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Energy landscapes, ideal glasses, and their equation of state
M. Scott Shella) and Pablo G. Debenedettib)

Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544

Emilia La Navec) and Francesco Sciortinod)

Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Center for Statistical Mechanics
and Complexity, Universita´ di Roma La Sapienza, P. le Aldo Moro 2, I-00185 Rome, Italy

~Received 19 December 2002; accepted 20 February 2003!

Using the inherent structure formalism originally proposed by Stillinger and Weber@Phys. Rev. A
25, 978 ~1982!#, we generalize the thermodynamics of an energy landscape that has an ideal glass
transition and derive the consequences for its equation of state. In doing so, we identify a separation
of configurational and vibrational contributions to the pressure that corresponds with simulation
studies performed in the inherent structure formalism. We develop an elementary model of
landscapes appropriate for simple liquids that is based on the scaling properties of the soft-sphere
potential complemented with a mean-field attraction. The resulting equation of state provides an
accurate representation of simulation data for the Lennard-Jones fluid, suggesting the usefulness of
a landscape-based formulation of supercooled liquid thermodynamics. Finally, we consider the
implications of both the general theory and the model with respect to the so-called Sastry density
and the ideal glass transition. Our analysis shows that a quantitative connection can be made
between properties of the landscape and a simulation-determined Sastry density, and it emphasizes
the distinction between an ideal glass transition and a Kauzmann equal-entropy condition. ©2003
American Institute of Physics.@DOI: 10.1063/1.1566943#
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I. INTRODUCTION

Deeply supercooled liquids and glasses occupy a pro
nent place in modern science and engineering. In additio
their established and important presence among polym
materials, glasses are becoming key elements in new t
nologies, such as pharmaceutical preservation and corros
resistant alloys.1 The typical route to the vitreous state is
supercool a liquid fast enough so that crystallization
thwarted; hence the properties of glasses are intima
linked to those of the metastable liquids from which they
made.2 At sufficiently low temperatures during the coolin
process, the structural relaxation times of the metastable
uid become so slow that its mechanical properties begin
resemble those of a solid and the material is no longe
equilibrium relative to a laboratory time scale. Though at t
point its mechanical behavior is solidlike, the distinguishi
structural feature of a glass is that it possesses no long-r
microscopic order.

The major industrial prominence of glasses tends to b
our rather limited theoretical understanding of these mat
als. Although significant progress has occurred in rec
years,3–6 many questions still remain concerning the app
priate thermodynamic treatment of the glassy state,7–9 the
relationship between kinetics and thermodynamics in th
systems,10–16 and the connection between molecular arc
tecture and macroscopic behavior.1,17 The present work ad
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dresses the first of these topics and aims to clarify some
the most conspicuous questions about the thermodynamic
supercooled liquids and glasses. The unresolved issue
glass thermodynamics are quite varied, and an impor
goal of this work is to investigate them with a common th
oretical framework capable of complete a thermodynam
description of the liquid state. We propose a simp
landscape-based equation of state for a supercooled li
and demonstrate the usefulness of this approach by com
ing theoretical predictions with simulation data.

One unresolved issue regards the so-called Kauzm
temperature,TK ,1,2,18,19As a liquid is supercooled, its large
heat capacity relative to the crystal causes the melting
tropy to be gradually consumed until it appears that at t
distinguished temperature, the liquid and solid entropies
come equal. Upon further cooling below the Kauzmann te
perature, the liquid would eventually attain a negative e
tropy and would hence appear to violate the third law
thermodynamics. Experimentally, however, the Kauzma
temperature must be extrapolated because upon cooling
glass transition intervenes at higher temperature, thus
venting any such violation. Nevertheless for many liquid
the extrapolation needed to attain the equal-entropy co
tion is quite modest, and attempts to understand the na
and implications of this impending entropy crisis under
the thermodynamic interpretation of the glass transition.

The idea that a kinetically controlled glass transition p
vents a thermodynamic catastrophe seems rather unse
and has led to the notion of a thermodynamic ‘‘ideal’’ gla
transition atTK .19 In this sense, the experimentally observ
glass transition is viewed as a kinetically blurred manifes
tion of an underlying phase transition. The ideal glass tr
1 © 2003 American Institute of Physics
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8822 J. Chem. Phys., Vol. 118, No. 19, 15 May 2003 Shell et al.
sition has come to be associated with the sudden entrap
of a system in a lowest-energy, unique amorphous confi
ration accessed in the limit of infinitely slow cooling. It
now recognized that in this definition, an ideal glass tran
tion can actually be a rather distinct occurrence from a Ka
mann equal-entropy point; the former is defined by the am
phous state alone, whereas the latter makes reference t
crystal.20,21

The energy landscape formalism introduced by Stilling
and Weber has been an important theoretical tool for form
lating a thermodynamics of glasses.22 From this perspective
a liquid is described by the structurally distinct configur
tions through which it evolves, each termed an inher
structure, plus the kinetic ‘‘vibrational’’ distortions aroun
these configurations. By definition, the inherent structu
are the complete collection of mechanically stable part
packings~local potential energy minima!, and any one can be
found from a given configuration by energy minimizatio
This permits a rigorous theoretical separation of liquid-st
properties into inherent structure and vibrational com
nents, including the energy, entropy, and pressure. The
ergy landscape paradigm has greatly facilitated the un
standing of low-temperature liquids and the
glasses.1,12,14,16,23–29

