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Abstract

To describe the slow dynamics of a system out of equilibrium, but close to a dynamical
arrest, we generalise the ideas of previous work to the case where time-translational invariance
is broken. We introduce a model of dynamics that is reasonably general, and show how all
of the unknown parameters of this model may be related to the observables or to averages
of the noise. One result is a generalisation of the Fluctuation–dissipation theorem of type two
(FDT2), and the method is thereby freed from this constraint. Signi5cantly, a systematic means
of implementing the theory to higher order is outlined. We propose the simplest possible closure
of these generalised equations, following the same type of approximations that have been long
known for the equilibrium case of mode coupling theory (MCT). Naturally, equilibrium MCT
equations are found as a limit of this generalised formalism. c© 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Glasses are typically amorphous, dynamically slowed or arrested states of matter,
whose dynamical relaxational processes are dramatically slower than those of liquid
states, despite their great structural similarities. It has long been known that, for many
systems, slow and careful approach to what is clearly a non-equilibrium glass tran-
sition leads to entirely reproducible behaviour more reminiscent of phase transitions
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at equilibrium. Such phenomena are often called, albeit loosely, ‘equilibrium glass
transitions’. The most complete current microscopic theory available for these systems,
mode coupling theory (MCT) [1] has implicit within it [2] the #uctuation–dissipation
theorem of type two (FDT2) [3], but despite this, the agreement between theory and
light scattering measurements [4] are remarkably good for simple colloidal systems. The
explicit manifestation of the ‘equilibrium’ nature of the system is that all observables
are functions only of the time diGerences, and are independent of when the experimental
measurements are commenced. However, cases such as this are by no means natural,
and typically experiments are found to depend on the time of waiting tw after a change
in the external parameters of the system. Numerous experimental descriptions exist.
However, in a pioneering paper [5] on model systems it was shown that equilibrium
MCT ideas could be extended to deal with systems that ‘age’ and therefore violate
FDT2 [6–8]. The ideas contained in that paper have been helpful in developing the
concept of aging, but it is not until recently that attempts have been made to extend the
existing microscopic theory of equilibrium glassy states MCT in the same spirit. Two
such approaches appear to be developing. One of these is described in this paper. The
other [9] uses an entirely diGerent strategy by which projection operators are extended
to the non-equilibrium state.
Before beginning our discussion, we should sound some notes of caution. Whilst,

the framework we build is quite general, the approximations we use are the analogues
of those used in equilibrium MCT [1], and in non-microscopic theories of aging [5,
10–13]. We have argued elsewhere [2,14] that these amount to a type of dynamical
approximation, and that is known to be accurate close to the arrest transition only for
colloidal systems. Elsewhere, as in molecular glasses, they are approximately correct
up to some characteristic distance from the glass transition, often called the MCT
temperature [15]. In terms of approximations, what we here present cannot be expected
to improve on this fundamental limitation. On the other hand, we may hope that what
is described below will be the non-equilibrium (aging) theory of those systems for
which MCT has proven of value.

2. Fundamentals

It has been shown in previous works [2,14] that it is possible to write density
equations of motion starting from Newtons equations. This gives an explicit formula
for J�k(t) where the density variables �k(t) are de5ned as the Fourier transform of the
number density �(r; t), i.e.,

�k(t) =
∫
V
dr �(r; t)eik·r =

N∑
j=1

eik·rj(t) : (1)

In principle, to describe the underlying Newtonian variables of position and velocity
we would need many 5elds, the most fundamental of which are generally considered
to be the hydrodynamic variables of longitudinal and transverse currents, along with
a local temperature or entropy variable. Until now, mode coupling type theories have
been based on longitudinal current, and therefore only the density degree of freedom,
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and we shall illustrate our points in the following within this particular approximation.
Thus, the 5rst time derivative of density is related to the longitudinal current, and
the derivative of this current is treated in MCT, leading to an equation involving the
second-order derivative of density in time [1]. Extensions involving more 5elds are
more complex, and they will be the subject of future work.
The basic approach in any case is to develop a general model that can describe slow

out-of-equilibrium dynamics by extending FDT2 [3], and then to 5nd some simple
approximations to close the model, as a starting point of applicability.
Thus, we write the density equations as

