla-

tion function c3(q, k). From a simulation it is quite
easy to determine S(g) with high precision. For the
function c; this is, however, not the case, since due
to the two vectorial arguments the statistics for
this quantity are very bad. Therefore we had to
make very long simulations in order to determine
c3 with sufficient accuracy. More details on this
can be found in Ref. [11].

In the following we will discuss the results for
the NEP for the BMLJ as well as for the case of
silica. Since all of the results presented in Figs. 1-3
were obtained with the approximation that ¢; = 0,
one has of course to check whether or not they do
not change if this assumption is not made. We
mention, however, already here, that some time
ago Barrat et al. showed that this approximation is
very good for the case of a soft-sphere system, i.e.
a system which is relatively similar to the BMLJ
considered here [22]. Whether this result holds also
for the case of a system with an open network
structure has, however, so far not been investi-
gated. We also mention that in order to calculate
the NEPs it is not necessary to introduce any fit
parameter of any kind. The only input to the data
are the partial structure factors [2]. Thus for this
type of calculation the above discussed problem
with the 7, does not exist.

In Fig. 4 we show the wave vector dependence
of the NEP for the coherent functions. (Note that
since this is a binary system, there are three of
them. Furthermore we mention that for reasons of
convenience we show the NEP multiplied by the
corresponding partial structure factors.) In each
panel we show three curves: The circles are the
result from the simulation published in Ref. [15].
The dashed and full line is the theoretical result for
the cases that c¢; is set equal to zero and c¢3 # 0,
respectively. First of all this figure shows that the
theory is able to reproduce with excellent accuracy
the data of the simulation without any adjustable
parameter. Furthermore we recognize from Fig. 4
also that the theoretical prediction hardly depends
on whether or not c¢; is taken into account, in
agreement with the finding of Barrat et al. [22].

For silica the situation is quite different as can
be inferred from Fig. 5 where we show the wave
vector dependence of the NEP for this system. We
see that in this case the theoretical prediction for
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c; = 0 differs strongly from the one if this function
is taken into account. Thus we find that for the
case of a network structure the contribution of the
three point correlation function to the memory
function is very important. It is remarkable that if
the contributions of ¢3 are taken into account, the
theoretical prediction agrees very well with the
result of the simulation, which were presented in
Ref. [19]. Thus we conclude that the theory is also
able to give a quantitative correct prediction for
this type of glass former.
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Fig. 5. Same as Fig. 4 but for the case of silica.

5. Summary

The goal of this work was to check to what ex-
tent the mode-coupling theory of the glass transi-
tion is able to give a correct quantitative description
of the dynamics of glass-forming liquids. This was
done for two very different types of systems: a bi-
nary mixture of Lennard-Jones particles, whose
structure is similar to the one of a close packing of
hard spheres and whose temperature dependence
of relaxation times makes it a glass-forming liquid
of intermediate fragility. On the other hand we have
studied silica, which has a open network structure
and which, in the temperature region where ex-
periments are feasible, is considered to be the pro-
totype of a strong glass former.
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For the BMLJ system we have solved the MCT
equations to obtain the full time and wave vector
dependence of the relaxation dynamics. In partic-
ular we have also included a realistic Ansatz for
the dynamics at short times so that the theoretical
curves should be able to give also a good descrip-
tion in this time regime. By comparing the theo-
retical curves for F(q,¢) and F;(g,¢) with the ones
obtained from computer simulations of the same
system, we find that cage effects become noticeable
already at relatively high temperatures. The theory
is able to give a very reliable quantitative descrip-
tion of the relaxation dynamics for all tempera-
tures considered. The only discrepancy found is
probably related to the fact that our understanding
of the dynamics at short times is still incomplete.

For the case of silica we have calculated the
g-dependence of the NEPs. We have found that for
this system it is important to include in the eval-
uation of the memory function also those contri-
butions that stem from three point correlation
functions. Most probably this finding is related to
the open network structure of the system. We find
that once c¢; is taken into account the prediction of
the theory for the NEP are in very good agreement
with the results from computer simulations.

In summary we have shown that MCT is able to
give a very good quantitative description of the
relaxation dynamics of fragile as well as strong
liquids, at least at high and intermediate temper-
atures. Thus we conclude that this theory is able to
rationalize at least the first few decades of the
slowing down of a very large class of glass-forming
liquids on a quantitative level.
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