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Dynamics and configurational entropy in the Lewis-Wahnström model
for supercooled orthoterphenyl
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We study thermodynamic and dynamic properties of a rigid model of the fragile glass-forming liquid
orthoterphenyl. This model, introduced by Lewis and Wahnstro¨m in 1993, collapses each phenyl ring to a
single interaction site; the intermolecular site-site interactions are described by the Lennard-Jones potential
whose parameters have been selected to reproduce some bulk properties of the orthoterphenyl molecule. A
system ofN5343 molecules is considered in a wide range of densities and temperatures, reaching simulation
times up to 1 ms. Such long trajectories allow us to equilibrate the system at temperatures below the mode
coupling temperatureTc at which the diffusion constant reaches values of order 10210 cm2/s and thereby to
sample in a significant way the potential energy landscape in the entire temperature range. Working within the
inherent structures thermodynamic formalism, we present results for the temperature and density dependence
of the number, depth and shape of the basins of the potential energy surface. We evaluate the total entropy of
the system by thermodynamic integration from the ideal—noninteracting—gas state and the vibrational en-
tropy approximating the basin free energy with the free energy of 6N23 harmonic oscillators. We evaluate the
configurational part of the entropy as a difference between these two contributions. We study the connection
between thermodynamical and dynamical properties of the system. We confirm that the temperature depen-
dence of the configurational entropy and of the diffusion constant, as well as the inverse of the characteristic
structural relaxation time, are strongly connected in supercooled states; we demonstrate that this connection is
well represented by the Adam-Gibbs relation, stating a linear relation between logD and the quantity 1/TSc .
This relation is found to hold both above and below the critical temperatureTc—as previously found in the
case of silica—supporting the hypothesis that a connection exists between the number of basins and the
connectivity properties of the potential energy surface.
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I. INTRODUCTION

Understanding the dynamic and thermodynamic prop
ties of supercooled liquids is one of the more challeng
tasks of condensed matter physics~for recent reviews see
Refs.@1–4# and references therein!. A significant amount of
experimental@5–9#, numerical @10# and theoretical work
@11–15# is being currently devoted to the understanding
the physics of the glass transition and to the associated s
ing down of the dynamics. Among the theoretical a
proaches, an important role has been played by the m
coupling theory~MCT! @11,12#, which, interpreting the glas
transition as a purely dynamical phenomenon, has con
tuted a significant tool for the interpretation of both expe
mental @5,9,16–19# and numerical simulation results@20–
22# in weakly supercooled states.

In recent years the study of the topological structure of
potential energy~hyper-! surface~PES! @23,24# and the con-
nection between the properties of the PES and the dynam
behavior of glass-forming liquids has become an active fi
of research. Building on the inherent structure~IS! thermo-
dynamic formalism proposed a long time ago by Stilling
and Weber@23#, the PES can be uniquely partitioned in loc
basins and properties of the basins explored in superco
states~average basin depth and basin volume! have been
quantified. Studies have mainly focused on two fundame
1063-651X/2002/65~4!/041205~13!/$20.00 65 0412
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questions:~i! which are the basins relevant for the therm
dynamics of the system, i.e., which are the basins popula
with largest probability? and~ii ! which are the topologica
properties of the regions of the PES actually explored by
system during its dynamics? From this point of view, t
PES approach has somehow unified, at least on a phen
enological level, the thermodynamic and dynamic a
proaches to the glass transition.

Numerical analysis of the PES has shown that trajecto
in configuration space can be separated into intrabasin
interbasin components@25,26#. The time scales of the two
components become increasingly separated on cooling.
intrabasin motion has been associated with the hi
frequency vibrational dynamics, while the structural rela
ation (a relaxation! has been related to the process of exp
ration of different basins. It has also been shown that
lowering T, the system populates basins of lower and low
energy@27,28#. TheT dependence of the depth of the typic
sampled basins follows a 1/T law @29–31# for fragile liquids,
and, for strong liquids, it appears to approach a cons
value on cooling@32#. The number of basinsV as a function
of the basin deptheIS has also been recently evaluated for
few models@29,30,32–35#, opening the possibility of calcu
lating the so-called configurational entropySc and itsT de-
pendence.Sc , defined as the logarithm of the number
accessible basinsSc[kBlogV, has been successfully com
©2002 The American Physical Society05-1
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S. MOSSAet al. PHYSICAL REVIEW E 65 041205
pared with theoretical predictions@13,36#. At the same time,
the approaches and the techniques developed for the ana
of the PES of structural glasses have spread to the fiel
disordered spin systems, where similar calculations h
been performed@37# and similar conclusions have bee
reached. The evaluation ofSc for models of glass-forming
liquids allows us to numerically check, in a very consiste
way, the relation betweenSc and the systems characterist
time t, proposed by Adam and Gibbs@38#, and recently ‘‘de-
rived’’ in a novel way@14#. Numerical support for a relation
between theT dependence ofSc and theT dependence oft,
although limited to very few models, is providing new phys
cal insight on the connection between thermodynamics
long time dynamical properties. The ideas developed wit
the inherent structure formalism have also been general
to out-of-equilibrium conditions where the slow aging d
namics has been interpreted as the process of searchin
basins of increasingly deep energy@39–42#.