In the context of the energy landscape, ideal glasses
quire the rigorous definition of zeroconfigurational
entropy.19 The configurational entropy is that part of the e
tropy associated with the degeneracy of inherent structure
a given potential energy; presumably when the tempera
is low enough, the system samples only its minimum-ene
amorphous conformation and its configurational entro
vanishes. In contrast, Kauzmann points are defined by
equality of total crystal and liquid entropies. Since the co
figurational entropy of a crystal is zero, the difference b
tween an ideal glass transition and a Kauzmann point is
solely to differences in vibrational entropies between the
percooled liquid and the stable crystal. In fact, it has be
observed that several real substances do in fact exhibit K
mann equal-entropy points without violation of the third la
and in these systems the contribution of vibrational entrop
is essential to the existence of a Kauzmann condition.20 On
the other hand, theoretical arguments have challenged
possibility of an ideal glass transition at finite temperature
examining the effects of elementary excitations on the c
figurational entropy.19 Still, whether an ideal glass exists i
supercooled liquids as a thermodynamic phenomenon un
lying the laboratory~kinetic! glass transition remains an im
portant open question.

Our objective is to provide a simple landscape-ba
thermodynamic framework for liquids, including their equ
tion of state, and apply it to the investigation of some
these questions. We make no attempt to describe nonequ
rium states in our theory, such as the kinetically arres
glasses observed in experiment, but instead invoke the
sibility of an ideal glass transition. In Sec. II we briefly r
view some of the empirical observations made from co
puter simulations about the relationship between the equa
of state and the energy landscape. We proceed in Sec. I
outline our theory and examine some of its implications
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these observations as well as for the notion of an ideal g
transition. We then describe in Sec. IV what is perhaps
simplest quantitative model for an energy landscape o
simple liquid. Finally, in Sec. V we remark on the results th
this equilibrium theory has for supercooled liquids and n
areas of future research in light of them.

II. THE EQUATION OF STATE IN THE LANDSCAPE
PARADIGM

Within the energy landscape formalism, it is possible
separate the equilibrium pressure of a liquid into contrib
tions from its inherent structures and those due to vibratio
displacements about the energy minima. The componen
the pressure due to inherent structures,PIS , is particularly
convenient to study because it can be measured directly
computer simulation. To calculate the inherent-struct
pressure at a given density and temperature, a large num
of configurations are taken periodically from a molecular d
namics trajectory and their energy is minimized; this pro
dure locates the corresponding inherent structures, and
pressure of the minimized configurations is then calcula
from the standard virial expression. Based on a numbe
investigations that have used such a protocol,PIS has
emerged as an important feature of supercoo
liquids.13,25,30–34In particular, it has suggested an unexpec
connection between the liquid spinodal, microscopic hete
geneity, and the mechanical strength of materials.13,20,30,33

The inherent-structure pressure has been studied in c
puter simulations of several substances, and in all cases
density dependence ofPIS has given rise to a picture qual
tatively similar to that shown in Fig. 1.13,30–33 It has been
found in simple liquids that, above the melting line, the te
perature of the equilibrium system from which the inhere
structures are generated has very little effect on the type
curve shown in Fig. 1, meaning thatPIS is approximately
independent ofT.13 However, for all the systems studied s
far below the melting temperature~and for more complex
systems such as water even above the melting line!, there is
a detectable influence of the temperature.25,31

Figure 1 reveals the presence of qualitatively distin
density regimes inPIS .13 As the density decreases from r
gion III to II, the system’s inherent structures evolve from

FIG. 1. Schematic of the density dependence of the inherent structure
sure,PIS , for simple fluids.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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state of positive pressure to one of tension. The densit
which the minimum in pressure occurs, the so-called Sa
density,rS, represents the point of maximum attainable te
sion. At densities below this point~region I!, the system
fractures and its inherent structures are no longer homo
neous but instead contain significant void regions.13 The Sas-
try density is therefore the density of limiting mechanic
stability. In the case of glassy substances, whose mecha
properties are dominated by the slow relaxation from o
inherent structure to another, the Sastry density offers
important measure of their ultimate strength.13,30–33

The study of the thermal and mechanical stability bou
aries of supercooled liquids has received considerable a
tion in recent years.20,34–36In a number of investigations, i
has been found that the Sastry density, determined f
finite-temperature simulations, is nearly indistinguisha
from the zero-temperature limit of the liquid branch of t
spinodal curve, determined from accurate equations
state.20,34These results imply a very weak dependence of
Sastry density on the temperature of the equilibrated liq
from which it is calculated. Based on such results it has b
proposed to interpretrS as the zero-temperature terminus
the liquid spinodal.34 Under this hypothesis, the limit of me
chanical stability of inherent structures coincides with t
limit of thermodynamic stability of the liquid in the absenc
of thermal motion. This proposal suggests a particula
striking connection between features of a liquid at high te
peratures and absolute zero; however, the underlying id
are controversial35 and they have yet to benefit from a rigo
ous formulation.20,34A particularly prominent criticism of the
spinodal connection stems from simulation results for
model glass-former in which the limit of mechanical stabil
for the liquid was explicitly calculated; in this counterexam
ple the zero-temperature limit of liquid mechanical stabil
did not appear to converge to the Sastry density.35

This picture has become more intriguing with the rec
observation in several simple models that the liquid spino
and Kauzmann curve converge in the zero-tempera
limit.20,34 If the connection between the spinodal and Sas
density is made, this means thatTK(rS)50. The qualitative
explanation for this occurrence offered in Ref. 20 is that
inherent structures atrS reach a point of zero configurationa
entropy, and hence represent an ideal glass, due to the
straint that they must be devoid of weak spots that wo
initiate fracture. That is to say, the requirements of homo
neity and maximum tension limit the system to a single
herent structure atrS. This explanation invokes the notion o
a system with zero configurational entropy; for this to ap
to a Kauzmann point as well, the vibrational entropies of
crystal and metastable liquid must be equal. Though thi
the likely behavior at absolute zero, more insightful theor
ical or quantitative arguments substantiating the Kauzma
spinodal connection have not been offered. Furthermore,
tailed calculations for one particular model glassy syst
seem to exclude the zero-temperature spinodal–Kauzm
convergence,35 questioning the universality of this observ
tion.
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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III. THEORETICAL FRAMEWORK