J�k(t) =Dk(t; �) +Rk(t; �) ; (2)

where we separate out deterministic and stochastic motions, representing with Dk(t; �)
and Rk(t; �), respectively, the deterministic and the random force acting on the density
waves. Observables have to be calculated by averaging over the noise distribution
which has not yet been stipulated.
We have explicitly indicated the dependence on two distinct times in the history

of the system, t and �. In general, t can represent the 5nal observation time, while �
can be considered the so-called waiting time in an aging experiment. The choice of
these two times implies that, once the variables of the system are known at time �,
Eq. (2) determine the dynamics of the density variables through the unknown functions
Dk(t; �) and Rk(t; �).
We start by discussing some general properties that the random force must possess.

Indeed, it is fundamental to require the stochastic process to satisfy the causality con-
dition. Essentially all that we will show, up to the 5nal approximations, derive only
from the form of Eq. (2), and the causality requirements. These explicitly are

〈�−k(�)Rk(t; �)〉= 0 ; (3)

〈�̇−k(�)Rk(t; �)〉= 0 ; (4)

where t corresponds to all times later than �. The brackets indicate averages over
the (unknown) non-equilibrium distribution of the system. If the decomposition into
deterministic and stochastic motions, made in (2), was exact, these averages would be
the same as the averages over the noise distribution.
Now, using (2), the two causality conditions (3) and (4) can be rewritten as

〈�−k(�) J�k(t)〉= 〈�−k(�)Dk(t; �)〉 ; (5)

〈�̇−k(�) J�k(t)〉= 〈�̇−k(�)Dk(t; �)〉 : (6)

These also imply two further conditions, that are obtained by taking their 5rst derivative
with respect to �, and then using (3) and (4) as well as (2). Thus, we have〈

�−k(�)
@
@�

Dk(t; �)
〉
= 0 ; (7)〈

�̇−k(�)
@
@�

Dk(t; �)
〉
= 〈 J�−k(�)Rk(t; �)〉

= 〈D−k(�; �)Rk(t; �)〉+ 〈R−k(�; �)Rk(t; �)〉 : (8)
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Conditions (7) and (8) constitute two of the fundamental constraints on which to build
a theory of non-equilibrium slowed dynamics.
At this point we are still at liberty to use any trial deterministic force. We choose

to write the most general linear form, i.e.,

Dk(t; �) =−
k(t)�k(t)− �k(t)�̇k(t)

−
∫ t

�
dt′�k(t; t′)�̇k(t

′)−
∫ t

�
dt′ k(t; t′)�k(t′) ; (9)

where the quantities 
k(t), �k(t), �k(t; t′) and k(t; t′) are four unknown parameters of
the theory. We may note that so far, if one accepts the underlying Mori-type hypothesis
that dynamics may be represented by a deterministic (slow) part, and noise (fast) part,
even to describe non-equilibrium states, the linear approximation could be essentially
exact for most conditions, providing the memory kernels are chosen correctly.
Substituting (9) into Eq. (2), we obtain the set of generalised Langevin equations

for the density variables as

J�k(t) + �k(t)�̇k(t) + 
k(t)�k(t)

+
∫ t

�
dt′ �k(t; t′)�̇k(t

′) +
∫ t

�
dt′ k(t; t′)�k(t′) =Rk(t; �) : (10)

With expression (9), we assume that the deterministic force is composed of linear
terms in �k(t) and �̇k(t), explicitly separated into instantaneous and non-local contri-
butions. 
k(t) and �k(t) are time dependent because the system is evolving towards
equilibrium and, therefore, so are the collective variables. 
k(t) is the frequency of
the elementary excitations that would be ‘phonons’ at equilibrium, while �k(t) takes
into account the dumping of the modes. The integral terms are memory contributions
to these kinds of eGects, con5gurational evolution and dissipation, respectively. They
are not time-translational invariant as the observables of the system are not.
It is not possible to apply a simple FDT2 as soon as this invariance is broken.