In this paper we study the properties of the PES for a ri
model @Lewis and Wahnstro¨m ~LW!# of the fragile glass
former orthoterphenyl~OTP!, first introduced by Lewis and
Wahnstro¨m @43# and recently revisited by Rinaldiet al. @44#.
We have studied the properties of the PES in a tempera
range in which the diffusion coefficient varies by more th
four orders of magnitudes for five different density value
This work attempts to build a bridge between models
more direct theoretical interest, like Lennard-Jones~LJ! and
soft spheres, and models which appear to reproduce, ev
in a crude way, properties of complex materials. In this
spect, orthoterphenyl is the best candidate, being one o
most studied glass-forming liquids@17#. The LW model is a
three-sites model, with intermolecular site-site interactio
described by the LJ potential. This model is among the s
plest models for a nonlinear molecule. The limitation cons
tuted by the fact that it does not take into account the inte
molecular degrees of freedom~see@45# for a more realistic
model!, is overruled by the observation that its simplicity—
can be considered as an atomic LJ with constraints—all
one to reach simulation times of the order ofms. Hence a
significant sampling of the PES in a large temperature
density range is possible. Moreover, this model constitu
an ideal bridge between simple atomic models and molec
models, being possible to treat it under several approxi
tions @44#.

The paper is structured as follows: In Sec. II we brie
recall the main results of the IS formalism. In Sec. III w
show the calculation of the configurational entropy as a
ference between the total entropy and the vibrational entr
In Sec. IV we give some numerical details. We present
results in Sec. V, which is divided into subsections detail
the calculation of the total entropy by thermodynamical
tegration from the ideal gas state, the study of the vibratio
properties of the PES, and the calculation of the configu
tional entropy. In the end we study the link between config
rational entropy and the diffusion constant, investigating
validity of the Adam-Gibbs equation. In Sec. VI we final
discuss our results and we draw some conclusions. In App
dix A we report the analytical calculation of the total entro
04120
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of a system of LW molecules in the noninteracting ‘‘ide
gas’’ limit.

II. INHERENT STRUCTURE THERMODYNAMICS
FORMALISM

In this section we briefly review the IS formalism in th
NVT ensemble@23,46#, the extension to theNPT ensemble
poses no particular problems@23#. This formalism has be-
come an important tool in the numerical analysis of class
models since it is numerically possible to calculate in a v
precise way the inherent structures~defined as the loca
minima of the PES! and hence compare the theoretical p
dictions with the numerical results. Given an instantane
configuration of the system, a steepest descent path alon
potential energy hypersurface defines the closest IS.

In the IS formalism, the partition function of a system
written as a sum over all the PES basins. Basins of given
energy contribute non-negligibly to the total sum if their
energy is very low, if their volume is very large, and/or
they are highly degenerate, i.e., several basins are chara
ized by this IS energy. This corresponds to partitioning
phase space in the local energy minima of the PES and t
basins of attraction. Such a partition is motivated by the f
that in supercooled states, the typical time scales of the
trabasin and interbasin dynamics differ by several orders
magnitude and hence the separation of intrabasin and in
basin variables becomes meaningful.

In the 6N-dimensional configuration space, the partitio
function Z for a system ofN rigid molecules can be written
as

Z5
~LxLyLz!

N

l3N E dqNexp@2V~qN!/kBT#, ~1!

whereqN denotes the positions and orientations of the m
ecules,V(qN) is the potential energy,I m , wherem5x,y,z
are the principal moments of inertia of the molecu
Lm[(2pI mkBT)1/2/h, and l[h(2pmkBT)21/2 is the
de Broglie wavelength.

Let V(EIS) denote the number of minima with energ
EIS , and f (T,EIS) the average free energy of a basin wi
basin depthEIS . f (T,EIS), which takes into account both th
kinetic energy of the system and the local structure of
basin with energyEIS , is defined by

f ~T,EIS![2kBTlnF ~LxLyLz!
N

l3N

1

V~EIS!

3 (
basins

E
Rbasin

dqNexp@2~V2EIS!/kBT#G ,

~2!

whereRbasin is the configuration volume associated with t
specific basin. The partition function can then be rewritten
a sum over all basins in configurational space, i.e.,
5-2
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DYNAMICS AND CONFIGURATIONAL ENTROPY IN THE . . . PHYSICAL REVIEW E 65 041205
Z5(
EIS

V~EIS!expS 2
EIS1 f ~T,EIS!

kBT D
5(

EIS

expS 2
2TSc~EIS!1EIS1 f ~T,EIS!

kBT D , ~3!

where the configurational entropySc(EIS) has been defined
as

Sc~EIS![kBln@V~EIS!#. ~4!

In the thermodynamic limit, the free energy of the liqu
can be calculated using

F@eIS~T!#5eIS~T!1 f @T,eIS~T!#2TSc@eIS~T!#, ~5!

whereeIS(T), the average value of the IS energy at tempe
ture T, is the solution of the saddle point equation

11
] f

]EIS
2T

]Sc

]EIS
50. ~6!

The liquid free energy expression Eq.~5! has a clear inter-
pretation. The first term in Eq.~5! takes into account the
average energy of the PES minimum visited, the second t
describes the volume of the corresponding basin of attrac
and the kinetic energy, and the third term is a measure of
multiplicity of the basin.

It can be rigorously shown@31,46,29# that, if the density
of stateV(EIS) is Gaussian, and if the basins have appro
mately the same shape or are, to a good degree, harm
the important relation holds,

eIS~T!}
1

T
. ~7!

On lowering T, basins with lowerEIS energies and lowe
degeneracy are populated, i.e., botheIS andSc decrease with
T.

III. EVALUATION OF THE CONFIGURATIONAL
ENTROPY

The Eq.~5! provides a natural starting point for a nume
cal evaluation of the configurational entropy. Indeed, the f
energyF(T,V) per molecule can be split in the usual way
a sum of an energy and an entropic contribution. Conside
Eq. ~5! we write

F~T!5E~T!2TS~T!

