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Using the inherent structure formalism originally proposed by Stillinger and Wéthers. Rev. A

25, 978(1982], we generalize the thermodynamics of an energy landscape that has an ideal glass
transition and derive the consequences for its equation of state. In doing so, we identify a separation
of configurational and vibrational contributions to the pressure that corresponds with simulation
studies performed in the inherent structure formalism. We develop an elementary model of
landscapes appropriate for simple liquids that is based on the scaling properties of the soft-sphere
potential complemented with a mean-field attraction. The resulting equation of state provides an
accurate representation of simulation data for the Lennard-Jones fluid, suggesting the usefulness of
a landscape-based formulation of supercooled liquid thermodynamics. Finally, we consider the
implications of both the general theory and the model with respect to the so-called Sastry density
and the ideal glass transition. Our analysis shows that a quantitative connection can be made
between properties of the landscape and a simulation-determined Sastry density, and it emphasizes
the distinction between an ideal glass transition and a Kauzmann equal-entropy conditia@03©
American Institute of Physics[DOI: 10.1063/1.1566943

I. INTRODUCTION dresses the first of these topics and aims to clarify some of
the most conspicuous questions about the thermodynamics of
Deeply supercooled liquids and glasses occupy a promisupercooled liquids and glasses. The unresolved issues in
nent place in modern science and engineering. In addition tglass thermodynamics are quite varied, and an important
their established and important presence among polymerigoal of this work is to investigate them with a common the-
materials, glasses are becoming key elements in new tecbretical framework capable of complete a thermodynamic
nologies, such as pharmaceutical preservation and corrosiodescription of the liquid state. We propose a simple
resistant alloys.The typical route to the vitreous state is to landscape-based equation of state for a supercooled liquid
supercool a liquid fast enough so that crystallization isand demonstrate the usefulness of this approach by compar-
thwarted; hence the properties of glasses are intimateling theoretical predictions with simulation data.
linked to those of the metastable liquids from which they are  One unresolved issue regards the so-called Kauzmann
made? At sufficiently low temperatures during the cooling temperatureT ,“2*#1%As a liquid is supercooled, its larger
process, the structural relaxation times of the metastable lijieat capacity relative to the crystal causes the melting en-
uid become so slow that its mechanical properties begin t&opy to be gradually consumed until it appears that at this
resemble those of a solid and the material is no longer imlistinguished temperature, the liquid and solid entropies be-
equilibrium relative to a laboratory time scale. Though at thiscome equal. Upon further cooling below the Kauzmann tem-
point its mechanical behavior is solidlike, the distinguishingPerature, the liquid would eventually attain a negative en-
structural feature of a glass is that it possesses no long-rand@py and would hence appear to violate the third law of
microscopic order. thermodynamics. Experimentally, however, the Kauzmann
The major industrial prominence of glasses tends to belidg€mperature must be extrapolated because upon cooling the
our rather limited theoretical understanding of these materiglass transition intervenes at higher temperature, thus pre-
als. Although significant progress has occurred in recenYenting any such violation. Nevertheless for many liquids,
years3>~® many questions still remain concerning the appro—t_he gxtrapolatlon needed to attain the equal-entropy condi-
priate thermodynamic treatment of the glassy stalehe  tion is quite modest, and attempts to understand the nature
relationship between kinetics and thermodynamics in thes@Nd implications of this impending entropy crisis underlie
systemg®-1® and the connection between molecular archi-the thermodynamic interpretation of the glass transition.

tecture and macroscopic behavid?. The present work ad- The idea that a kinetically controlled glass transition pre-
vents a thermodynamic catastrophe seems rather unsettling

and has led to the notion of a thermodynamic “ideal” glass
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sition has come to be associated with the sudden entrapment
of a system in a lowest-energy, unique amorphous configu-
ration accessed in the limit of infinitely slow cooling. It is
now recognized that in this definition, an ideal glass transi-
tion can actually be a rather distinct occurrence from a Kauz-
mann equal-entropy point; the former is defined by the amor-

phous state alone, whereas the latter makes reference to the 0 Ps :
crystal? - |

Pis

The energy landscape formalism introduced by Stillinger L 1
and Weber has been an important theoretical tool for formu-
lating a thermodynamics of glass&szrom this perspective, 0
a liquid is described by the structurally distinct configura- p
tions through which it evolves, each termed an inherent
structure. plus the kinetic “vibrational” distortions around FIG. 1. Schematic of the density dependence of the inherent structure pres-

’ p . - . sure,Pg, for simple fluids.
these configurations. By definition, the inherent structures

are the complete collection of mechanically stable particle

packings(local potential energy minimaand any one can be hege ghservations as well as for the notion of an ideal glass
found from a given configuration by energy minimization. yansition. We then describe in Sec. IV what is perhaps the
This pgrmﬂ; a rigorous theoretical separaftmn .Of quUId'StateSimpleSt quantitative model for an energy landscape of a
properties into inherent structure and vibrational cOmpojmple liquid. Finally, in Sec. V we remark on the results that

nents, including the energy, entropy, and pressure. The eRnjs equilibrium theory has for supercooled liquids and note
ergy landscape paradigm has greatly facilitated the undetyreas of future research in light of them.
standing of low-temperature liquids and their

glassed 121416.23-29
In the context of the energy landscape, ideal glasses a¢t THE EQUATION OF STATE IN THE LANDSCAPE