A. Free energy

In the energy landscape formalism, the starting point
the analysis of a liquid is its potential energy surface~PES!,
the many-particle potential energy function of the configu
tional coordinates.22 For a single-component system ofN
structureless particles, this surface exists in a space ofN
11 dimensions. In this enormous dimensionality, the P
contains an overwhelmingly large number of local minim
the inherent structures, each corresponding to a mechani
stable packing of the particles.37 By following a steepest-
descent trajectory, every configuration can be uniqu
mapped onto one of these minima. Consequently, the en
configuration space can be tiled into basins around inhe
structures. The collection of configurations that correspo
to a given inherent structure is called its basin of attracti
This approach allows a rigorous separation of the partit
function into contributions from interbasin movement a
vibration within a basin:22

Z5e2bA5CE
fmin(r)

fmax(r)

eN[s(f,r)2bf2bavib(b,f,r)]df,

~3.1!

whereZ is the canonical partition function,b (51/kT) is the
Boltzmann factor,A is the Helmholtz free energy,C is a
constant with units of reciprocal energy,f is the potential
energy per particle,r is the number density,s(f,r) is the
basin enumeration function, andavib(b,f,r) is the basin
vibrational free energy. In this expression,avib gives the per-
particle free energy when the system is confined to an a
age basin of depthf, and the basin enumeration function
defined such thatCexp@Ns(f,r)#df gives the number of in-
herent structures with potential energy per particlef
6 1

2df. For the supercooled liquid, both the vibrational fr
energy and basin enumeration function account only
those inherent structures and basins that are sufficiently
void of crystallites. The partition functionZ therefore corre-
sponds to a restricted ensemble for the metastable liquid19

The integral in Eq.~3.1! is evaluated over the per
particle potential energy of inherent structures and ran
from the lowest-lying amorphous configuration~with energy
fmin) to the least stable arrangement~with energyfmax).
Presumably at these extreme energies, there exists a si
unique amorphous basin; it therefore follows thats(fmin)
5s(fmax)50. The condition of zero configurational entrop
does not exclude the existence of inherent structures w
subexponential system size dependence. Consequently
notion of a unique amorphous inherent structure ats50
refers to the subset of basins that are thermodynamically
evant in the large-system limit. At this point, we should no
that in the following discussion, the notatio
]avib(b,f* ,r)/]f is used to indicate thef derivative of
avib taken at constant values of its remaining natural va
ables,b andr, andevaluatedat f* .

The transformation in Eq.~3.1! offers enormous simpli-
fication in the analysis of liquids; givens and avib , for
which good theoretical functionalities can be written, t
usual 3N-dimensional integral over positions in the config
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



te

n
ll

de
in

-
ly
r

S
te

w
v
n

-
,
u
en
o
p

n
a

ve

ra
u

ap
a

tio

l-
x
h

n
r-

n-

w-
is
ra-

low
at

ac-
ld

ic

o a
to

ota-
,
the

the
nn

co-

e
we
e.

ch
d in
c-
y

hat

t
h a
si-

8824 J. Chem. Phys., Vol. 118, No. 19, 15 May 2003 Shell et al.
rational partition function becomes a one-dimensional in
gral over potential energy. Furthermore, Eq.~3.1! permits the
separate determination of vibrational and basin contributio
Often the vibrational component can be successfu
modeled using a harmonic approximation, while basin
generacies can be understood through pack
considerations.12,14,26,37,38This casting of the partition func
tion offers a particularly convenient framework for deep
supercooled liquids, in which intrabasin equilibration occu
on much shorter time scales than interbasin hopping.39

We focus our attention on the implications of the PE
for supercooled liquids and ideal glasses. In the large sys
limit, the integral in Eq.~3.1! will be dominated by a maxi-
mum value of the exponential term atf5f* . This means
that, at the given temperature and density, the system
sample configurations whose overwhelming majority ha
energyf* ; thus one can consider only those contributio
corresponding tos(f* ,r) andavib(b,f* ,r):

Z'eN[s(f* ,r)2bf* 2bavib(b,f* ,r)] ,

A/N'f* 2kTs~f* ,r!1avib~b,f* ,r!, ~3.2!

where there is a clear distinction between the basin (f*
2kTs) and vibrational (avib) contributions to the free en
ergy. In particular,Nks gives the configurational entropy
that is, the entropy due to the system’s exploration of m
tiple basins of a given depth. This is consistent with conv
tional notions of entropy; when the system is confined t
single basin, as in a crystal, the configurational entro
vanishes.40

The condition that determines the mean inhere
structure energyf* requires special attention. In the usu
approach, the maximum of the integrand in Eq.~3.1! is lo-
cated via the derivative of the exponential term,24

]s~f* ,r!

]f
5b1b

]avib~b,f* ,r!

]f
5

b

B~b,f* ,r!
. ~3.3!

This is an implicit expression forf* as a function ofb and
r. Here we have introduced the functionB for notational
convenience; it appears frequently in this theory and is gi
by

B~b,f,r![F11
]avib~b,f,r!

]f G21

. ~3.4!