52TSc~T!1eIS~T!1Ev~T!2TSv~T!, ~8!

where the indexv indicates the vibrational quantities~intra
basin components!. In order to evaluate these quantities w
calculate the basin free energy as the free energy of 6N23
independent harmonic oscillators@34# plus a contribution
that takes into account the basin anharmonicities. Then
can write
04120
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E~T!5S 62
3

ND kBT

2
1eIS~T!1Uanh~T!, ~9!

S~T!5Sv~T!1Sc~T!5Sharm~T!1Sanh~T!1Sc~T!,
~10!

and

Sharm5S 62
3

ND2
1

N (
n51

6N23

lnF\vn~T!

kBT G , ~11!

where the frequenciesvn are the square root of the eigenva
ues of the Hessian matrix calculated in the inherent str
tures.

Thus, the total entropy is the sum of two contribution
Sc(T) which accounts for the multiplicity of basins of dep
eIS(T), andSv(T) which accounts for the ‘‘volume’’ of the
basins. The last equations give us, in a very transparent w
the physical meaning of the partition of the PES; moreov
they provide us with a very efficient way to calculate t
configurational entropy as a difference between the total
ergy of the system and the vibrational entropy.

The total entropyS can be evaluated via thermodynam
integration, starting from a known reference point. Eve
variation of total entropy can be generally written as the s
of variation along isochores and isotherms in the form

DS5DSV1DST . ~12!

Then the change of entropy along an isochore between
temperaturesT̄ andT is

DSV5S~V,T!2S~V,T̄!5E
T̄

TdT8

T8
cv~T8! ~13!

and the change along an isotherm between two volumeV̄
andV is

DST5S~V,T!2S~V̄,T!

5
1

T FE~V,T!2E~V̄,T!1E
V̄

V

dV̄P~V̄,T!G . ~14!

In the present case, to evaluate the total entropy of the liq
we start from the known expression of the ideal gas of L
molecules, reviewed in the Appendix. To evaluate the ba
free energyf „T,eIS(T)…, we select as a reference point th
free energy of (6N23) independent harmonic oscillator
~whose distribution of frequencies can be calculated eval
ing the eigenvalues of the Hessian matrix evaluated in the
structure! and add corrections to take into account the ba
anharmonicities.The harmonic contribution to the entropy
given by Eq.~11!.

Assuming that the anharmonic contribution is indepe
dent from the basin depth, the anharmonic corrections to
entropy at T can be calculated integrating the quant
dUanh/T, whereUanh is implicitly defined in Eq.~9!, from
T50 to T @see Eq.~13!#.
5-3
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S. MOSSAet al. PHYSICAL REVIEW E 65 041205
IV. NUMERICAL DETAILS

The LW OTP molecule@43# is a rigid three-site plana
isosceles triangle; the length of the two short sides of
triangle iss50.483 nm and the angle between them isu
55p/12 (75°). Each site represents an entire phenyl ring
massm56mC.78 amu, wheremC is the mass of the car
bon atom. For each pair of interacting molecules, nine s
site interactions are evaluated according to the site-site in
action potential

V~r !54eF S s

r D 12

2S s

r D 6G1l11l2r , ~15!

where r is the site-site distance,e55.276 kJ/mol, s
50.483 nml150.461 kJ/mol andl2520.313 kJ/~mol nm!.
The parameters of the potential are selected to reprod
some bulk properties of the OTP molecule@43# such as the
temperature dependence of the diffusion coefficient and
structure. The values ofl1 andl2 are selected in such a wa
that the potential and its first derivative are zero atr c
51.2616 nm. Such a potential is characterized by a m
mum atr 50.542 nm of depth24.985 kJ/mol. The integra
tion time step is 0.01 ps. The shake algorithm is implemen
to account for the molecular constraints.

We study a (N,V,E) system composed byN5343 mol-
ecules~1029 LJ interaction sites! at five different densities
~see Table I! for several temperatures at each density~Table
II !. The overall total simulation time, comprising thermaliz
tion and production runs at all the thermodynamic poi
investigated, exceeds 10ms. We carefully check the ther
malization of the system at the lowest temperatures.
lengths of the thermalization runs cover a time interval d
ing which each molecule has moved~on average! a few
times s. This time is calculated by monitoring the mea
square displacement. We study also the time depend
of the intermediate scattering functionF(QM ,t)
5^rQM

(t)rQM
* (0)&; hereQM is the value of momentumQ

locating the first maximum of the static structure fac
S(Q). We confirm that this correlation function has decay
to zero during the equilibration time. Moreover, we ensu
that no drift in the one-time quantities is observed during
production run. The lengths of the equilibration runs ran
from a few nanoseconds at the highest temperatures to
eral hundred nanoseconds at the lowest temperatures
have been able to equilibrate the system in aT range over

TABLE I. Densities, volumes, and simulation box lengths c
culated.

k rk (g/cm3) Vk (nm3) Lk ~nm!

1 1.036 126.647 5.022
2 1.060 123.883 4.985
3 1.083 121.120 4.948
4 1.108 118.356 4.910
5 1.135 115.593 4.871
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which the diffusion constant changes from 1026 to
10210 cm2/s, i.e., over four orders of magnitude.

After the thermalization run, the production run tak
place. The length of each run is always several times lon
than the estimated relaxation time. This allows us to colle
for each thermodynamic point, a set of configurations wh
are to a good extent uncorrelated from one an other.

Two additional simulations are performed to connect
range of densities and temperature studied with the ideal
reference point. The system at densityr4 is simulated for
temperatures ranging from 280 to 5000 K to evaluate thT
dependence of the potential energy. A second set of sim
tions at constantT (T55000 K) in the volume range 102

2105 nm3 is performed to calculate theexcesspressure
~i.e., the pressure beyond the ideal gas contribution!.