quire the rigorous definition of zeroconfigurational PARADIGM

entropy-® The configurational entropy is that part of the en-  jithin the energy landscape formalism, it is possible to
tropy associated with the degeneracy of inherent structures @eparate the equilibrium pressure of a liquid into contribu-
a given potential energy; presumably when the temperaturgons from its inherent structures and those due to vibrational
is low enough, the system samples only its minimum-energyisplacements about the energy minima. The component of
amorphous conformation and its configurational entropyjthe pressure due to inherent structureg, is particularly
vanishes. In contrast, Kauzmann points are defined by thgonvenient to study because it can be measured directly by
equality of total crystal and liquid entropies. Since the con-computer simulation. To calculate the inherent-structure
figurational entropy of a crystal is zero, the difference be-pressure at a given density and temperature, a large number
tween an ideal glass transition and a Kauzmann point is dugf configurations are taken periodically from a molecular dy-
solely to differences in vibrational entropies between the sunamics trajectory and their energy is minimized; this proce-
percooled liquid and the stable crystal. In fact, it has beenjure locates the corresponding inherent structures, and the
observed that several real substances do in fact exhibit Kaupressure of the minimized configurations is then calculated
mann equal-entropy points without violation of the third law, from the standard virial expression. Based on a number of
and in these systems the contribution of vibrational entropiesnvestigations that have used such a protod®ls has
is essential to the existence of a Kauzmann condffa@n emerged as an important feature of supercooled
the other hand, theoretical arguments have challenged thiguids132>3°-34n particular, it has suggested an unexpected
possibility of an ideal glass transition at finite temperature byconnection between the liquid spinodal, microscopic hetero-
examining the effects of elementary excitations on the congeneity, and the mechanical strength of materi&f8:3%
figurational entropy? Still, whether an ideal glass exists in The inherent-structure pressure has been studied in com-
supercooled liquids as a thermodynamic phenomenon undeputer simulations of several substances, and in all cases the
lying the laboratory(kinetic) glass transition remains an im- density dependence &5 has given rise to a picture quali-
portant open question. tatively similar to that shown in Fig. £°-23|t has been
Our objective is to provide a simple landscape-basedound in simple liquids that, above the melting line, the tem-
thermodynamic framework for liquids, including their equa- perature of the equilibrium system from which the inherent
tion of state, and apply it to the investigation of some ofstructures are generated has very little effect on the type of
these questions. We make no attempt to describe nonequililcurve shown in Fig. 1, meaning th&g is approximately
rium states in our theory, such as the kinetically arrestedndependent ofr.*® However, for all the systems studied so
glasses observed in experiment, but instead invoke the pofar below the melting temperatu@nd for more complex
sibility of an ideal glass transition. In Sec. Il we briefly re- systems such as water even above the melting, lthere is
view some of the empirical observations made from com-a detectable influence of the temperattié:
puter simulations about the relationship between the equation Figure 1 reveals the presence of qualitatively distinct
of state and the energy landscape. We proceed in Sec. Il wensity regimes i 5.1 As the density decreases from re-
outline our theory and examine some of its implications forgion 11l to Il, the system’s inherent structures evolve from a
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state of positive pressure to one of tension. The density dtl. THEORETICAL FRAMEWORK
which the minimum in pressure occurs, the so-called Sastry rree energy
density,ps, represents the point of maximum attainable ten- . ] o
sion. At densities below this pointregion ), the system In the energy landscape formalism, the starting point in
fractures and its inherent structures are no longer homogéEe analysis of T‘ liquid is ||ts potentf|a| er)ergyfsErfz(aEEfS_,
neous but instead contain significant void regibtishe Sas- t_ € many-pa_rt|c € gotentla energy unction of the configura-
L . I . tional coordinate$? For a single-component system bf

try density is therefore the density of limiting mechanical . : S

- . stlructureless particles, this surface exists in a spaceNof 3
stability. In the case of glassy substances, whose mechanlci

roperties are dominated by the slow relaxation from one 1 dimensions. In this enormous dimensionality, the PES
propert ! y W xall contains an overwhelmingly large number of local minima,

: e 033 the inherent structures, each corresponding to a mechanically
important measure of their ultimate strengifi stable packing of the particlé8.By following a steepest-

The study of the thermal and mechanical stability boundyegcent trajectory, every configuration can be uniquely
aries of supercooled liquids has received considerable attefhapped onto one of these minima. Consequently, the entire
tion in recent yearé>**~**In a number of investigations, it configuration space can be tiled into basins around inherent
has been found that the Sastry density, determined frorstructures. The collection of configurations that corresponds
finite-temperature simulations, is nearly indistinguishableto a given inherent structure is called its basin of attraction.
from the zero-temperature limit of the liquid branch of the This approach allows a rigorous separation of the partition
spinodal curve, determined from accurate equations ofunction into contributions from interbasin movement and
state?*3*These results imply a very weak dependence of thevibration within a basirf?

