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We report an extensive study of the phase diagram of a simple model for ortho-terphenyl, focusing
on the limits of stability of the liquid state. Reported data extend previous studies of the same model
to both lower and higher densities and to higher temperatures. We estimate the location of the
homogeneous liquid–gas nucleation line and of the spinodal locus. Within the potential energy
landscape formalism, we calculate the distributions of depth, number, and shape of the potential
energy minima and show that the statistical properties of the landscape are consistent with a
Gaussian distribution of minima over a wide range of volumes. We report the volume dependence
of the parameters entering in the Gaussian distribution~amplitude, average energy, variance!. We
finally evaluate the locus where the configurational entropy vanishes, the so-called Kauzmann line,
and discuss the relative location of the spinodal and Kauzmann loci. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1650295#

I. INTRODUCTION

Recent years have seen a strong development of numeri-
cal and theoretical studies of simple liquid models, attempt-
ing to develop a thermodynamic description based on for-
malisms which could be extended to deal also with out-of-
equilibrium ~glassy! states.1–9 Hard spheres, soft spheres,
Lennard-Jones mixtures and simple molecular liquids10–17

have been extensively studied. Within the potential energy
landscape~PEL!18 thermodynamic approach, detailed com-
parisons between numerical data and theoretical predictions
have been performed. Estimates of the numberV of local
minima—basins—as a function of the basin depth and of
their shape have been recently evaluated for a few
models11,12,14,15,17,19–22and from the analysis of experimental
data.23–25 The PEL approach, which is particularly well
suited for describing supercooled liquids, provides a con-
trolled way to extrapolate the thermodynamic properties of
the liquid state below the lowest temperature at which equili-
brated data can be collected. For example, estimates of the
locus where the configurational entropy vanishes, the so-
called Kauzmann locus, can be given;26 the Kauzmann locus
provides a theoretical limit to the metastable liquid state at
low temperatures. Another limit to the liquid state is met on
superheating and stretching the liquid, when the nucleation
of the gas phase takes place. In this case a convenient way to
define the limit of stability of the liquid state against gas
nucleation is provided by the spinodal line, i.e., the locus of
point where the compressibility diverges.27 The Kauzmann
line and the spinodal line define the region of phase space
where the liquid can exist in stable or metastable thermody-
namic equilibrium.

Recent theoretical and numerical work has focused on
the thermodynamic relation between these two curves.9,28–31

A recent thermodynamic analysis30,31 suggests that the spin-

odal and the Kauzmann loci meet—in the~P,T! plane—with
the same slope at a point corresponding to the maximum
tension that the supercooled liquid can sustain. Simple mod-
els which can be solved analytically, as hard10 or soft13,30

spheres complemented by a mean field attractive potential,
support such prediction. A numerical study of a Lennard-
Jones mixture is also consistent.29

In this paper we consider the Lewis and Wahnstro¨m rigid
model for the fragile glass former ortho-terphenyl~OTP!,32

whose dynamic32–34 and thermodynamic features17,35 have
been studied in detail. Our aim is to calculate the spinodal
and the Kauzmann lines to estimate the region of stability of
the liquid, and study the relation between these two loci.

We improve the data base of phase state points of previ-
ous studies,17 extending to both lower and higher densities
and to higher temperatures. Performing analysis of the
pressure-volume relation along several isotherms, we esti-
mate the homogeneous nucleation line and the spinodal
curve; we also report upgraded estimates of the statistical
properties of the landscape sampled by the liquid. We con-
firm that at all densities a Gaussian landscape properly mod-
els the thermodynamics of the system in the supercooled
state. Such agreement gives us confidence in the evaluation
of the locus along which the configurational entropy van-
ishes. We finally discuss the limits and possibilities of an
analysis based on the inherent structures thermodynamic for-
malism. The description of our results is preceded by a short
review of the potential energy landscape approach to the
thermodynamics of supercooled liquids.