To calculate the inherent structures visited in equilibriu
we perform conjugate gradient minimizations to locate
closest local minima on the PES. We use a tolerance
10215 kJ/mol in the total energy for the minimization. Fo
each thermodynamical point we minimize at least 100 c
figurations and we diagonalize the Hessian matrix of at le
50 configurations to calculate the density of states. The H
sian is calculated choosing for each molecule the cente
mass and the angles associated with rotations around
three principal inertia axis as coordinates.

Error bars have been calculated for all the simulation
sults points presented in the paper@47#. Due to the length of
the production runs, several times longer than the relaxa
times, only configurations sufficiently uncorrelated ha
been used to calculate the different observables. The e
bars have then been calculated using the standard relatio
calculating errors. We show the error bars only when
amplitude of the error is larger than the size of the sym
used for the data point.

V. RESULTS

A. Dependence of the total entropy onT and r

To estimate the total entropy for the model we proceed
three steps as shown in Fig. 1. The thermodynamic path
been chosen to avoid the liquid-gas first order line.

TABLE II. Temperatures~in K! for which calculations are per
formed.

r1 r2 r3 r4 r5

170 190 230 280 320
185 200 240 300 340
190 210 260 320 360
195 230 280 340 380
210 250 300 360 400
220 280 320 380 420
240 300 340 400 440
260 320 360 420 460
280 340 380 440 480
300 360 410 460 530

480
5-4
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~1! Integration along the isothermT055000 K from
(T0 ,V5`) ~perfect gas! to (T0 , V45118.356 nm3), corre-
sponding to pointC0 in Fig. 1. The ideal gas contribution t
the total entropy is discussed in the Appendix. The entrop
C0 can be calculated as

S~T0 ,V4!2Sid~T0 ,V4!5
U~T0 ,V4!

T0
1 ÈV4dV

T0
Pex~V,T0!,

~16!

where Pex is the pressure that exceeds the pressure of
ideal gas, i.e., the contribution to the pressure due to
interaction potential andU is the system potential energ
The values of the pressurePex(T5T0 ,V,N5343) as a func-
tion of V are reported in Fig. 2~a!. Pex(T5T0 ,V,N5343)
has been fit using the virial expansion

Pex~T5T0 ,V,N5343!5 (
k51

4

akV
2(k11). ~17!

The ak values are reported in Table III, from which we es
mate the first virial coefficient atT0

B2~T0!5a1 /~kBT0N2!50.596 nm3. ~18!

In Fig. 2~b! we plot the potential energy as a function
volume along theT5T0 isotherm.

The total entropy at the reference pointC0 is S(C0)
5294.8 J/(mol K), resulting from the sum of three cont
butions

Sid~C0!5339.03 J/~mol K!, ~19!

5 ÈV4dV

T0
Pex~V,T0!5244.9 J/~mol K!, ~20!

and

FIG. 1. Thermodynamic integration paths used to calculate
total entropy at the thermodynamical points of interest starting fr
the ideal—noninteracting—gas state. Details are given in the te
04120
at

e
e

U~C0!

T0
50.64 J/~mol K!. ~21!

~2! Integration along the isochoreV5V4 from T0 to T*
5380 K, corresponding to pointC1 in Fig. 1. To evaluate
the entropy along this isochore we use

S~T* ,V4!5S~T0 ,V4!13Rlog~T* /T0!

1E
T0

T* dT

T

]U~V4 ,T!

]T
. ~22!

TABLE III. Fitting coefficients for the excess pressure as a fun
tion of 1/V at T55000 K and atT5380 K.

i ai ~MPa nm3(i 11)) pi* ~MPa nm3(i 11))

1 4835.962723103 15943.2
2 1000.537653106 2256.591
3 9654.694703106 1.1745
4 3873.8700131010 20.00111551

e

t.

FIG. 2. ~a! Excess pressure atT55000 K as a function of vol-
ume. The open circles are the MD results. The dashed line is the
first term of the virial expansion to the excess pressure; the s
line is a third order polynomial fit to the entire set of data.~b!
Potential energy atT55000 K as a function of volume.
5-5
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Figure 3~a! shows the potential energy for theV5V4 isoch-
ore. To calculate the integral in Eq.~22!, we fit the potential
energy using the functional form which best interpolates
calculated points

U~V4 ,T!5u01u1T3/51u2T, ~23!

obtaining the valuesu05294.405,u150.533,u250.00183
~energy in kJ/mol!.

The total entropy at the reference pointC1 is S(C1)
5191.8 J/(mol K), resulting from the sum of three cont
butions:

S~C0!5308.6 J/~mol K!, ~24!

3R log~T/5000!5264.3 J/~mol K!, ~25!

and

E
T0

T* dT

T

]U~V4 ,T!

]T
5252.5 J/~mol K!. ~26!

~3! Integration along the isothermT* from V4 to a ‘‘ge-
neric’’ V. To determine the total entropy difference for a
studied densities we calculate

FIG. 3. ~a! Integration step 2. Potential energy~open circles! at
the densityr4 in the entire temperature range considered; the s
line is the fit of the data to Eq.~23!. The inset shows the lowes
temperature region in order to stress the accuracy of the fit.~b! and
~c! Integration step 3. Potential energy~b! and pressure~c!.
04120
e

S~T* ,V!2S~T* ,V4!5Sid~T* ,V!2Sid~T* ,V4!

1
1

T*
@U~T* ,V!2U~T* ,V4!#

1E
V4

V dV8

T*
Pex~T* ,V8!. ~27!