Sastry density on the temperature of the equilibrated liquid

from which it is calculated. Based on such results it has been Z:e*ﬁA:CJ¢ma>&p)eN[U(¢vP)*ﬁ¢*ﬁavib(/3v¢vp)]d¢
proposed to interpregig as the zero-temperature terminus of bmin(p)
the liquid spinodaf* Under this hypothesis, the limit of me- 3.1

chanical stability of inherent structures coincides with the nara7 is the canonical partition functiog (= 1/kT) is the

limit of thermodynamic ;tability of the liquid in the ab;ence Boltzmann factorA is the Helmholtz free energyC is a

of thermal motion. This proposal suggests a particularlyzonstant with units of reciprocal energy, is the potential

striking connection between features of a liquid at high temenergy per particlep is the number densityr(é,p) is the

peratures and.absolute zero; however, the 'underlying ideasasin enumeration function, aral;,(3,¢,p) is the basin

are controversidf and they have yet to benefit from a rigor- viprational free energy. In this expressia@y;, gives the per-

ous formulatiorf>**A particularly prominent criticism of the  particle free energy when the system is confined to an aver-

spinodal connection stems from simulation results for aage basin of deptkp, and the basin enumeration function is

model glass-former in which the limit of mechanical stability defined such thaEexdNo(¢,p)]d¢ gives the number of in-

for the liquid was explicitly calculated; in this counterexam- herent structures with potential energy per particle

ple the zero-temperature limit of liquid mechanical stability = 1d¢. For the supercooled liquid, both the vibrational free

did not appear to converge to the Sastry densSity. energy and basin enumeration function account only for
This picture has become more intriguing with the recenthose inherent structures and basins that are sufficiently de-

observation in several simple models that the liquid spinodaYoid of crystallites. The partition functio# therefore corre-

and Kauzmann curve converge in the zero-temperaturéPOnds to a restricted ensemble for the metastable liquid.

limit.2>341f the connection between the spinodal and Sastry ~ The integral in Eq.(3.1) is evaluated over the per-

density is made, this means tHBt(ps) = 0. The qualitative particle potential energy of inherent _struct_ure_s and ranges

explanation for this occurrence offered in Ref. 20 is that thd"m the lowest-lying amorphous configuratioaith energy

inherent structures ats reach a point of zero configurational $min) 10 the least stable arrangemeimiith energy ¢may.

entropy, and hence represent an ideal glass, due to the COR[esumably at these extreme energies, there exists a single,

straint that they must be devoid of weak spots that Wouloi mq(t:; ;mjgpq_%léscgizlig;: ;?g;?;ogir:f? Hg\r/si(;[rt:gltimgo
initiate fracture. That is to say, the requirements of homoge- I\ Pm y 9 Py

neity and maximum tension limit the system to a single in_does not exc_lude the exi_stence of inherent structures with
. L , subexponential system size dependence. Consequently, the

herent strugture gis. Th|§ explgnatlon invokes the.nonon of notion of a unique amorphous inherent structureoatO

a system with zero configurational entropy; for this 0 applyyefers 1o the subset of basins that are thermodynamically rel-

to a Kauzmann point as well, the vibrational entropies of the, ¢ in the large-system limit. At this point, we should note
crystal and metastable liquid must be equal. Though this igh5t  in  the following discussion, the notation

the likely behavior at absolute zero, more insightful theoret-;5 . (8 #* p)/a¢ is used to indicate thes derivative of
ical or quantitative arguments substantiating the Kauzmanng,, taken at constant values of its remaining natural vari-
spinodal connection have not been offered. Furthermore, deab|e5”3 andp, andevaluatedat ¢*.

tailed calculations for one particular model glassy system  The transformation in Eq:3.1) offers enormous simpli-
seem to exclude the zero-temperature spinodal-Kauzmarfization in the analysis of liquids; giveor and a,;,, for
convergencé> questioning the universality of this observa- which good theoretical functionalities can be written, the
tion. usual AN-dimensional integral over positions in the configu-
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rational partition function becomes a one-dimensional inteent structure energy decreases continuouslybtg, as the
gral over potential energy. Furthermore, E8,1) permits the  temperature approaches zére., asB— ). For basin enu-
separate determination of vibrational and basin contributionsmeration functions with a finite slope at their minimum en-
Often the vibrational component can be successfullyergy, the inherent structure energy reaclgs, at a nonzero
modeled using a harmonic approximation, while basin detemperature. At lower temperatures, the vaibte that pro-
generacies can be understood through packin@uces the integrand maximum will always occur at the low-
c_onsiderationé?*14_'26'37'38This casting of the partition func- energy extremum. This condition, in which the system is
tion offers a particularly convenient framework for deeply trapped in a unique amorphous minimum-energy configura-
supercooled liquids, in which intrabasin equilibration occurstion (or in one of a subextensive number thejei the ideal

on much shorter time scales than interbasin hopfing. glass(IG) transition. The¢* condition is then given by
We focus our attention on the implications of the PES

for supercooled liquids and ideal glasses. In the large system do(¢*,p) _ B f -

limit, the integral in Eq.(3.1) will be dominated by a maxi- d$  B(B,¢*.p) or B=<PBie(p),

mum value of the exponential term &t= ¢*. This means

that, at the given temperature and density, the system will ~&* = dmin(p) for B=Bic(p), (3.9

sample configurations whose overwhelming majority haVQNhereB@(p) [=1kTa(p)] is formally determined by
energy ¢*; thus one can consider only those contributions