For simplicity in this analysis, one might assume the vib
tional free energy to be independent of inherent struct
energy, i.e.,B(b,f,r)51. This is the rigorous limit ofB at
absolute zero, where the vibrational free energy and itsf
derivative vanish. At finite temperatures, however, this
proximation gives meaningful results only when the curv
ture of basins is weakly dependent on their depth, a condi
that might be expected for very deep basins~and low tem-
peratures! where the majority of the particles are ‘‘wel
packed.’’ Still, we emphasize that this remains an appro
mation as a nonzero dependence of basin shape on dept
been found in a number of systems.26,41–43

The condition described by Eq.~3.3! holds for all tem-
peratures if the slope of the basin enumeration function te
toward infinity atfmin . With such behavior, the mean inhe
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ent structure energy decreases continuously tofmin as the
temperature approaches zero~i.e., asb→`). For basin enu-
meration functions with a finite slope at their minimum e
ergy, the inherent structure energy reachesfmin at a nonzero
temperature. At lower temperatures, the valuef* that pro-
duces the integrand maximum will always occur at the lo
energy extremum. This condition, in which the system
trapped in a unique amorphous minimum-energy configu
tion ~or in one of a subextensive number thereof!, is the ideal
glass~IG! transition. Thef* condition is then given by

]s~f* ,r!

]f
5

b

B~b,f* ,r!
for b,b IG~r!,

f* 5fmin~r! for b>b IG~r!, ~3.5!

whereb IG(r) @51/kTIG(r)# is formally determined by

]s~fmin ,r!

]f
5

b IG

B~b IG ,fmin ,r!
. ~3.6!

In this case, a system in equilibrium at temperatures be
TIG would be confined to the lowest-lying basin available
that density, with energyfmin . Accordingly, s50 for the
entire range of temperaturesT,TIG . In Eq. ~3.5!, it is im-
portant to observe that with reasonable molecular inter
tions, thef derivative of the vibrational free energy shou
remain bounded asT→0. Equation~3.5! is the general case
for basin enumeration functions. In the limit]s(fmin)/]f
→`, we have thatTIG→0 and the expression in Eq.~3.5!
reduces to Eq.~3.3!.

The preceding equations provide a thermodynam
framework for an ideal glass (s50), motivated by the en-
ergy landscape formalism. The transition to this state atTIG

is marked by the sudden confinement of the system t
unique, lowest-energy amorphous configuration, that is
say, the configurational entropy becomes zero. By our n
tion, we strictly identify TIG as an ideal glass transition
though previous studies have named the point at which
configurational entropy of the liquid becomes equal to
configurational entropy of the crystal a Kauzma
point,1,12,21,24,26,40extending the original definition of ‘‘Kauz-
mann transition.’’ The reader is reminded, however, that
incidence with a true Kauzmann transition~i.e., as originally
defined! occurs only when the vibrational entropies of th
liquid and crystal are equal. To prevent any confusion,
avoid calling the ideal glass transition line a Kauzmann lin
Further in this discussion we will explore the extent to whi
the observations regarding Kauzmann points presente
Secs. I and II also hold for ideal glasses, which will effe
tively be a test of the crystal–liquid vibrational entrop
equality.

B. Equation of state

It is apparent from the energy landscape formalism t
there are two classes of basin enumeration functions.56 Those
that have a finite slope atfmin give rise to an ideal glass a
finite temperature; those whose slope is infinite lack suc
transition. To consider the implications of these two pos
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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bilities on the equation of state, we examine the volume
rivative of Eq.~3.2!. In the ideal glass-free case, this is

P5
r2

b

]f* ~b,r!

]r Fb1b
]avib~b,f* ,r!

]f
2

]s~f* ,r!

]f G
1r2

]avib~b,f* ,r!

]r
2

r2

b

]s~f* ,r!

]r

5Pvib~b,r!1PIS~b,r!, ~3.7!

where the term in square brackets vanishes according to
equilibrium condition in Eq.~3.3!, and Pvib and PIS , the
vibrational and inherent structure pressure contributions,
conveniently defined by the addition and subtraction
(r2B/b)]s/]r to the last two terms in this equation suc
that

Pvib~b,r![r2
]avib~b,f* ,r!

]r
1

r2

b
@B~b,f* ,r!21#

3
]s~f* ,r!

]r
, ~3.8!

PIS~b,r![2
r2

b
B~b,f* ,r!

]s~f* ,r!

]r
. ~3.9!

This separation of the pressure components is constructe
that the inherent structure pressure coincides with that m
sured in simulation studies of energy landscapes. Perh
more revealing,PIS is equivalently defined by the negativ
volume derivative of average inherent structure energy
constant configurational entropy. The equivalence with
~3.9! is established by the mathematical identity

S ]s

]r D
f

52S ]s

]f D
r
S ]f

]r D
s

~3.10!

when used in combination with the equilibrium condition
Eq. ~3.3! and substituted in the pressure expressions in E
~3.8! and ~3.9!:

Pvib~b,r!5r2F ]avib~b,f* ,r!

]r

1
]avib~b,f* ,r!

]f S ]f*

]r D
s
G , ~3.11!

PIS~b,r!5r2S ]f*

]r D
s

, ~3.12!

where thef* derivative is taken along a path whose co
figurational entropy is consistent with the given density a
temperature. For a more detailed discussion of the separa
of vibrational and configurational contributions to the pre
sure, the reader is referred to the Appendix.

In the case of a finite-temperature ideal glass, Eq.~3.7!
still describes the pressure forT.TIG(r). Below the ideal
glass transition, however, bothf* and s are constant a
fixed density, constrained to their value atTIG . Using these
constraints in the expression for the free energy and su
quently taking its volume derivative then give the press
below the ideal glass transition:
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P5r2F]avib~b,fmin ,r!