Nevertheless, the choice made in (9) enforces the width of the noise distribution to
be closely related to the memory kernels as was for the equilibrium case. This can be
viewed as a generalisation of FDT2 for a system out of equilibrium. Indeed, combining
(7)–(9) we obtain

〈R−k(�; �)Rk(t; �)〉= N
{
Jk(�)− 1

4
Ṡ
2
k(�)
Sk(�)

}
�k(t; �) (11)

and

k(t; �) =−1
2
�k(t; �)

@
@�

log Sk(�) (12)

with the de5nitions

Sk(t; �) =
1
N

〈�−k(�)�k(t)〉 ; (13)



P. De Gregorio et al. / Physica A 307 (2002) 15–26 19

Jk(t; �) =
1
N

〈�̇−k(�)�̇k(t)〉 ; (14)

Sk(�) = Sk(�; �); Jk(�) = Jk(�; �) : (15)

Here, Sk(�) and Jk(�) are equal time correlators. In the equilibrium case, clearly, they
simply reduce to

S(eq)k (t) = Sk ; J (eq)k (�) =
k2

�m
: (16)

Also, Ṡ
(eq)
k (t) = 0.

Thus, Eq. (11) is the generalisation of FDT2 for systems out of equilibrium, and
indeed it possesses the correct limit to the equilibrium FDT2 [3],

〈R(eq)
−k (�; �)R

(eq)
k (t; �)〉= Nk2

�m
�(eq)k (t − �) (17)

while (eq)k (t; �) = 0, and this quantity does not appear in the equilibrium theory.
It is still necessary to determine the generalised frequency, 
k(t), and the instanta-

neous part of the friction, �k(t), to characterise completely the model. Thus, we write
Eq. (10) for the time �

J�k(�) + �k(�)�̇k(�) + 
k(�)�k(�) =Rk(�; �) (18)

and we require the following initial conditions for our stochastic process:

〈�−k(�)Rk(�; �)〉= 0 ; (19)

〈�̇−k(�)Rk(�; �)〉= 0 : (20)

These are consistent with the causality relations of Eqs. (3) and (4), but one can
imagine other models where they are not applied. Their choice leads to the following
relations:

1
2
JSk(�)− Jk(�) + 1

2�k(�)Ṡk(�) + 
k(�)Sk(�) = 0 ; (21)

1
2 J̇ k(�) + �k(�)Jk(�) +

1
2
k(�)Ṡk(�) = 0 : (22)

Solutions to these equations are


k(�) =
4J 2k (�)− 2 Jk(�) JSk(�) + J̇ k(�)Ṡk(�)

4Jk(t)Sk(�)− Ṡ2k(�)
; (23)

�k(�) =
JSk(�)Ṡk(�)− 2 J̇ k(�)Sk(�)− 2Jk(�)Ṡk(�)

4Jk(�)Sk(�)− Ṡ2k(�)
: (24)

Note that choice (9) implies four unknown parameters, and Eqs. (7), (8), (23) and (24)
5x these in terms of observables, and of the noise distribution, both of which might
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be considered input into the theory or determined self-consistently. It is interesting to
note that a very similar structure has been developed by Latz [9], using the method of
non-equilibrium projector operators.
Following the same kind of steps made in Refs. [2,14] we can also de5ne

J�k(t) + �k(t)�̇k(t) + 
k(t)�k(t) =Fk(t) ; (25)

where Fk(t) are considered to be the couplings between the modes. If we seek to
minimise these, then the ‘best’ choice of modes can be determined by

@
@
k(t)

〈|Fk(t)|2〉= 0 ; (26)

@
@�k(t)

〈|Fk(t)|2〉= 0 : (27)

These equations give the same solutions as the ones given in (23) and (24), providing
one means of interpreting choices (19) and (20).
Now we de5ne the normalised correlators

�k(t; �) =
Sk(t; �)
Sk(�; �)

; �k(t; �) =
〈�̇−k(�)�k(t)〉
Sk(�; �)

(28)

and, using the Langevin equation (10) we write

@2

@t2
�k(t; �) + �k(t)

@
@t
�k(t; �) + 
k(t)�k(t; �)

+
∫ t

�
dt′ k(t; t′)�k(�; t′) +

∫ t

�
dt′ �k(t; t′)

@
@t′
�k(�; t′) = 0 ; (29)

@2

@t2
�k(t; �) + �k(t)

@
@t
�k(t; �) + 
k(t)�k(t; �)

+
∫ t

�
dt′ k(t; t′)�k(�; t′) +

∫ t

�
dt′ �k(t; t′)

@
@t′
�k(�; t′) = 0 : (30)