corresponding tar(¢* ,p) anday(B, ¢*.p): o (Pmin,p) Bic

7 N6 )~ B ~ Ba(B.4* )] b B(Bic » bmin.p)

In this case, a system in equilibrium at temperatures below

AIN=~¢* —kTa(*,p) +ayin( B, " p), (32 T, would be confined to the lowest-lying basin available at
where there is a clear distinction between the baghi ( that density, with energyby,. Accordingly, =0 for the
—kTo) and vibrational &,;,) contributions to the free en- €ntire range of temperaturds<T,g. In Eq. (3.5, it is im-
ergy. In particular,Nko gives the configurational entropy, Portant to observe that with reasonable molecular interac-
that is, the entropy due to the system’s exploration of muldions, the¢ derivative of the vibrational free energy should
tiple basins of a given depth. This is consistent with convenf€main bounded a$—0. Equation(3.5) is the general case
tional notions of entropy; when the system is confined to &0f basin enumeration functions. In the limitr(¢min)/ ¢
single basin, as in a crystal, the configurational entropy—®. We have thafl\,c—0 and the expression in E(3.5
vanishe&? reduces to Eq(3.3).

The condition that determines the mean inherent- The preceding equations provide a thermodynamic
structure energyp* requires special attention. In the usual framework for an ideal glasso(=0), motivated by the en-
approach, the maximum of the integrand in E8.1) is lo-  €rgy landscape formalism. The transition to this stat€ gt

(3.6

cated via the derivative of the exponential teéfhn, is marked by the sudden confinement of the system to a
unique, lowest-energy amorphous configuration, that is to
do(p*,p) dayin( B, d* ,p) B say, the configurational entropy becomes zero. By our nota-

e =Bth ) - B(B,¢*,P). (33 tion, we strictly identify T, as an ideal glass transition,

o o ) . _ though previous studies have named the point at which the
This is an implicit expression fop™ as a function of8 and  configurational entropy of the liquid becomes equal to the

convenience; it appears frequently in this theory and is givemygjnt 112212426 4%y tanding the original definition of “Kauz-

by mann transition.” The reader is reminded, however, that co-
dayn(B.b.p)] L incidence with a true Kauzmann transiti@ire., as originally
B(B,¢,p)=|1+ b (3.4  defined occurs only when the vibrational entropies of the

liquid and crystal are equal. To prevent any confusion, we

For simplicity in this analysis, one might assume the vibra-avoid calling the ideal glass transition line a Kauzmann line.

tional free energy to be independent of inherent structurgurther in this discussion we will explore the extent to which

energy, i.e.B(B,¢,p)=1. This is the rigorous limit oB at  the observations regarding Kauzmann points presented in

absolute zero, where the vibrational free energy andpits Secs. | and Il also hold for ideal glasses, which will effec-

derivative vanish. At finite temperatures, however, this aptively be a test of the crystal-liquid vibrational entropy

proximation gives meaningful results only when the curva-equality.

ture of basins is weakly dependent on their depth, a condition

that might be expected for very deep basfaad low tem-

peratures where the majority of the particles are “well- B E _ ;

packed.” Still, we emphasize that this remains an approxi-—" quation of state

mation as a nonzero dependence of basin shape on depth has It is apparent from the energy landscape formalism that

been found in a number of systefig!—43 there are two classes of basin enumeration funcfidibose
The condition described by E@3.3 holds for all tem- that have a finite slope ab,;, give rise to an ideal glass at

peratures if the slope of the basin enumeration function tendsnite temperature; those whose slope is infinite lack such a

toward infinity at¢,,. With such behavior, the mean inher- transition. To consider the implications of these two possi-
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bilities on the equation of state, we examine the volume de- | 9By bminsp) . Fauin( B Pmin+p) dbrin(p)
rivative of Eq.(3.2). In the ideal glass-free case, this is P=p + d
ap d¢ p
2 * * *
p° dP*(B.p) dayip(B,¢*.p)  da(¢*,p) d
L AL - bmin(P) __, ,
T PP e 7% pP g =Plu(Bp) Pi(p), (313
+p? Puin(B. ¢ p) P_Z do(¢*,p) where P/, and P|s correspond to the first and last terms,
ap B ap respectively, and the prime symbols indicate the formal dif-

_ ference in these definitions from those in E¢3.8) and
=Pun(B.p) T Pis(B.p), .7 (3.9). Despite dissimilar expressions above and belqw,
where the term in square brackets vanishes according to thbe individual pressure components remain continuous.

equilibrium condition in Eq.(3.3), and P, and P\, the  Along the ideal glass transition locuB(p), the configura-
vibrational and inherent structure pressure contributions, argonal entropy remains constant at zero asit= ¢,,;,. Con-
conveniently defined by the addition and subtraction ofsidering this behavior in the alternate pressure expressions in
(p?BIB)doldp to the last two terms in this equation such Egs.(3.11) and(3.12, we have the equalities

that ,
, Puib(Bic:p) = Pyin(Bic.p), (3.19
Ja 'b(ﬁ!¢*1p) 1% !
Puin( Bp) =p* "+ Z[B(B.¢",p) 1] Pis(Bic.p)=Pis(p). (319
. It is important to note here that the inherent structure pres-
do(¢*.p) sure has no temperature dependence below the ideal glass
X , (3.9 " X . .
ap transition, as is also the case with the inherent structure en-
2 J0(d* . p) ergy. Using the equivalence of pressure expressiongaat
Pe(Bip)=— 2 B(B,¢* p) D P (3.9  one can write the inherent-structure pressureTierT s in
B ap terms of its properties at the ideal glass transition:
This separation of the pressure components is constructed so p? IT(Drmin+p)
that the inherent structure pressure coincides with that mea- P|s(p)=— /B_B(’B'G’¢m‘”'p)T' (3.19
IG

sured in simulation studies of energy landscapes. Perhaps
more revealingP,s is equivalently defined by the negative With the equation of stat€3.13, we can immediately

volume derivative of average inherent structure energy agvaluate the Sastry density, which we now define in a precise
constant configurational entropy. The equivalence with Eqway as the zero-temperature minimum in the inherent-