]r
1

]avib~b,fmin ,r!

]f

dfmin~r!

dr G
1r2

dfmin~r!

dr
[Pvib8 ~b,r!1PIS8 ~r!, ~3.13!

where Pvib8 and PIS8 correspond to the first and last term
respectively, and the prime symbols indicate the formal d
ference in these definitions from those in Eqs.~3.8! and
~3.9!. Despite dissimilar expressions above and belowTIG ,
the individual pressure components remain continuo
Along the ideal glass transition locus,TIG(r), the configura-
tional entropy remains constant at zero andf* 5fmin . Con-
sidering this behavior in the alternate pressure expression
Eqs.~3.11! and ~3.12!, we have the equalities

Pvib~b IG ,r!5Pvib8 ~b IG ,r!, ~3.14!

PIS~b IG ,r!5PIS8 ~r!. ~3.15!

It is important to note here that the inherent structure pr
sure has no temperature dependence below the ideal
transition, as is also the case with the inherent structure
ergy. Using the equivalence of pressure expressions atTIG ,
one can write the inherent-structure pressure forT<TIG in
terms of its properties at the ideal glass transition:

PIS8 ~r!52
r2

b IG
B~b IG ,fmin ,r!

]s~fmin ,r!

]r
. ~3.16!

With the equation of state~3.13!, we can immediately
evaluate the Sastry density, which we now define in a pre
way as the zero-temperature minimum in the inhere
structure pressure as a function of density,

rS

d2fmin~rS!

dr2
12

dfmin~rS!

dr
50. ~3.17!

The implication of this expression is that the Sastry dens
is completely determined by the density dependence of
energy of the lowest-lying basin. This is not all that surpr
ing, since one would expectA/N→fmin as T→0 and
s(fmin ,r)50. Equations~3.9! and ~3.13! also provide the
T.0 behavior of the pressure minimum and a correspond
generalization to a finite-temperature Sastry density, wh
allows the correspondence with computer simulation stud
We note that the Sastry density defined by Eq.~3.17! also
coincides with the density at which the inherent-structu
pressure along the ideal glass transition locus has a minim
and is consistent with the zero-temperature minimum of
total pressure, where any contribution from the vibration
free energy vanishes.

C. Basin enumeration functions

To understand more specifically the implications of
liquid’s PES, we now turn to a class of simple expressio
for the basin enumeration function that have generated c
siderable interest.24–26,42 Such generic functions must o
course be taken as approximate if they are to be univers
applicable. Nonetheless, these expressions provide a sta
point for the analysis of supercooled liquids and have e
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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produced quantitatively accurate models in several sim
tion studies.16,26We consider basin enumeration functions
the general form

s~f,r!5s`~r! f @u# with u[
f2f`~r!

a~r!
, ~3.18!

where f @u# is a dimensionless function varying between
and 1,s` is the maximum value of the basin enumerati
function, andu is the energy parameter made dimensionl
by the inherent-structure characteristic energy rangea and
offset by an energyf` . We define the parametersf` anda
such thatu521 for f5fmin , andf` is the energy at the
maximum value of the basin enumeration function~i.e., a
5f`2fmin). For distributions whose energy range is sy
metric about f` , we then have21<u<1 (fmin<f
<2f`2fmin). Furthermore, the form in Eq.~3.18! gives the
total number of basins from exp(Ns`).19

The above approach allows the ‘‘extraction’’ of gene
properties of the basin enumeration function, such as he
width, and mean, from its specific functional form, given
f @u#. One of the simplest and most commonly used mod
is the Gaussian landscape,24 given by

f Gaussian@u#512u2. ~3.19!

As is evident from this expression, this form of the bas
enumeration function has a finite slope at its energy m
mum and therefore always leads to an ideal glass. The en
landscape statistics implied by this basin enumeration fu
tion are equivalent to those of the random energy mo
~REM!, first introduced by Derrida in the context of spin
glass systems.44,45 It is well known that the REM exhibits a
critical temperature~corresponding to the ideal glass tran
tion! below which the system is frozen in its ground state44

and subsequent work has described its connection to liq
and structural glasses46,47and to proteins.48,49Although a de-
tailed discussion is beyond the scope of this paper, we n
that the form of the REM has a physically meaning
origin50 and that this model has been quite useful in
description of dynamics and higher-order critical points
the potential energy landscape~i.e., saddles! ~see, for ex-
ample, Refs. 48 and 46!.

For basin enumerations of the form in Eq.~3.18!, equi-
librium is determined byu* (b,r) such that

d f@u* #

du
5

a~r!b

B~b,f* ,r!s`~r!
for b,b IG~r!,

u* 521 for b>b IG~r!, ~3.20!

whereu* is the equilibrium value ofu and the glass transi
tion temperature is given by

a~r!b IG

B~b IG ,fmin ,r!s`~r!
5

d f@21#

du
. ~3.21!

When the vibrational free energy is independent of ba
depth (B51), a scaling relationship evolves from Eq
~3.20! and ~3.21! between the temperature, total number
basins, and basin distribution breadth. That is, the den
dependence of the mean inherent structure energy is
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tained in a dimensionless temperature variableab/s` . Cal-
culating the inherent-structure pressure contribution fr
Eqs.~3.9! and ~3.20!,

PIS~b,r!5r2Fdf`~r!

dr
1u*

da~r!

dr G
2

r2B~b,f* ,r!

b F f @u* #
ds`~r!

dr G , ~3.22!

which holds above the glass transition. AsT→TIG , the last
group of terms in this equation vanishes sincef @u* #→0, and
the first group on the right-hand side becomes the sam
that in Eq.~3.13! by the definition off` anda.