(29) and (30) are the equations of motion for the system. This set of equations is
equivalent to the equations proposed in Ref. [9].
Now, these equations require knowledge only of the dispersion of the noise 〈R(t; �)×

R(�; �)〉 (see Eqs. (11) and (12)), as well as Sk(�) and Jk(�).
Before turning to make useful approximations, we discuss brie#y a new method

that leads to closure of these equations. It can lead to a sequence of corrections, and,
in the equilibrium case leads to the known MCT equations within the same type of
approximations.
The idea consists in applying a variational principle for that part of the exact random

force that is hard to calculate. We shall write a sort of constitutive relation for the noise
that connects it to density variables, but where the noise is constrained to have certain
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reasonable properties, essentially ensuring that both sides of the stochastic equations
are consistent. We therefore write

RVAR
k (t; �) =
k(t)�k(t) + �k(t)�̇k(t) + d

(1)
k (t)�k(t) +

∑
k′ �=k

d(2)k;k′(t)�k−k′(t)�k′(t)

+
∑

k′ ; k′′ �=k′
d(3)k;k′ ;k′′(t)�k−k′′(t)�k′′−k′(t)�k′(t) + · · ·

+
∫ t

�
dt′ �k(t; t′)�̇k(t

′) +
∫ t

�
dt′ k(t; t′)�k(t′) ; (31)

where the set of parameters d(n) have to be determined by making this trial form the
closest possible to the true one, that contains J�k(t). In principle, one needs an in5nite
number of the terms in the sum (31), and the level of the approximation of a theory
will be correspondent with the number of terms considered.
To be acceptable this choice of noise must be ‘faithful’, in the sense that the

Langevin process of Eq. (10) should be preserved. This issue can be partially
addressed by requiring that the noise #uctuations on a single time slice are consis-
tent with the Langevin process (10). Thus, we impose

@
@d(n)(t)

〈|Rk(t; �)−RVAR
k (t; �)|2〉= 0 ; (32)

where Rk(t; �) is de5ned in (10). This leads to an in5nite set of coupled equal-time
equations. In the next section we shall give an example of these.
The other conditions to be satis5ed by expansion (31) of the noise are constraints

(19) and (20). These conditions can now be explicitly written as


k(�)Sk(�) +
1
2
�k(�)Ṡk(�) + d

(1)
k (�)Sk(�)

+
1
N

∑
k′ �=k

d(2)k;k′(�)〈�−k(�)�k−k′(�)�k′(�)〉

+
1
N

∑
k′ ; k′′ �=k′

d(3)k;k′ ;k′′ (�)〈�−k(�)�k−k′′(t)�k′′−k′(�)�′k(�)〉+ · · ·= 0 ; (33)

1
2

k(�)Ṡk(�) + �k(�)Jk(�) +

1
2
d(1)k (�)Ṡk(�)

+
1
N

∑
k′ �=k

d(2)k;k′(�)〈�̇−k(�)�k−k′(�)�k′(�)〉

+
1
N

∑
k′ ; k′′ �=k′

d(3)k;k′ ;k′′ (�)〈�̇−k(�)�k−k′′(t)�k′′−k′(�)�k′(�)〉+ · · ·= 0 : (34)

These would be exact equations of motion determining the non-equilibrium structure
factor and currents, providing one knows the couplings d(n) and expansion (31) is
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exact. We now discuss some simple closure ideas. These should not be regarded as
complete, but merely indicative of the sorts of approximations that will need to be
considered in future.

3. Simplest closure

It is now necessary to employ some approximations regarding the multiple averages
involving densities, or equivalently the noise distribution, as well as the kinetic terms.
These last terms would be well approximated by their equilibrium limits if we are
exploring the system after the velocities have equilibrated, and this is the line of
thinking we shall pursue as a 5rst approximation. A diGerent approach has to be taken
to account for the multiple averages and also, for the equal time structure factor that
is itself evolving in time.
To make relation to the known MCT theory at equilibrium we shall consider only

the 5rst non-linear term in the sum which represents noise (31), and thus, the only
parameters left to choose are d(1)k (t) and d(2)k;k′(t). We then apply the minimisation
condition (32)

@

@d(1)k (t)

〈
| J�k(t)− d(1)k (t)�k(t)−

∑
k′ �=k

d(2)k;k′(t)�k−k′(t)�k′(t)|2
〉

= 0 ; (35)