Figures 3~b! and 3~c! show, respectively, the potential energ
and the excess pressure as a function of volume atT5T* .
For convenience we fitPex with a third order polynomial

Pex~T* ,V!5 (
k51

4

pk* Vk21, ~28!

where the values of the coefficientspk* are given in Table III.
The resulting total entropy atT* for all studied densities is
reported in Table IV. These values are used as refere
entropies for theT dependence ofS. For each of the studied
isochores, we calculate theT dependence of the total entrop
according to Eq.~22!. In this low T range, the potential en
ergy is very well represented by the Rosenfeld-Tarazona
@48#

U~V,T!5U0~V!1a~V!T3/5 ~29!

consistent with what was found for LJ systems. In Fig. 4
show the temperature dependence of the potential energ
all densities. The best-fitU0(V) and a(V) values are re-
ported in Table V. The calculated total entropies at each c
sidered density are plotted in Fig. 5.

TABLE IV. Total entropy at five densities for the reference tem
peratureT* .

k S(T* ) @J/~mol K!#

1 192.80
2 188.21
3 183.54
4 177.95
5 172.12

TABLE V. The first two columns are the coefficients for th
potential energyU(T,V)5U0(V)1a(V)T3/5; the second two col-
umns are the coefficients for the inherent structureseIS(V,T)
5A(V)1B(V)/T.

rk U0 ~kJ/mol! a (kJ K23/5/mol) A ~kJ/mol! B ~kJ T/mol!

1 286.30 0.4385 279.11 2285
2 288.94 0.4716 280.14 2436
3 292.07 0.5231 281.88 2676
4 295.23 0.5762 281.36 2965
5 296.06 0.5731 281.89 21100

d
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B. Dependence of the inherent structure energies onT and r

In Fig. 6 we show the temperature dependence of
energy of the calculated inherent structures together with
@according to Eq.~7!# in the form

eIS~V,T!5A~V!1
B~V!

T
~30!

The values of the fitting coefficientsA(V) and B(V) are
reported in Table V. On lowering temperature the syst
populates minima of lower and lower energy. It is wor
noting that, in contrast to the case of the actual poten
energy, the slope of these curves varies strongly with de
ties.

From theT andV dependence ofeIS the anharmonic po-
tential energy can be calculated according to Eq.~3!. Figure
7 showsUanh(T) for two densities~symbols!. We also show
a cubic extrapolation~solid lines! in the form of

Uanh~T!5c2T21c3T3. ~31!

FIG. 4. Potential energies at the different densities as a func
of T3/5. The straight solid lines show the validity of the Rosenfe
Tarazona law, Eq.~29!.

FIG. 5. Temperature dependence of the total entropy as ca
lated by thermodynamic integration from the ideal gas refere
state. Only points in the temperature range where MD meas
ments have been performed are shown. The reference tempe
T* 5380 K is also shown~dashed line!.
04120
e
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As shown in Fig. 7, the anharmonic contribution is rath
small, in agreement with previous findings for the LJ mod
For this reason, the low signal to noise level does not all
a well-defined characterization of thec2 and c3 values. To
decrease the number of free parameters, we considerc2 to be
volume independent, and we fit simultaneously, according
Eq. ~31!, c2 and theV dependence ofc3. As we will show in
the following, the anharmonic contribution to the entropy
much smaller than the harmonic one and hence the choic
c2 andc3 does not affect significantly the resulting config
rational entropy estimate.

C. Density of states and vibrational harmonic entropy

In this section we study the shape of the basins by inv
tigating the properties of the density of states and we ca
late the vibrational harmonic entropy. In Figs. 8~a! and 8~b!
we show the temperature and density dependence of the
sity of state, namely the histogram of the square root of
eigenvalues of the Hessian calculated for the inherent st
tures. The distribution is characterized by only one peak,
showing any clear separation between translational and r

n

u-
e
e-
ture

FIG. 6. Energies of the inherent structures at the different d
sities as a function of 1/T. The straight lines confirm the validity o
Eq. ~30! in the entire temperature range considered.

FIG. 7. Anharmonic contributions to the energies, at the t
indicated densities, together with the appropriate cubic fit, Eq.~31!.
This contribution is integrated to directly calculate the anharmo
contribution to the vibrational entropy.
5-7
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tional dynamics; the width of the distribution increases
increasing temperature. The position of the maximum
found to be to a good extent independent of temperature
variance it increases with density as the width does. Th
features show that the LW PES basins have shapes tha
function of the energy depth and of the density.

It is worth noticing one particular feature of Fig. 8~b!; all
the curves cross at a value of the frequencyv* '44 cm21.
The presence of this isosbestic frequency~in analogy with
the well-know isosbestic frequency observed in the Ram
spectrum of water@49#! supports the possibility that a two
state model@50# may provide a reasonable description of t
change of the density of states with temperature and, co
spondingly, of the change of the density of states with
basin depth.

In Figs. 9~a! and 9~b! we plot the quantity
N21(k51

6N23log(vk /v0) as a function ofT and of theeIS , re-
spectively. The scale frequencyv0 is chosen as 1 cm21.
This quantity is an indicator of the average curvature of
basins and, being a sum of logarithms, is very sensitive to
spectrum tails. As shown in Fig. 9~a! N21(k51

6N23log(vk /v0)

FIG. 8. ~a! Density of states at fixed densityr4 at the three
indicated temperatures. This quantity is the histogram of the sq
root of the eigenvalues of the Hessian calculated for the inhe
structures.~b! Density dependence of the density of state at fix
temperatureT5320 K. The dashed line indicates the isosbes
frequencyv* '44 cm21 at which all the curves intersect. The re
evance of this feature is discussed in the text.
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increases with temperature along isochores and incre
with density along isotherms.