The form in Eq.~3.18! has interesting implications fo
the apparent coincidence of the Sastry density and the z
temperature Kauzmann point when the crystal and liquid
brational entropies are equal. We assume first that we ha
functional form for the basin enumeration function that giv
rise to an ideal glass transition, i.e.,d f@21#/du is finite.
Then using the fact that in theT50 limit the vibrational free
energy is independent of basin depth and following E
~3.21!, theTIG–rS convergence implies

a~rS!

s`~rS! S d f@21#

du D 21

→0, ~3.23!

whererS is found from Eq.~3.17!. This result implies that
either s` diverges ora vanishes at the Sastry density. Th
first case appears unlikely; elementary arguments about
shredding behavior of low-density inherent structures im
thats` should vary continuously acrossrS.38 It thus appears
that the range of inherent-structure energies, given bya,
must shrink to zero at the Sastry density. Qualitatively, t
seems plausible. At smaller volumes, the system bounda
can serve to stabilize poorly packed, high-energy inher
structures, but as the density is lowered into a state of
sion, this is no longer the case and the energy of the le
stable structure necessarily decreases. With the increas
constraining requirement of homogeneity, the maximum
tainable inherent-structure energy may be forced to conve
on the minimum as the Sastry density is approached, tha
fmax→fmin at rS.

IV. ELEMENTARY LANDSCAPE MODEL

We now derive properties of a basic energy landsc
for simple liquids, which serves as a minimum descripti
for their analysis in the landscape formalism. We conside
simple model that is particularly convenient to analyze in
energy landscape paradigm. This idealized system consis
structureless, spherically symmetric particles interacting
pairs through soft-sphere repulsive forces of the typer 2n,
each experiencing a density-dependent mean-fi
attraction.20,34The potential energy of a configuration of pa
ticles at a given density is therefore given by

U~r 3N,r!5(
i , j

e~s/r i j !
n2Nar, ~4.1!

wherer 3N represents the positions of the particles,e ands
are the characteristic energy and length scales of the s
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sphere part,n is the soft-sphere exponent that controls t
degree of the repulsion,r i j is the distance between particlesi
and j, anda, a positive number, is the mean-field parame
with units of@energy#3@volume#. There are in fact only two
independent parameters in this expression, the soft-sp
and mean-field coefficients,esn anda. This particular choice
of the potential energy function is motivated by the obser
tion that liquid structure is primarily determined by repulsi
forces while attractive interactions can be successfully inc
porated by a background potential field serving to hold
particles together.51,52 The advantage of this system is th
the repulsive part of the potential energy in any configurat
is determined by the dimensionless particle positionss
5V21/3r , in such a way that the volume dependence can
readily extracted:

U/N5esnV2n/3N21(
i , j

si j
2n2ar[g~s3N!rn/32ar,

~4.2!

where g(s3N), with units of @energy#3@volume#n/3, has
been defined to give the portion of the soft-sphere term
dependent of volume, and is given by

g~s3N![esn
1

N11n/3 (
i , j

si j
2n . ~4.3!

Due to this kind of volume dependence, the nonideal s
sphere part of the configurational partition function depe
on a single scaling variablez5(be)3/nrs3.53 This reduction
in parameter space has made the soft-sphere/mean
~SSMF! model attractive for studies of the liquid state.20,34

Previous investigations using an equation of state base
reasonably accurate simulation data have shown in the m
the presence of a Kauzmann locus and the intersection of
curve with theT50 liquid spinodal.34 We aim to extend the
work in these studies by using the scaling embodied in
~4.2! to develop a model energy landscape. The soft-sph
landscape has been similarly investigated by Speedy;54 here
we use an additional mean-field term to approximately
scribe the corresponding landscape with attractive inte
tions.

It is well known that the total number of inherent stru
tures in the family of soft-sphere models is independen
density.37,38 This follows directly from the scaling effect o
the volume on the potential energy and forces, which me
that inherent structures are defined by steepest-descen
jectories in the dimensionless particle positions,s3N. Extend-
ing this observation, the energies of the most and least st
inherent-structure configurations must scale with density
rn/3. Therefore, the number of inherent structures within a
fractional portion of this energy range must be dens
independent. The result is that the functional form of t
basin enumeration function for soft spheres is rigorou
density-independent, that is to say, Eq.~3.18! is exact in this
case.~We should note here that these observations are
the limiting high-density case for more realistic pair potent
functions that incorporate an inverse-power repulsion, s
as the Lennard-Jones potential. In such systems at high
sities, the relevant configurations of the partition functi
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sample only the repulsive part of these potentials.! Finally,
the appended mean-field term does not change the inhe
structures or their number, but simply serves to shift th
energy. With these considerations, we can elaborate on s
of the properties of the basin enumeration function:

fmin~r!5gminr
n/32ar, ~4.4!

f`~r!5g`rn/32ar, ~4.5!

a~r!5~g`2gmin!r
n/3, ~4.6!

s`~r!5s` , ~4.7!

wheregmin and g` correspond to the values ofg for con-
figurations at the low-energy extreme and maximum of
soft sphere basin enumeration function, respectively.

Using expressions~4.4!–~4.7!, the Sastry density for the
SSMF system follows directly from Eq.~3.17!:

rS

r0
5F1

2 S n

3D S n

3
11D G1/~12n/3!

, ~4.8!

where we have introduced a characteristic densityr0 , depen-
dent on the soft-sphere exponentn and defined by

r0[S gmin

a D 1/~12n/3!