II. BACKGROUND: THE FREE ENERGY
IN THE INHERENT STRUCTURES
THERMODYNAMIC FORMALISM

An expression for the liquid free energy in the range of
temperatures where the liquid is supercooled can be given
within the PEL formalism. In supercooled states, i.e., when
the correlation functions show the two steps behavior typicala!Electronic mail: emilia.lanave@phys.uniroma1.it
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of the cage effect,36,37 the system’s properties are controlled
by the statistical properties of the PEL.38 In the PEL formal-
ism, the potential energy hyper-surface—fixed at constant
volume—is partitioned into basins; each basin is defined as
the set of points such that a steepest descent path originating
from them ends in the same local minimum. The configura-
tion corresponding to the minimum is called inherent struc-
ture ~IS!, of energyeIS and pressurePIS . The partition func-
tion can be expressed as the sum over all the basins,
weighted by the appropriate Boltzmann factor, i.e., as a sum
over the single basin’s partition functions. As a result, the
Helmholtz liquid free energyF(T,V), at temperatureT and
volumeV, can be written as18

F~T,V!5EIS~T,V!2TSconf~T,V!1 f vib~T,V!. ~1!

Here, EIS is the average energy of the IS explored at the
given (T,V), f vib is the vibrational free energy, i.e., the av-
erage free energy of the system when constrained in a basin
of deptheIS , andSconf(T,V) is the configurational entropy,
that counts the number of explored basins.Sconf(T,V) is a
quantity of crucial interest, both for comparing numerical
results with the recent theoretical calculations,3,39 and to ex-
amine some of the proposed relations between dynamics and
thermodynamics.40–42Therefore, in order to evaluate the free
energy one needs to estimate the three terms of Eq.~1!.
EIS(T,V) is calculated by means of a steepest descent poten-
tial energy local minimization of equilibrium configurations
~see Ref. 43 for details!. In fragile liquids theT dependence
of EIS(T,V) follows a 1/T law.14,15,17,44

The basin free energyf vib(T,V) takes into account both
the basin’s shape—curvature—and the system kinetic en-
ergy. From the formal point of view, this term is the integral
of the Boltzmann factor constrained in a basin, averaged
over all the basins with same deptheIS(T,V). Numerically,
f vib is evaluated as sum of two contributions:~i! A harmonic
contribution, which depends on the curvature of the accessed
basins corresponding to the minimum at the giveneIS ; ~ii ! an
anharmonic contribution, usually approximated as a function
of T only. In the case of a rigid molecule model, the har-
monic contribution is the free energy associated with a sys-
tem of (6N23) independent oscillators of frequencyvk ,
where thevk are the square root of the eigenvalues of the
system Hessian matrix—the matrix of the second derivatives
of the potential energy—evaluated at the basin minimum
~see Ref. 43 for details!. This contribution can be written as45

f harm~EIS ,T,V!5kBT lnK expH (
i 51

6N23

ln~b\v i~eIS!!J L 8
,

~2!

where the symbol̂ &8 denotes the average over all the basins
with the same energyeIS . TheEIS dependence off vib , in the
harmonic approximation, can be parameterized using the ex-
pression:

lnK expH (
i 51

6N23

ln~b\v i~EIS!!J L 8
5a~V!1b~V!EIS

1c~V!EIS
2 . ~3!

The evaluation off anh(T,V) is described in Ref. 43.

Finally, Sconf can be calculated as the difference of the
~total! entropic part of Eq.~1! and the vibrational contribu-
tion to the entropy:

Sconf~T,V!5S~T,V!2Sharm~T,V!2Sanh~T,V!. ~4!

III. BACKGROUND: THE GAUSSIAN LANDSCAPE

In order to evaluate analytically the free energy in the
PEL formalism, it is necessary to provide a model for the
probability distribution ofeIS , i.e., the numberV(eIS)deIS of
basins whose depth lies betweeneIS andeIS1deIS . Among
several possibilities, the Gaussian distribution21,46,47seems to
provide a satisfactory description of the numerical simula-
tions of Refs. 14, 17 and 47. The ‘‘Gaussian landscape’’ is
defined by:

V~eIS!deIS5eaN
e2~eIS2Eo!2/2s2

~2s2!1/2 deIS . ~5!