As noted previously for the LJ@51,29# and for the simple-
point charge extended~SPC/E! model for water@30#, the
dependence ofN21(k51

6N23log(vk /v0) from eIS can be well
approximated by a linear dependence, i.e.,

1

N (
k51

6N23

lnF\vn~T!

kBT0
G5a~V!1b~V!eIS~T!, ~32!

TABLE VI. Coefficients of the fit to the form
N21(k51

6N23log(vk /v0)5a(V)1b(V)eIS(T).

rk a(V) b(V)
~mol/kJ!

1 47.1 0.342
2 41.2 0.259
3 36.5 0.192
4 32.1 0.132
5 28.9 0.869

re
nt
d

FIG. 9. ~a! Temperature dependence of the average basin cu
tures N21(k51

6N23log(vk /v0); this quantity, being a sum of loga
rithms, is very sensitive to the spectrum tails.v051 cm21 sets the
frequency scale.~b! Relation between the energy of the inhere
structures and the average basin curvatures. The straight lines
firm the correlation between shape and depth of the inherent s
tures accessed by the system.
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whereT0 defines theT scale (T051 K). The values of the
coefficientsa(V) and b(V) are reported in Table VI. This
dependence indicates that deeper and deeper basins
larger and larger volumes~their average frequency bein
smaller!. The fact that basins of different depths have diff
ent volumes introduces an important contribution to Eq.~6!
since the term] f /]eIS is different from zero. The implication
of this nonzero contribution has been discussed recentl
Refs.@29,51,52#.

In Fig. 10 we show the harmonic contribution to the e
tropy as calculated from Eq.~11!. This contribution is obvi-
ously increasing with temperature and along isotherms
creases decreasing density. The lines are interpolations o
data using the fits of Fig. 9.

D. Vibrational anharmonic entropy

Integration of the anharmonic energyUanh, obtained from
Eq. ~9! according to Eq.~13!, gives directly the anharmoni
contribution to the entropy. For the LW case,Uanh is de-
scribed by the polynomial inT of Eq. ~31!, and we obtain

Sanh~T!52c2T1
3

2
c3T2. ~33!

The inset of Fig. 10 shows the anharmonic contribution
the vibrational entropy as calculated by integrating the
harmonic contribution to the potential energy. This contrib
tion is negative showing that, in the range of densities a
temperatures studied, the leading anharmonic contribu
acts in the direction to decrease the volume of the basin

E. The configurational entropy

In Fig. 11 we plot the configurational entropy calculat
subtracting the vibrational~sum of the harmonic and anha
monic terms! from the total entropy for the five studied iso
chores. As expected the degeneracy of basins increase

FIG. 10. Main panel: Harmonic contribution to the vibration
entropy as calculated from the eigenvalues of the Hessian for
inherent structures. Inset: Anharmonic contribution to the vib
tional entropy as calculated by integration of the anharmonic c
tribution to the potential energy, as discussed in the text.
04120
ave

-

in

-

-
the

o
-
-
d
n

on

lowering density, in agreement with the evidence that a gl
transition may be induced along an isothermal path by p
gressively increasing the pressure. Considering Eqs.~10!,
~11!, ~30!, ~32!, and~33!, the configurational entropy can b
described in the entire density and temperature range con
ered by means of the functional form

Sc~T!5S~T!2S 62
3

ND1a~V!1b~V!FA~V!1
B~V!

T G
22c2T2

3

2
c3T2. ~34!

These curves are plotted in Fig. 11 as solid lines. In the ra
of temperatures and density studied,Sc /R per molecule var-
ies from about 4 to 3, a figure not very different from th
estimated configurational entropy of orthoterphenyl, ba
on an analysis of theT dependence of the measured spec
heat @53,54#. We recall that the LW model represents ea

he
-
-

FIG. 11. Volume and temperature dependence of the config
tional entropySc calculated as the difference between the total a
the vibrational entropy. Solid lines are interpolations of the cal
lated points to Eq.~34!.

FIG. 12. Temperature dependence of the different contributi
to the total entropy~closed triangles! at the fixed selected densit
r4: harmonic ~open squares!, configurational entropy~closed
circles!, and anharmonic~open diamonds!.
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S. MOSSAet al. PHYSICAL REVIEW E 65 041205
phenyl group as one single interaction site and it does
account for the the molecule flexibility. The similar estima
of Sc seem to suggest that steric effects are dominan
controlling the configurational entropy. Finally, in Fig. 12 w
plot the temperature dependence of all the contribution
the entropy atr4 .

F. Diffusion and the Adam-Gibbs relation

In order to investigate the connection between the lo
time dynamics of the system and the underlying PES,
calculate the center-of-mass diffusion coefficientD(T) from
the mean-square displacement^r 2(t,T)& via the Einstein re-
lation

D~T!5 lim
t→`

1

6t
^r 2~ t,T!& ~35!

To guarantee a proper diffusive regime, at all densities sim
lations are performed until the average mean square disp
ment is greater than 0.1 nm2 at the lowest temperatures an
10 nm2 at the highest. The inverse of the diffusion coef
cient provides an estimate of the characteristic structura
laxation time of the LW model.