. ~4.9!

The significance ofr0 stems from Eq.~4.8!; in the limit of
hard-sphere repulsive interactions for whichn→`, the Sas-
try density tends towards this reference density. This tren
depicted in Fig. 2, which shows the evolution ofrS over
several orders of magnitude inn, starting withn54. Despite
the existence of a zero-temperature pressure minimum,
important distinction between this model and those incor
rating more realistic attractive interactions is the absence
distinguishing physical change at the Sastry density. T
SSMF system remains completely homogeneous belowrS

and does not exhibit the ‘‘shredding’’ behavior normally a
sociated with this regime. This makes it difficult in this ca
to justify, at least in a qualitative sense, the notion that
Sastry density represents a point of zero configurational
tropy due to the constraint of homogeneity.20 Unfortunately,

FIG. 2. Sastry density for the soft-sphere plus mean-field model as a f
tion of repulsive exponent,n. The limiting case forn→`, shown by the
dashed line, isrS /r0→1.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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this type of justification requires a model of greater compl
ity, for which there is currently no obvious candidate.

In order to evaluate the equilibrium pressure in t
SSMF fluid, we model the vibrational free energy in t
harmonic approximation. For consistency, we use the cla
cal form:12,14,16,26

avib~b,f,r!'
3

b
ln~bkQE!, ~4.10!

QE[
h

2pk
A1

m K d2U

dr2 L , ~4.11!

whereQE is taken as an Einstein temperature,h is Planck’s
constant,m is the particle mass, and the term in brackets
the geometric average of the eigenvalues of the Hessian
trix ~i.e., the matrix of second derivatives of the potent
energy with respect to particle coordinates!. In this expres-
sion, there is an implicit dependence ofQE on basin depth
and density, the effects of both which manifest in the sec
derivative of the potential. This means that for given valu
of f and r, the Einstein temperature is essentially deriv
from a ‘‘representative’’ inherent structure of that basin de
at the specified density. Making a transformation similar
that in Eq.~4.2!, we have

QE5
h

2pk
Ar (n12)/3

m K N1/3
d2g

ds2 L
5

h

2pk
Ar (n12)/3

m
g~u!, ~4.12!

where g, a function of the scaled basin depthu, gives the
density-independent part of the second derivative term.
sentiallyg contains any dependence of basin curvature,
hence vibrational free energy, on basin depth;
f-independentavib simply implies thatg is constant. Using
the harmonic expression for the vibrational free energy
Eq. ~3.20!, the ideal glass locus is given by

b IG~r!5
1

g`2gmin
Fs`

d f@21#

du
2

3

2

d ln g~21!

du Gr2n/3

[Cr2n/3, ~4.13!

where we have condensed the constants in this expres
into a single constantC for clarity. The equivalent expressio
for temperature is

TIG~r!5
1

Ck
rn/3. ~4.14!

The surprising consequence of this result is that an abso
zero ideal glass transition is reached only in the limit
infinitesimal density. This means that the Sastry dens
which is finite via Eq.~4.8!, does not intersect the ideal gla
curve atT50. This result may seem at odds with the resu
of Ref. 20 in which it was found from numerical equations
state for then59 SSMF model that the zero-temperatu
limit of the Kauzmann curve intersected the terminus of
liquid spinodal. One must remember, however, that the fo
of Ref. 20 was the Kauzmann locus whereas we strictly c
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sider ideal glasses; the difference in the approaches i
course whether the total or configurational entropies are
concern. Based on the discrepancy between the two stu
apparently there are subtle but fundamental differences in
implications the definitions of these two phenomena have
the analysis of liquids. The present work therefore emp
sizes that an ideal glass transition does not necessarily
respond to a Kauzmann point; that is, the sudden confi
ment of a liquid to a unique, lowest-lying amorphous ba
in its potential energy landscape can be a distinct occurre
from Sliquid5Scrystal.

Turning now to the pressure along the ideal glass tra
tion locus, insertion of Eqs.~4.4!–~4.7! and ~4.10! into Eq.
~3.13! yields

PIS~r!5
n

3
gminr

n/3112ar2 ~4.15!

for the inherent-structure contribution, and

Pvib~b IG ,r!5
n12

2

r

b IG~r!
5

n12

2C
rn/311 ~4.16!

for the vibrational part. Without the functional form forf @u#,
the expression for the pressure aboveTIG is unspecified in
the model. We present the equation of state formulated
cording to a Gaussian landscape in Eq.~3.19! ~equivalently,
as a random energy model.! To give the most basic expres
sion, we make the assumption of constantg, i.e., that the
vibrational free energy is independent of basin depth. It th
follows from Eq.~3.7! that

P~b,r!5
n

3
rn/311Fg`2

~g`2gmin!
2

2s`
brn/3G2ar2

1
n12

2

r

b
. ~4.17!

From this equation, one can see more clearly the possib
of a T-independent inherent-structure equation of state. T
inherent-structure pressure, given by all but the last term
Eq. ~4.17!, has a weak temperature dependence if the qu
tity s`T is reasonably large. In this case, the term in brack
is essentially given by the constant valueg` and the
inherent-structure pressure approaches

PIS'
n

3
g`rn/3112ar2. ~4.18!

Though the SSMF system is missing any dependence of
total number of basins on density, which would almost c
tainly accompany explicit attractive interactions, one cou
imagine this to have a relatively small effect at common
studied temperatures. Qualitatively, then, the inhere
structure pressure would continue to appear temperat
independent at highT.