Here, the amplitudeeaN accounts for the total number of
basins,Eo plays the role of energy scale, ands2 measures
the width of the distribution. One can grasp the origin of
such distribution invoking the central limit theorem. Indeed,
in the absence of a diverging correlation length, in the ther-
modynamic limit, each IS can be decomposed in a sum of
independent subsystems,48 each of them characterized by its
own value ofeIS . The IS energy of the entire system, in this
case, will be distributed according to Eq.~5!.

The assumptions of a Gaussian landscape@Eq. ~5!# and
of a quadratic dependence of the basin free energy onEIS

@Eq. ~3!# fully specify the statistical properties of the model.
Thus, it is possible to evaluate theT dependence ofEIS and
Sconf. The corresponding expressions are43

EIS~T,V!5
~Eo~V!2~b~V!1b!s2~V!!

112c~V!s2~V!
5A1

B

T
, ~6!

where, for convenience, we have definedA5(Eo2bs2)/(1
12cs2) andB52s2/kB(112cs2); and

Sconf~T,V!/kB5a~V!N2
~EIS~T,V!2Eo~V!!2

2s2~V!
. ~7!

Note thatEIS is linear in 1/T. The predicted 1/T dependence
of EIS and the parabolic dependence ofSconf has been con-
firmed in several models for fragile liquids.14,17,47

From the relations above and fits of the numerical data,
one obtains:~i! The vibrational coefficientsa, b, andc from
Eq. ~3!; ~ii ! the distribution parameters,Eo ands2(V) from
Eq. ~6!; ~iii ! the amplitudeeaN from Eq. ~7!. A study of the
volume dependence of the parametersa(V), Eo(V), and
s2(V), associated with theV-dependence of the shape indi-
cators@Eq. ~3!#, provides a full characterization of the vol-
ume dependence of the landscape properties of a model, and
offers the possibility of developing an equation of state based
on the volume dependence of the statistical properties of the
landscape.35

Finally, within the Gaussian landscape model, it is pos-
sible to exactly evaluate the Kauzmann curveTK(T,V), the
limit for the existence of the liquid. This curve is the locus of
points whereSconf vanishes, i.e., from Eq.~7!
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a~V!N2
~EIS~T,V!2Eo~V!!2

2s2~V!
50. ~8!

The following expression forTK(T,V) results:

TK~T,V!5
B

~Eo2A!6A2s2aN
, ~9!

where the sign to be chosen is the one corresponding to the
largest value solution of the equation.

IV. MODEL AND SIMULATIONS

We studied a system of 343 Lewis and Wahnstro¨m
~LW!32 ortho-terphenyl model molecules, by means of
molecular-dynamics simulations in the (N,V,T) ensemble.
The LW model is a rigid, three-site model with intermolecu-
lar site–site interactions described by Lennard-Jones poten-
tial. The potential parameters are chosen to reproduce OTP
properties such as its structure and diffusion coefficient.32

The integration time step for the simulation was 0.01 ps.
With this model it is possible to reach very long simulation
times; such long molecular-dynamics trajectories allow us to
equilibrate the system at temperatures below the temperature
where the diffusion constant reaches values of order
10210 cm2/s. We simulated 23 different densities for several
temperatures, for an overall simulation time of order 10ms.

To calculate the inherent structures sampled by the sys-
tem in equilibrium we perform conjugate gradient energy
minimizations to locate the closest local minima on the PEL,
with a tolerance of 10215 kJ/mol. For each thermodynamical
point we minimize at least 100 configurations, and we diag-
onalize the Hessian matrix of at least 50 configurations to
determine the density of states. The Hessian is calculated by
choosing for each molecule the center of mass and the angles
associated with rotations around the three principal inertia
axis as coordinates.

Further details on the numerical techniques used can be
found in Ref. 17.

V. POTENTIAL ENERGY LANDSCAPE PROPERTIES

An analysis of the statistical properties of the landscape
for the LW ortho-terphenyl model has been recently per-
formed in Ref. 17. Here we expand such analysis to lower
and higher densities, with the aim of exploring the region of
phase diagram where the steep repulsive part of the potential
is more relevant, and study the location of the liquid spinodal
line and of the Sastry density.29,49 The larger density range
considered allows us to estimate the volume dependence of
the landscape parameters with great precision.