FIG. 13. Diffusion constants together with the correspond
power law fits~solid lines! predicted by the MCT. The breakdow
of this prediction and the crossover to an activated dynamic
evident. See text for a discussion of this point.~a! As a function of
temperature.~b! As a function of the inverse temperature in order
stress the exponential dependence at the lowest temperatures
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The D values calculated are shown in Fig. 13. Figu
13~a! shows the dependence onT, while Fig. 13~b! shows the
dependence on 1/T. Figure 13~a! also shows the best fits t
the power law

D~T!}~T2Tc!
g ~36!

predicted by the ideal MCT in weakly supercooled stat
The consistency of the MCT prediction for a wide range ofD
values confirms the analysis of Rinaldiet al. @44# where ex-
plicit ideal MCT calculations were presented and succe
fully compared with the numerical results along one isob
Figure 13 shows also that clear deviations from the id
MCT take place when the diffusion value becomes sma
than 1028 cm2/s. The representation ofD as a function of
1/T shown in Fig. 13~b! shows that the ideal MCT region i
followed by aT region where new types of processes beco
effective in controlling the molecular dynamics. These p
cesses, termed hopping processes, transform the ideal M
divergence of characteristic times into a crossover. In
region of D values between 1028 cm2/s and 10210 cm2/s,
limited from below by the present numerical resources, d
are consistent with an apparent Arrhenius dependence
parameters which could well becomeT dependent if studied
in a larger range ofD values@3#.

The ideal MCT critical temperatures andg values, deter-
mined by the fit of theD values to Eq.~36!, as a function of
density are shown in Fig. 14. The density dependence oTc
is almost linear. The exponentg seems to increase on in
creasing density, but the noise does not allow us to rule
the possibility of a constant value. The filled circle indicat
the value of the critical temperatureTc5265 K determined
from an isobaric run in Ref.@44#.

We finally study the link between configurational entro
and diffusion coefficient, investigating the validity of th
Adam-Gibbs equation. Figure 15 shows logD as a function
of 1/(TSc); for all studied isochores, logD vs 1/(TSc) is well
described by a linear relation, with coefficients which a

g

is

FIG. 14. MCT parameters as calculated from the diffusion c
stants. Main panel: Critical temperatureTc(V) ~open circles! to-
gether with the value calculated in Ref.@44# ~closed circle!. The
dashed line is only a guide for the eye. Inset: Power law expon
g(V).
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DYNAMICS AND CONFIGURATIONAL ENTROPY IN THE . . . PHYSICAL REVIEW E 65 041205
volume dependent, as previously found for the LJ liqu
@29#, for the SPC/E model for water@34# and for the BKS
model for silica@32#.

We note in passing that deviations from linear behav
are observed at large values of logD, where intrabasin and
interbasin dynamics time scales are no longer separated
high T, it has been proposed@55# that entropy—as oppose
to configurational entropy—is the relevant thermodynam
quantity controlling dynamics.

VI. DISCUSSION AND CONCLUSIONS

In this article we have studied systematically the prop
ties of the potential energy surface for a simple three-
rigid model designed to mimic the properties of the frag
glass-forming liquid ortho-terphenyl. The choice of th
simple model, which collapses the entire phenyl ring in
one interaction site, allows us to run very long trajector
and to study in supercooled states the molecular dynamic
to 1 ms, allowing the determination of diffusion coefficien
down to 10210 cm2/s.

We have found that, as in the atomic LJ case, by coo
along an isochore, basins of the PES of deeper and de
energy are explored. The basin volumes are functions of
depth in agreement with previous studies. Using the inhe
structure thermodynamic formalism, we have calculated
number of basins of the PES and their depth, in the regio
depth values probed by our simulations. As a result, we p
sented a full characterization of the the temperature and
sity dependence of the basin depth, degeneracy, and
umes.

These results are used to provide a consistent mode
the intrabasin vibrational entropy. This, together with the n
merical calculation of the total entropy via thermodynam
integration starting from the ideal gas state, allow us to c
culate the configurational entropy—the difference betwe
the total entropy and the vibrational one. This quantity is
primary interest both for comparing with the recent theor
ical calculations@13,36# and to examine some of the pro
posed relation between dynamics and thermodynam
@38,14,56# connecting a purely dynamical quantity like th
diffusion coefficient to a purely thermodynamical quant

FIG. 15. Test of the Adam-Gibbs relation logD(T)}(1/TSc) for
five different densities. Note that this linear relation holds bo
above and below the estimated critical temperaturesTc .
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(Sc). To examine such a possibility we compare for fi
different isochores theT dependence ofD with the Adam-
Gibbs relation. In the entire range ofT and densities studied
the Adam-Gibbs relation appears to provide a consistent
resentation of the dynamics for the LW model.

It is important to observe that a linear relation betwe
logD and 1/(TSc) holds both above and below the ide
MCT critical temperatureTc , in agreement with a similar
finding for the silica case@32#. Recent works based on th
instantaneous normal mode technique@57# for several repre-
sentative models@58–62# provide evidence that aboveTc the
system is always located in a region of the PES close to
border between different basins. The number of diffusive
rections significantly decreases aboveTc and, if only data
aboveTc are considered, the number of diffusive directio
would appear to vanish atTc . Hence dynamics aboveTc is a
dynamics of ‘‘borders’’ between basins and there is no cl
reason why such dynamics should be well described by
Adam-Gibbs relation, which focuses on the ‘‘number’’ o
basins explored. The observed validity of the AG relation
both above and belowTc—reported in this manuscript sup
ports the hypothesis that a direct relation exists between
number of basins and their connectivity@60,62#. It is a chal-
lenge for future studies to confirm or disprove this hypo
esis.
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APPENDIX: IDEAL GAS ENTROPY FOR THE LW MODEL

In this appendix we calculate the partition function of
system of N LW molecules in the noninteracting—idea
gas—case.

The three moments of inertia for the single molecule a

I x5
2

3
ms2cos2S u

2D51.248310244 kg m2,

I y52ms2sin2S u

2D52.204310244 kg m2, ~A1!

and

I z5ms2F2

3
cos2S u

2D12 sin2S u

2D G53.452310244 kg m2.