We have fitted the equation of state~4.17! to the simu-
lation results for the Lennard-Jones system in Ref. 55. In
~4.17!, the parametersgmin and s` are not independent be
cause they appear in the same coefficient. In fitting
model, we setn512 and minimize the error in prediction
for the pressure at several of the high-density, lo
temperature state points in Ref. 55, obtaining values of 4.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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16.5, and 0.763 forg` , a, and (g`2gmin)
2/s` , respec-

tively. Our results for the total pressure are displayed in F
3. Using Eq.~4.8!, we obtain a high-T Sastry density of 0.71
for the fitted SSMF model; though this value differs from t
simulation result of 0.89 in Ref. 13, one would expect
deviation since the model neglects any explicit attractive
teractions that are sure to be important atrS. In general,
however, Eq.~4.17! predicts the pressures well at increas
densities, which is the expected result since at these s
points, the Lennard-Jones system samples primarily the
pulsive part of its potential. Interestingly, though, the pred
tions fare relatively well for the two highest densities even
temperatures near the critical temperature. This is somew
surprising considering the approximations in the theory,
cluding the harmonic approximation and the assumption
basin-independent vibrational free energy. Still, we bear
mind the works of Ref. 50 regarding the central limit the
rem and of Ref. 46 on the random energy model, both
which have shown the Gaussian landscape to be a ra
adequate description of atomic systems, particularly at h
temperatures.

V. CONCLUSIONS

We have presented a theoretical framework for liqu
that incorporates the statistical properties of an energy la
scape, is capable of describing an ideal glass transition,
corresponds with simulation studies performed in
inherent-structure formalism. In particular, the theory p
vides an explicit expression for the equation of state o
liquid and formally separates the pressure into vibratio
and inherent-structure components, both above and be
the ideal glass transition. Using the pressure separation
have shown the presence of the Sastry density and its
nection to the liquid spinodal. Finally, we have used t
theory to develop an elementary model of an energy la
scape based on soft-sphere particles interacting with an

FIG. 3. Pressure isotherms for the landscape-derived equation of state
soft-sphere/mean-field system, fitted to Lennard-Jones state points. The
dictions of the theory~lines! correspond toT50.7– 1.3 in increments of 0.1
from bottom to top. The filled diamonds are the simulation results from R
55 and the squares are the corresponding predictions of the theory
variables are expressed in reduced Lennard-Jones units.
Downloaded 13 Feb 2004 to 141.108.6.119. Redistribution subject to AIP
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ditional mean-field attraction. The model appears reasona
descriptive of simple liquids, suggesting the usefulness o
landscape-based reformulation of supercooled liquid ther
dynamics. An important conclusion from this work is that t
ideal glass and Kauzmann loci are quite distinct for the s
sphere model with mean-field attraction.

Though the current work provides a detailed theoreti
picture for energy landscapes, a number of questions rem
Improved knowledge of the vibrational free energy at lo
temperatures is needed in order to provide a microsco
understanding of the distinction between an ideal glass t
sition and a Kauzmann equal-entropy point. The appar
coincidence of the liquid spinodal with the Kauzmann loc
remains unresolved; the results of our theory suggest
notions of an ideal glass at zero configurational entropy
to capture what is occurring at this presumed convergen
Finally, because our model is based on the energy landsc
it contains information useful for both thermodynamics a
kinetic phenomena~e.g., diffusion rates!.1,24 A useful future
investigation might examine its ability to capture the slo
down of kinetic processes near the glass transition.
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APPENDIX: IDENTIFICATION OF THE
INHERENT-STRUCTURE PRESSURE

The particular separation of the pressure component
Eqs. ~3.8! and ~3.9! is constructed to coincide with simula
tion studies of energy landscapes, in which inherent str
tures are found by energy minimization to local potent
energy minima and their pressure determined from the u
virial expression. The algorithmic procedure in these simu
tions may be thought of as an instantaneous quench
nonequilibrium state at zero temperature. Using a rece
proposed thermodynamic formalism for such systems,39 we
define the inherent structure pressure as the negative vo
derivative of the free energy of the quenched state. The n
equilibrium, per-particle free energy is given by

aNE~b int ,bq ,r!5f* 2b int
21s~f* ,r!1avib~bq ,f* ,r!,

~A1!

whereb int refers to an internal temperature characterizing
out-of-equilibrium dynamics between inherent structures,bq

refers to the temperature to which the system is quench
andf* is the equilibrium value off prior to the quench, a
function of the original temperature of the systemb. In the
case where the quench temperature is absolute zero, th
pression forb int is

b int5
]s~f* ,r!

]f
5

b

B~b,f* ,r!
. ~A2!
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Using this expression in the volume derivative of Eq.~A1!
and taking the limitT→0 lead directly to the expression fo
inherent structure pressure in Eq.~3.9!. The vibrational com-
ponent of the pressure then follows from the remainderP
2PIS .

An alternative but equivalent definition of the inhere
structure pressure is the negative volume derivative
inherent-structure energy at fixed configurational entro
given by Eq.~3.12!. In the case of soft spheres interactin
through an inverse-power potential, one can demonstrate
Eq. ~3.12! is the correctPIS , that is, the one actually mea
sured in simulations. The unique property of soft sphere
that upon isotropic compression in which all particle coor
nates are simply rescaled, a configuration that is a pote
energy minimum remains a minimum. As a result, the nu
ber of members in a given ensemble of such configurati
does not change with this type of volume deformation, a
hence the same is true for the configurational entropy co
sponding to any inherent structure. Since the virial measu
the response of the potential energy to an isotropic volu
change of this sort and because of the constancy of con
rational entropy during the compression, simulation press
calculations for soft-sphere inherent structures are ind
given by Eq.~3.12! and hence also Eq.~3.9!.
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