The four panels of Fig. 1 show the results of the land-
scape analysis for two of the additional densities~198 and
200 cm3/mol!, with the aim of confirming the possibility of
describing the numerical data with the Gaussian landscape
model discussed above. Similar data for other five densities
can be found in Ref. 17 and are not shown here. Figure 1~a!
shows the temperature dependence of the average inherent
structure energy~symbols! which, in agreement with Eq.~6!,
can well be fitted by a 1/T law ~solid line!. Figure 1~b! shows
the anharmonic entropy, evaluated according to a fit of the

anharmonic contribution to the energy with a polynomial of
third degree in T17. Figure 1~c! shows the quantity
ln^exp$Si51

6N23 ln(b\vi(EIS))%&8 as a function of the basin
depth energyEIS . As previously observed, an almost linear
relation between ln̂exp$Si51

6N23 ln(b\vi(EIS))%&8 and EIS is
found. To account for a minor curvature, a fit with a second-
order polynomial@Eq. ~3!# is reported. Finally, theEIS de-
pendence ofSconf is shown in Fig. 1~d!. The parameters of
the reported fit are constrained by theT-dependence of the
parameters estimated forEIS .43 In agreement with Eqs.~6!
and~7!, Sconf is fitted by a second degree polynomial inEIS .

As discussed in the previous section, from theT depen-
dence ofEIS and Sconf, and from theEIS dependence of
ln^exp$Si51

6N23 ln(b\vi(EIS))%&8, it is possible to evaluate the
statistical properties of the landscape and their volume de-
pendence, under the assumption of a Gaussian landscape.
Figure 2 shows theV-dependence of the parametersa(V),
Eo(V), and s2(V). The parametera shows a weak
V-dependence. From a theoretical point of view, we expecta
to converge toward a constant value in the small volume
limit, when the potential is essentially dominated by the re-
pulsive soft spherer 212 part,13 and to increase on increasing
V, to account for the larger configuration space volume. The
V-dependence ofEo(V) is similar to the one found in other
models; the presence of the minimum is, indeed, connected
to the progressive sampling, on compression, of the attrac-
tive part of the intramolecular potential, followed by the pro-
gressive probing of the repulsive part of the potential. As
expected for simple liquids,50 the V-dependence ofs2(V) is
instead monotonic.

VI. INHERENT STRUCTURES PRESSURE, PIS ,
AND VIBRATIONAL CONTRIBUTION, Pvib

Within the landscape approach, the pressureP can be
exactly split in two contributions, one associated to the pres-
surePIS experienced in the local minima~which are usually
under tensile or compression stress!, and a second contribu-

FIG. 1. Results of the landscape analysis for the densities 198 and 200
cm3/mol ~squares and circles symbols, respectively!: ~a! Average inherent
structure energy~symbols! together with the 1/T dependence of Eq.~6!
~solid line!, ~b! anharmonic contribution to the entropy,~c! harmonic free
energy ln̂exp$(i51

6N23 ln(b\vi(EIS))%&, ~d! configurational entropySconf to-
gether with the fits according to Eq.~7!.
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tion, Pvib , commonly named vibrational, even if a configu-
rational part is also included as discussed in length in Refs. 9
and 13. Hence, in full generality

P~T,V!5PIS~T,V!1Pvib~T,V!. ~10!

Here,PIS(T,V) can be evaluated from the value of the virial
expression in the inherent structure, whilePvib(T,V) can be
evaluated as difference betweenP andPIS .

Figure 3~a! shows the inherent structure pressurePIS and
Fig. 3~b! the vibrational pressurePvib for several densities.
The IS pressure gets more negative on decreasing density,
until a sudden jump upward takes place at around 225
cm3/mol. The jump signals that, during the minimization
procedure ~at constant volume!, the maximum tensile
strength has been overcome and a cavitation phenomenon
has taken place. Therefore, the volume at which the IS loses
mechanical stability, recently named Sastry volume51

(VSastry), is, for this model, close to 224 cm3/mol. We also
note thatPvib @Fig. 3~b!# is almost density independent. Only
at densities close to the Sastry density, aV dependence is
observed. For densities lower than the Sastry density, both
PIS andPvib do not reflect any longer bulk properties~being
the local minima configuration affected by the presence of
large voids!.