(3.9 is established by the mathematical identity structure pressure as a function of density,
Jo Jo dg dzd’min(PS) ddmin(ps)
(%)g‘(@),,(%)u_ N e

when used in combination with the equilibrium condition in The implication of this expression is that the Sastry density
Eq. (3.3) and substituted in the pressure expressions in Eqss completely determined by the density dependence of the

(3.8 and(3.9): energy of the lowest-lying basin. This is not all that surpris-
. * ) ing, since one would expecA/N— ¢, as T—0 and
Puin( B.p) = p2 Pavin(B. " .p) (b min,p) =0. Equations(3.9) and (3.13 also provide the
ap T>0 behavior of the pressure minimum and a corresponding

generalization to a finite-temperature Sastry density, which
, (3.1  allows the correspondence with computer simulation studies.
We note that the Sastry density defined by E217) also
coincides with the density at which the inherent-structure
(3.1  Pressure along the ideal glass transition locus has a minimum
and is consistent with the zero-temperature minimum of the

where theg* derivative is taken along a path whose Con_total pressure, where any contribution from the vibrational

figurational entropy is consistent with the given density anorree energy vanishes.
temperature. For a more detailed discussion of the separation

of vibrational and configurational contributions to the pres-
sure, the reader is referred to the Appendix.

In the case of a finite-temperature ideal glass, B/ To understand more specifically the implications of a
still describes the pressure far>T,g(p). Below the ideal liquid’s PES, we now turn to a class of simple expressions
glass transition, however, both* and o are constant at for the basin enumeration function that have generated con-
fixed density, constrained to their value®g. Using these siderable interet=2642 Such generic functions must of
constraints in the expression for the free energy and subseourse be taken as approximate if they are to be universally
guently taking its volume derivative then give the pressureapplicable. Nonetheless, these expressions provide a starting
below the ideal glass transition: point for the analysis of supercooled liquids and have even

N dayip( B, 9™ .p) ((9¢*)
o ap |,

ap*
ap

Pls(ﬁ,P):PZ(

o

C. Basin enumeration functions
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produced quantitatively accurate models in several simulatained in a dimensionless temperature variab# o, . Cal-
tion studies-®?®We consider basin enumeration functions of culating the inherent-structure pressure contribution from

the general form Egs.(3.9 and(3.20),
. = (p) z{dqﬁw(p) , da(p)
= = Pis(B.p)= +u
o(¢,p)=0.(p)f[u] with u 2o (3.18 s(B.p)=p dp dp
wheref[u] is a dimensionless function varying between 0 p*B(B,d* .p) ; «-do=(p) 32
and 1,0, is the maximum value of the basin enumeration B B [u”] dp | (322

function, andu is the energy parameter made dimensionless | . .

by the inherent-structure characteristic energy rangand which holds ab.ove _the gIas; trangltlon. F‘&“ﬁ’ the last

offset by an energyb.. . We define the parameteds, anda group of terms in this equation vanishes sifige* ]— 0, and

such thatu= — 1 foro:ﬁ= b and ., is the energy at the the first group on the right-hand side becomes the same as
min 0 . . el

maximum value of the basin enumeration functioe., « that in Eq.(3.13 by the definition of¢., anda.

= ¢.,— ¢min)- For distributions whose energy range is sym—th The forrr; |n.Eqa(3.189 h]:atshm?retstmg mghcaﬂgrlﬁ for
metric about ¢, we then have—1<u=1 (< e apparent coincidence of the Sastry density and the zero-

<2¢..— byr). Furthermore, the form in Eq3.18 gives the temperature Kauzmann point when the crystal and liquid vi-
= o0 min/ - ’ . . . .
total number of basins from exigé.).2? brational entropies are equal. We assume first that we have a

The above approach allows the “extraction” of generic functional form for the basin enumeration function that gives

properties of the basin enumeration function, such as heigh Ise 1o an ideal glass tr.ansmon, !.ei-f[—l]./du Is finite.
width, and mean, from its specific functional form, given by hen us!ng_the fact that in thE:Q limit the V|brat|onallfree
f[u]. One of the simplest and most commonly used model nergy is independent of basin depth and following Eq.
o ; : 3.21), the T\g—ps convergence implies

is the Gaussian landscaffegiven by IG=Ps

— -1
f Gaussiabl]= 1— U (3.19 a(ps) (df[ 1]) .0,

O'x(pS) du
As is evu_jent fm”_‘ this expression, this for_m of the bas'r.]wherepS is found from Eq.(3.17). This result implies that
enumeration function has a finite slope at its energy mini-_. . . .
either o, diverges ora vanishes at the Sastry density. The

lmum and there_fore a_Iways leads t_o an @eal glass. The enerq. st case appears unlikely; elementary arguments about the
gndscape Stf’:l'[IStICS implied by this basin enumeration funC_hredding behavior of low-density inherent structures imply
tion are .equ.|valent to those Of. thq random energy m.Odet?hata should vary continuously acrogs .8 It thus appears
(REM), first 'jSgd“?ed by Derrida in the context Qf spin- that t;e range of inherent-structure energies, givenaby
9'?‘?S systemis.™ It is well k”O"_V” that the_ REM exhibits a must shrink to zero at the Sastry density. Qualitatively, this
critical temperaturécorresponding to the ideal glass transi-

tion) below which the system is frozen in its ground stéte, seems plausible. At smaller volumes, the system boundaries

and subsequent work has described its connection to quuiagszﬂcfj:gse tt;)uts fsb'#f: d%%osrilty ipsalcokv(\a/g}e??:t-gn;rs%)e(tclangfrtiﬂt
and structural glass&s*’ and to proteiné®“°Although a de- ’ y