We define the following quantities:

A[
6pmkB

h2
, R m[

8p2kBI m

h2
, ~A2!

wherem denotesx, y, or z. The translational and rotationa
partition functions for the single molecule are, respectiv
@63#,
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ZT~T,V!5VA~AT!3, ~A3!

ZR~T,V!5
1

2
ApARxRyR zT

3, ~A4!

so the total partition function for an ideal gas of LW OT
molecules can be expressed as

Zid~T,V,N!5
~ZTZR!N

N!
. ~A5!

We approximateN!'NNe2N. The free energyFid and the
entropySid of the non-interacting system then become
.
1

ng
et

.

s

t-

es
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,

04120
Fid~T,V,N!52kBT ln@Zid~T,V,N!#

5NF1

2
ln 21 ln VAA 3RxRyRz

13 lnT2 ln N11G
Sid~T,V,N!52

1

kB

]

]T
Fid~T,V,N! ~A6!

5NkBH 41
1

2
ln p2 ln 2

1 lnFVAA 3RxRyRz

N
T3G J ~A7!

where the term ln 2 is due to the two possible degene
angular orientations of the molecule@63#.
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3789~2002!; B. Coluzzi, M. Mézard, G. Parisi, and P. Verroc
chio, ibid. 111, 9039~1999!; B. Coluzzi, G. Parisi, and P. Ver
rocchio, ibid. 112, 2933~2000!.

@37# A. Crisanti and F. Ritort, e-print cond-mat/0110259.
@38# G. Adam and J.H. Gibbs, J. Chem. Phys.43, 139 ~1965!.
@39# W. Kob, F. Sciortino, and P. Tartaglia, Europhys. Lett.49, 590

~2000!
@40# S. Mossa, G. Ruocco, F. Sciortino, and P. Tartaglia, Phi

Mag. B ~to be published!.
@41# A. Scala and F. Sciortino, e-print cond-mat/0106573.
@42# F. Sciortino and P. Tartaglia, J. Phys.: Condens. Matter13,

9127 ~2001!.
@43# G. Wahnstro¨m and L.J. Lewis, Physica A201, 150~1993!; L.J.

Lewis and G. Wahnstro¨m, Solid State Commun.86, 295
~1993!; J. Non-Cryst. Solids172-174, 69 ~1994!; Phys. Rev. E
50, 3865 ~1994!; G. Wahnstro¨m and L.J. Lewis, Suppl. Prog
Theor. Phys.126, 261 ~1997!.

@44# A. Rinaldi, F. Sciortino, and P. Tartaglia, Phys. Rev. E63,
061210~2001!.

@45# S. Mossa, R. Di Leonardo, G. Ruocco, and M. Sampoli, Ph
Rev. E62, 612~2000!; S. Mossa, G. Ruocco, and M. Sampo
ibid. 64, 021511 ~2001!; S. Mossa, G. Monaco, and G
Ruocco, e-print cond-mat/0104265; S. Mossa, G. Monaco
Ruocco, M. Sampoli, and F. Sette, J. Chem. Phys.116, 1077
04120
F.

-

.

.

.

~2002!; S. Mossa, G. Ruocco, and M. Sampoli, e-pri
cond-mat/0202121.

@46# F. Sciortino, W. Kob, and P. Tartaglia, J. Phys.: Condens. M
ter 12, 1 ~2000!.

@47# In this article, all the solid lines found in the figures should
considered as interpolations of the calculated data points~as in
the case of the thermodynamic integration section! or as a
support to the interpretation of our results in the framework
by theoretical approaches~as in the case of the fit of the dif
fusion coefficients according to the MCT!.

@48# Y. Rosenfeld and P. Tarazona, Mol. Phys.95, 141 ~1998!.
@49# G.E. Walrafen, M.S. Hokmabadi, and W.H. Yang, J. Che

Phys.85, 6964~1986!; see also P. Benassi, V. Mazzacurati, M
Nardone, M. A. Ricci, G. Ruocco, and G. Signorelli,ibid. 88,
4553 ~1988!.

@50# C.A. Angell, B.E. Richards, and V. Velikov, J. Phys.: Conden
Matter 11, A75 ~1999!.

@51# F. Sciortino and P. Tartaglia, Phys. Rev. Lett.86, 107 ~2001!.
@52# L. M. Martinez and C.A. Angell, Nature~London! 410, 667

~2001!.
@53# F.H. Stillinger, J. Phys. Chem. B102, 2807~1998!.
@54# R. Richert and C.A. Angell, J. Chem. Phys.108, 9016~1998!.
@55# M. Dzugutov, Nature~London! 381, 137~1996!; J. Phys.: Con-

dens. Matter11, A253 ~1999!.
@56# M. Schulz, Phys. Rev. B57, 11 319~1998!.
@57# T. Keyes, J. Phys. Chem.101, 2921~1997!.
@58# F. Sciortino and P. Tartaglia, Phys. Rev. Lett.78, 2385~1997!.
@59# C. Donati, F. Sciortino, and P. Tartaglia, Phys. Rev. Lett.85,

1464 ~2000!.
@60# E. La Nave, A. Scala, F.W. Starr, F. Sciortino, and H.E. Sta

ley, Phys. Rev. Lett.84, 4605~2000!.
@61# E. La Nave, A. Scala, F.W. Starr, H.E. Stanley, and F. Sc

tino, Phys. Rev. E64, 036102~2001!.
@62# E. La Nave, H.E. Stanley, and F. Sciortino, Phys. Rev. Lett.88,

035501~2002!.
@63# J. E. Mayer and M. G. Mayer,Statistical Mechanics~John

Wiley & Sons, New York, 1963!.
5-13