@

@d(2)k;p(t)

〈
| J�k(t)− d(1)k (t)�k(t)−

∑
k′ �=k

d(2)k;k′(t)�k−k′(t)�k′(t)|2
〉

= 0 : (36)

This explicitly gives the conditions∑
k′ �=k

d(2)k;k′(t)〈�−k(t)�k−k′(t)�k′(t)〉

+d(1)k (t)〈�−k(t)�k(t)〉 − 〈�−k(t) J�k(t)〉= 0 ; (37)

∑
k′ �=k

d(2)k;k′(t)〈�−k+p(t)�−p(t)�k−k′(t)�k′(t)〉

+d(1)k (t)〈�−k+p(t)�−p(t)�k(t)〉 − 〈�−k+p(t)�−p(t) J�k(t)〉= 0 (38)

to solve for 5nding the best possible coePcients d(1)k (t) and d(2)k;k′(t). Eq. (37) is trivial,
as it corresponds to the same equation as (33).
If we had chosen to work in the Newtons equation representation we would at this

point still have the bare potential present in the problem [2,14]. In essence, by choosing
the best form of the noise in terms of density in an independent manner, as above, we
renormalise the instantaneous forces experienced by the density waves at a single time
slice, away from what they would have been if we had the bare potential to generate
the noise correlations [2,14]. This may also be viewed as performing a partial sum
over some of the noise to give exact, or nearly so, equal-time averages, and leaving
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the averages to be calculated in the remaining correlators to be carried out with the
remaining noise. The most important approximations are then due to approximations of
the correlations between diGerent time slices. In a manner, we may view this as having
renormalised the vertices of the problem prior to proceeding with any approximation
of the unequal time correlators.
At this stage we could in principle solve for the coePcients, but consistent with

previous MCT approximations, we may further simplify the problem. As in equilib-
rium MCT [1], we choose a Gaussian approximation for the four point averages and a
superposition approximation for the triplets, 〈�−k(t)�p(t)�q(t)〉≈NSk(t)Sp(t)Sq(t)�k;p+q,
which consists in neglecting the triple direct correlation function c3.
Recall that these averages are not over all the noise ensemble but only that part

remaining after the pre-averaging mentioned above. In this sense, using the leading
non-trivial approximation for averages (Gaussian for even averages, superposition for
odd averages) may not be as severe an approximation as one would think at 5rst sight.
Indeed, in the equilibrium case solutions of Eq. (38), in these approximations, are

given by

d(1)eqk ≈ − k2

�mS(eq)k

; d(2)eqk;k′ ≈ k · k′
�mV

c(eq)k′ ; (39)

where c(eq)k is the equilibrium direct correlation function. We have also assumed∑
k′ �=k d

(2)(eq)
k;k′ S(eq)−k S

(eq)
k−k′S

(eq)
k′ = 0.

Thus, inserting this formula in (31) we can calculate (11) neglecting the integral
contribution, but still accepting (29) as the correct equations of motions, recovering
the well established equilibrium MCT equations [1,14].
In principle, out of equilibrium, it is still possible to solve for the coePcients d(2)k;k′(t),

that minimise (36), but to have some explicit expressions for them we have to make
further approximations than those in the equilibrium case. We shall, as a 5rst approx-
imation, consider ourselves to be in the regime where the kinetic contributions to the
observables are the same as in the equilibrium limit, and we thereby assume that the
velocities relax towards their equilibrium values much faster than the positions.
In the following we consider the case of any time instant t′, in the range between �

and t. Thus, we approximate

〈 J�−k(t′)�k−p(t′)�p(t′)〉 ≈ −Nk · (k − p)
�m

Sp(t′)− Nk · p
�m

S|k−p|(t′) : (40)

The last approximation to be made is that 〈�−k(t′) J�k(t′)〉 = (1=2) JSk(t′) − Jk(t′)≈
−k2=�m, with JSk(t′) ≈ 0.
We can now write the result for the best coePcients in this approximations,

d(1)k (t′) ≈ − k2

�mSk(t′)
; d(2)k;k′(t

′) ≈ k · k′
�mV

ck′(t′) (41)

with nck(t′)=1−1=Sk(t′) the generalised direct correlation function, with n the number
density N=V . Evidently, this is a sort of adiabatic approximation, in which, ultimately,
we expect changes in the noise distribution to arise from changes in the slowly evolving
structure.
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We now use (10) and (31) to obtain