. : Sl . sion, this is no longer the case and the energy of the least
tailed discussion is beyond the scope of this paper, we note X . . )
. . Stable structure necessarily decreases. With the increasingly
that the form of the REM has a physically meaningful L : . :
.50 . . . constraining requirement of homogeneity, the maximum at-

origin®> and that this model has been quite useful in the :

. . i . . . “tainable inherent-structure energy may be forced to converge
description of dynamics and higher-order critical points in

the potential energy landscaggee., saddles (see, for ex- on the minimum as the Sastry density is approached, that is,

(3.23

ample, Refs. 48 and 46 Pma— bmin AL Ps.
For basin enumerations of the form in E§.18), equi-
librium is determined byu* (8,p) such that IV. ELEMENTARY LANDSCAPE MODEL
df[u*] a(p)B We now derive properties of a basic energy landscape
T BB.0* p)o(p) for B<pBic(p), for simple liquids, which serves as a minimum description
v R for their analysis in the landscape formalism. We consider a
u*=—1 for 8=pBs(p), (3.20  simple model that is particularly convenient to analyze in the

energy landscape paradigm. This idealized system consists of
whereu* is the equilibrium value oti and the glass transi- structureless, spherically symmetric particles interacting in
tion temperature is given by pairs through soft-sphere repulsive forces of the typé,
a(p)Bis df[—1] each experiencing a density-dependent mean-field
= . (3.21) attraction?>**The potential energy of a configuration of par-
B(Bic bmin:p) o=(p) du ticles at a given density is therefore given by

When the vibrational free energy is independent of basin

depth B=1), a scaling relationship evolves from Eqs.  U(r®N,p)=2, e(a/r;)"—Nap, 4.9
(3.20 and(3.21) between the temperature, total number of =)

basins, and basin distribution breadth. That is, the densitwherer\ represents the positions of the particlesand o
dependence of the mean inherent structure energy is coare the characteristic energy and length scales of the soft-
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sphere partn is the soft-sphere exponent that controls the 11 ¢

degree of the repulsion;; is the distance between particies 10 E

andj, anda, a positive number, is the mean-field parameter 0.9

with units of[ energy X[ volume]. There are in fact only two ;

independent parameters in this expression, the soft-sphere 08 :

and mean-field coefficientsg" anda. This particular choice 5— 07

of the potential energy function is motivated by the observa- & 06 F

tion that liquid structure is primarily determined by repulsive 05

forces while attractive interactions can be successfully incor- ;

porated by a background potential field serving to hold the 04 3 3
particles togethet'®? The advantage of this system is that 03
the repulsive part of the potential energy in any configuration 02 Boovvi o vuiim a0
is determined by the dimensionless particle positiosis, 1 10 100 1000 10000
=V~Y% in such a way that the volume dependence can be n

readlly extracted: FIG. 2. Sastry density for the soft-sphere plus mean-field model as a func-

tion of repulsive exponent). The limiting case fom—«, shown by the
U/N= EO’nvinlgNilz Sﬁn_ ap= 7(S3N)pn/3— ap, dashed line, i9g/py—1.
i<j

4.2)

where y(s®V), with units of [energyXx[volumeg™®, has sample only the repulsive part of these potentidnally,

been defined to give the portion of the soft-sphere term inthe appended mean-field term does not change the inherent

dependent of volume, and is given by structures or their number, but simply serves to shift their
energy. With these considerations, we can elaborate on some

y(S3N)Eeo'n% 2 si}“. 3 of the properties of the basin enumeration function:
N1Fn 3 i< d)min(p) = ’)/minpn/:a_ ap, (44)
Due to this kind of volume dependence, the nonideal soft-  ¢..(p)=v.p"*—ap, 4.5
sphere part of the configurational partition function depends 3
on a single scaling variable= (B¢€)*"pa2.% This reduction a(p)= (Y=~ Ymi P"", (4.6
in parameter space has made the soft-sphere/mean-field ; (5)=¢,, 4.7

(SSMP model attractive for studies of the liquid stafe**
Previous investigations using an equation of state based dj€r€ Ymin @nd .. correspond to the values of for con-
reasonably accurate simulation data have shown in the mogdffurations at the low-energy extreme and maximum of the
the presence of a Kauzmann locus and the intersection of thROft SPhere basin enumeration function, respectively.
curve with theT=0 liquid spinodaf* We aim to extend the Using expressiongt.4)—(4.7), the Sastry density for the
work in these studies by using the scaling embodied in EqSSMF system follows directly from E¢3.17):
(4.2) to develop a model energy landscape. The soft-sphere 1/n\/n 1U(1-n/3)
landscape has been similarly investigated by Spéétgre 53 (§+1) : (4.8)
we use an additional mean-field term to approximately de-
scribe the corresponding landscape with attractive interagvhere we have introduced a characteristic densjtydepen-
tions. dent on the soft-sphere exponenand defined by

It is well known that the total number of inherent struc-
tures in the family of soft-sphere models is independent of  py=
density>"*8 This follows directly from the scaling effect of
the volume on the potential energy and forces, which meanghe significance opy stems from Eq(4.8); in the limit of
that inherent structures are defined by steepest-descent ti@ard-sphere repulsive interactions for whith» o, the Sas-
jectories in the dimensionless particle positis®,. Extend-  try density tends towards this reference density. This trend is
ing this observation, the energies of the most and least stabt#epicted in Fig. 2, which shows the evolution p§ over
inherent-structure configurations must scale with density aseveral orders of magnitude im starting withn=4. Despite
p"3. Therefore, the number of inherent structures within anythe existence of a zero-temperature pressure minimum, one
fractional portion of this energy range must be density-important distinction between this model and those incorpo-
independent. The result is that the functional form of therating more realistic attractive interactions is the absence of a
basin enumeration function for soft spheres is rigorouslydistinguishing physical change at the Sastry density. The
density-independent, that is to say, E8.18 is exact in this SSMF system remains completely homogeneous bglgw
case.(We should note here that these observations are alsand does not exhibit the “shredding” behavior normally as-
the limiting high-density case for more realistic pair potentialsociated with this regime. This makes it difficult in this case
functions that incorporate an inverse-power repulsion, sucko justify, at least in a qualitative sense, the notion that the
as the Lennard-Jones potential. In such systems at high deBastry density represents a point of zero configurational en-
sities, the relevant configurations of the partition functiontropy due to the constraint of homogenéityUnfortunately,

Ps_

1/(1—n/3
Ymin (=3

a

4.9
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this type of justification requires a model of greater complex-sider ideal glasses; the difference in the approaches is of
ity, for which there is currently no obvious candidate. course whether the total or configurational entropies are of

In order to evaluate the equilibrium pressure in theconcern. Based on the discrepancy between the two studies,
SSMF fluid, we model the vibrational free energy in the apparently there are subtle but fundamental differences in the
harmonic approximation. For consistency, we use the classimplications the definitions of these two phenomena have for

cal form1214.16.26 the analysis of liquids. The present work therefore empha-
3 sizes that an ideal glass transition does not necessarily cor-
avi( B, d.p)~=In(BkOE), (4.10  respond to a Kauzmann point; that is, the sudden confine-

B ment of a liquid to a unique, lowest-lying amorphous basin
5 in its potential energy landscape can be a distinct occurrence

h 1/dU from Sjquia=S

@EE N —{—), (4_1]) |ql{|d crystal* ) )

2wk Nm\ gr2 Turning now to the pressure along the ideal glass transi-

tion locus, insertion of Eq94.4)—(4.7) and (4.10 into Eq.
where®¢ is taken as an Einstein temperatunds Planck’s (3.13 yields as4.9-(4.9 (410 .

constantm is the particle mass, and the term in brackets is

the geometric average of the eigenvalues of the Hessian ma- n

trix (i.e., the matrix of second derivatives of the potential ~ 1S(P)= 3 YminP
energy with respect to particle coordingtels this expres-
sion, there is an implicit dependence ®t on basin depth
and density, the effects of both which manifest in the second n+2 p n+2 ..,

derivative of the potential. This means that for given values  Pvib(Bi.p) = 2 Belp) 2c? (4.16
of ¢ andp, the Einstein temperature is essentially derived ) ) ] )

from a “representative” inherent structure of that basin depthfor the vibrational part. Without the functional form fofu],
at the specified density. Making a transformation similar toth€ expression for the pressure abdyg is unspecified in

n/3+1_ap2 (415)

for the inherent-structure contribution, and

that in Eq.(4.2), we have the r_’nodel. We pre;ent the equatipn of state fo_rmulated ac-
cording to a Gaussian landscape in E819 (equivalently,
h p(n+2)3 1/3d27’ as a random energy model.o give the most basic expres-
®E:_27Tk m N E sion, we make the assumption of constagpnti.e., that the

vibrational free energy is independent of basin depth. It then

h (072073 follows from Eq.(3.7) that
=57k Tg(u)’ (4.12

)2
P(Bp)= mpmat ] 5, — Mﬂpms _ap?
where g, a function of the scaled basin depth gives the 3 207
density-independent part of the second derivative term. Es-
> . . n+2p
sentiallyg contains any dependence of basin curvature, and - 5 (4.17
hence vibrational free energy, on basin depth; a B

¢-independent,;, simply implies thatg is constant. Using From this equation, one can see more clearly the possibility
the harmonic expression for the vibrational free energy inof a T-independent inherent-structure equation of state. The
Eq. (3.20, the ideal glass locus is given by inherent-structure pressure, given by all but the last term in
Eqg. (4.17), has a weak temperature dependence if the quan-