Rk(t′; �)≈ 1
�mV

∑
k′ �=k

(k · k′)ck′(t′)�k−k′(t′)�k′(t′) + �k(t)�̇k(t)

+
∫ t

�
dt′ �k(t; t′)�̇k(t

′) +
∫ t

�
dt′ k(t; t′)�k(t′) ; (42)

where t′ can be any instant between � and t. The term containing the memory kernel is
neglected in equilibrium MCT [1,14]. We will, therefore, also neglect the two integral
terms, which in any case would be of higher order in our arguments.
Now, if we approximate the four-point density correlation for diGerent times, by

Gaussian decomposition, as before, and we neglect the contributions arising from the
term �k(t)�̇k(t) in (42) because of higher order, we 5nally 5nd the generalised expres-
sion for the memory kernel �k(t; �), i.e.,

�k(t; �)≈ 4NSk(�)

�2m2V 2[4Jk(�)Sk(�)− Ṡ2k(�)]
∑
k′ �=k

[(k · k′)2ck′(�)ck′(t)

+ (k · k′)k · (k − k′)ck′(�)c|k−k′|(t)]S|k−k′|(t; �)Sk′(t; �) : (43)

and the memory kernel k(t; �) is then obtained combining this expression with (12).
We can now apply successive levels of approximation to Eqs. (33) and (34) to 5nd
an equation of motion that determines the non-equilibrium structure factor, Sk(t). In
this way, we have a simple theory of the non-equilibrium dynamical structure factor.

4. Conclusions

In this paper, we have derived a generalised Langevin equation that should rea-
sonably describe an out-of-equilibrium dynamically slowed system. This leads to new
constraints on the noise distributions rather than traditional FDT2, but these constraints
are still practicable to apply. We then expand the noise in a ‘Landau type’ expansion of
the density variables, leading to a non-linear generalised Langevin process. However,
we conceive that some pre-averaging of the variables has taken place so that exact
equal time averages are recovered to a high level of quality by assuming remaining
noise is only gaussian distributed. To preserve 5delity of the Langevin process we then
insist that the noise be a faithful representation, and that the structure of the Langevin
process is still preserved. These requirements are implemented by a variational prin-
ciple to determine the renormalised coePcients of the noise, and by implementing
the orthogonality of the noise to the ‘slow’ variables, �k(t) and �̇k(t). This leads in
principle to the determination of all of the unknown coePcients of the noise.
Further approximations are possible but not obligatory, but they make contact with

existing ideas easier. The outcome is that we end up with a theory that must be
considered as an ‘adiabatic’ extension of the existing MCT in the sense that kinetic
terms are neglected, assumed to be equilibrated. The MCT equations are therefore
modi5ed, but the form of the memory kernel is preserved, only it now includes the
dependence on the waiting time. In equilibrium MCT one typically inputs any good
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approximation to the static structure factor for which the YBG (Yvon–Born–Green
equation) equation of constraint should hold, or hold approximately [2]. Here, we
deduce the corresponding conditions, and these generate an equation of motion for
the equal time structure factor and current correlator. These equations would be exact
providing the expansion chosen for the random force, as in (31), is a complete one. As
non-equilibrium structure factors to use as inputs are much less known than equilibrium
ones, these equations, or some similar ones, will be crucial to close the theory.
The strategy we have pursued here seems diGerent to that developed in Ref. [9], and

it is as yet too early to see how these diGerent approaches will relate to each other.
Probably the answer to that question is that in the end, as with the equilibrium MCT
case [14], a fair degree of correspondence will emerge, though it will be important to
see if either approach leads naturally to higher levels of approximation.
From what we know about colloidal systems near their kinetic arrest, this theory

should be reasonably successful in describing the phenomena qualitatively, perhaps, as
with equilibrium MCT, quantitatively. This opens the possibility to begin systematic
study of the aging of colloids and soft materials [16,17]. However, to make useful
progress, in the regime where FDT2 is violated for molecular glasses, it will require
better approximations than those shown here, and this is a matter to which we, and
others, most certainly will direct our attentions.
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