Bic(p)= ! o, dff ~1] - E ding(~1) p " tity o, T is reasonably large. In this case, the term in brackets
Yoo ™ Ymin du 2 du is essentially given by the constant value, and the
—cp "3 (4.13 inherent-structure pressure approaches
. . . n
where we have condensed the constants in this expression P|s~§7xp”’3+1—ap2- (4.18

into a single constar@ for clarity. The equivalent expression

for temperature is Though the SSMF system is missing any dependence of the

total number of basins on density, which would almost cer-
Tis(p)= a(p““. (4.14  tainly accompany explicit attractive interactions, one could

imagine this to have a relatively small effect at commonly
The surprising consequence of this result is that an absolugudied temperatures. Qualitatively, then, the inherent-
zero ideal glass transition is reached only in the limit ofstructure pressure would continue to appear temperature-
infinitesimal density. This means that the Sastry densityindependent at high.
which is finite via Eq(4.8), does not intersect the ideal glass We have fitted the equation of stai 17 to the simu-
curve atT=0. This result may seem at odds with the resultslation results for the Lennard-Jones system in Ref. 55. In Eq.
of Ref. 20 in which it was found from numerical equations of (4.17), the parameters,,, and o., are not independent be-
state for then=9 SSMF model that the zero-temperaturecause they appear in the same coefficient. In fitting the
limit of the Kauzmann curve intersected the terminus of themodel, we seh=12 and minimize the error in predictions
liquid spinodal. One must remember, however, that the focufor the pressure at several of the high-density, low-
of Ref. 20 was the Kauzmann locus whereas we strictly contemperature state points in Ref. 55, obtaining values of 4.64,
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ditional mean-field attraction. The model appears reasonably
descriptive of simple liquids, suggesting the usefulness of a
landscape-based reformulation of supercooled liquid thermo-
dynamics. An important conclusion from this work is that the
ideal glass and Kauzmann loci are quite distinct for the soft-
sphere model with mean-field attraction.

Though the current work provides a detailed theoretical
picture for energy landscapes, a number of questions remain.
Improved knowledge of the vibrational free energy at low
temperatures is needed in order to provide a microscopic
understanding of the distinction between an ideal glass tran-
sition and a Kauzmann equal-entropy point. The apparent

N W AT N

-2 t * : ! coincidence of the liquid spinodal with the Kauzmann locus
075 08 08 090 095 100 remains unresolved; the results of our theory suggest that
P notions of an ideal glass at zero configurational entropy fail

) ) ) t ture what i rring at this presum nvergence.
FIG. 3. Pressure isotherms for the landscape-derived equation of state of | 9 capture atIs occu ga S presu ed conve gence

soft-sphere/mean-field system, fitted to Lennard-Jones state points. The prt inally, _bec_ause our model is based on the energy Ia_ndscape,
dictions of the theorylines) correspond td =0.7—1.3 in increments of 0.1, it contains information useful for both thermodynamics and

from bottom to top. The filled diamonds are the simulation results from Ref.kinetic phenomenée.g., diffusion rates-?* A useful future
55 _and the squares are the corresponding predlctlons of the theory. A|lnvestigation might examine its ability to capture the slow-
variables are expressed in reduced Lennard-Jones units. . . "

down of kinetic processes near the glass transition.
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gulsive part of its potential. Ilierestingly,pthourg;h, theyprediC'/IAI\\IPHPIEEFL\ISI\léiSI'IPRELIJ\ICHEgéTFl)%’\EIS(S)ER-II-EHE
tions fare relatively well for the two highest densities even at
temperatures near the critical temperature. This is somewhat The particular separation of the pressure components in
surprising considering the approximations in the theory, inEgs.(3.8) and(3.9) is constructed to coincide with simula-
cluding the harmonic approximation and the assumption of @gion studies of energy landscapes, in which inherent struc-
basin-independent vibrational free energy. Still, we bear irtures are found by energy minimization to local potential
mind the works of Ref. 50 regarding the central limit theo-energy minima and their pressure determined from the usual
rem and of Ref. 46 on the random energy model, both o¥irial expression. The algorithmic procedure in these simula-
which have shown the Gaussian landscape to be a rath&ons may be thought of as an instantaneous quench to a
adequate description of atomic systems, particularly at higimonequilibrium state at zero temperature. Using a recently

temperatures. proposed thermodynamic formalism for such systdmse
define the inherent structure pressure as the negative volume
V. CONCLUSIONS derivative of the free energy of the quenched state. The non-

equilibrium, per-particle free energy is given by

We have presented a theoretical framework for liquids e o1 s N
that incorporates the statistical properties of an energy land- ane(Bint:Bq:p) = ™ = Bini (&™) + uin( Bq, ¢™p),
scape, is capable of describing an ideal glass transition, and (AD)
corresponds with simulation studies performed in thewherep;, refers to an internal temperature characterizing the
inherent-structure formalism. In particular, the theory pro-out-of-equilibrium dynamics between inherent structugs,
vides an explicit expression for the equation of state of aefers to the temperature to which the system is quenched,
liquid and formally separates the pressure into vibrationahnd ¢* is the equilibrium value ofp prior to the quench, a
and inherent-structure components, both above and belofunction of the original temperature of the systgmin the
the ideal glass transition. Using the pressure separation, wease where the quench temperature is absolute zero, the ex-
have shown the presence of the Sastry density and its cofpression forB,, is
nection to the liquid spinodal. Finally, we have used the N
theory to develop an elementary model of an energy land- ,Bim=(9(r(¢ P) — B _ (A2)
scape based on soft-sphere particles interacting with an ad- o B(B,¢*,p)
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