The previous observation stands out more clearly in Fig.
4 where the volume dependence ofP, PIS , andPvib is shown
for the isothermT5320 K. The total pressureP is monotoni-
cally decreasing, confirming that the studied system is in the
stable liquid phase up toV5225 cm3/mol. The IS pressure

shows instead a minimum aroundV5222 cm3/mol, suggest-
ing that, during the minimization process, a small cavity has
been created in theV5225 cm3/mol sample. As a result, the
significant drop observed atV5225 cm3/mol in Pvib is an
artifact induced by cavitation. It is also worth noting that a

FIG. 2. Volume dependence of the Gaussian landscape parameters:~a!
a(V), ~b! Eo(V), and~c! s2(V).

FIG. 3. ~a! Inherent structure pressure,PIS . The IS pressure gets more
negative on decreasing density, until a sudden jump upward takes place at
around 225 cm3/mol. The jump signals that, during the minimization proce-
dure~at constant volume!, the maximum tensile strength has been overcome
and a cavitation phenomenon has taken place.~b! Vibrational pressure,Pvib .
Pvib is almost density independent. Only at densities close to the Sastry
density, aV dependence is observed.

FIG. 4. Volume dependence of the total pressureP, inherent structures pres-
surePIS , and vibrational pressurePvib for the isothermT5320 K. The total
pressureP is monotonically decreasing, as expected for a system in equilib-
rium in the stable liquid phase. The IS pressure shows instead a minimum
aroundV5222 cm3/mol, suggesting that, during the minimization process,
a cavitation process has taken place in theV5225 cm3/mol sample. As a
result, the significant drop observed inPvib is an artifact induced by cavita-
tion.
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small decrease of Pvib is observed already atV
5222 cm3/mol, suggesting that the cavitation phenomenon
is preceded by a weak softening of the vibrational density of
states on approaching the Sastry instability.

VII. LIMITS OF STABILITY OF THE LIQUID

We now focus on the limits of stability of the liquid
state. Figure 5 shows the volume dependence of the pressure
for several of the studied isotherms. Cavitation marks the
homogeneous nucleation limit for the system; it can be de-
tected during the simulation by monitoring the time depen-
dence of pressure and potential energy, which show a clear
discontinuity when a gas bubble nucleates. After the cavita-
tion, P increases and the potential energy decreases. We de-
fine the locus of homogeneous nucleation as the largest vol-
ume, at fixedT, at which we managed to simulate the
dynamics of a homogeneous system. The fine grid of studied
V values allows us to identify such locus with a significant
precision~solid line!. Although the calculated homogeneous
nucleation line refers to a system composed of 343 mol-
ecules, it provides an upper bound for larger systems.

From the equilibriumP(T,V) data, i.e., in the range
where no cavitation is observed, it is possible to estimate the
volume at whichP(V) has a minimum, by fitting the data
according to the equationP'(V2Vs)

2. In the mean field
approximation,Vs corresponds to the spinodal volume, and
the temperature dependence ofVs defines the spinodal locus
~dashed line!.

We now focus on the information on liquid stability en-
coded in the inherent structures pressurePIS . Figure 6
shows, for several isotherms,PIS as a function ofV. In anal-
ogy with the equilibrium data, a limit of stability for the
inherent structures can be calculated estimating the minimum
of PIS'(V2VSastry)

2 ~fits are solid lines!. It has been specu-
lated thatVSastryrepresent the upper limit for glass formation,
and that it may be identified with theT→0 limit of the
liquid–gas spinodal locus.49 Our calculations show that, as

previously observed for other systems,29 the Sastry volume
does not depend significantly on the temperature~see inset in
Fig. 6!.

We note that the Sastry volume is significantly smaller
than the spinodal volume. The fact thatVSastry,Vs implies a
stabilizing role of the vibrational component of the pressure.
Indeed, already in Fig. 4 it was shown that the stability re-
gion for P is larger than the one forPIS . This fact suggests
that, close to the spinodal line, the vibrational component
becomes volume dependent to compensate for the loss of
stability arising from thePIS contribution. Clearly, ifPvib

were V independent, thenVs and VSastry should coincide.
There is also an interesting observation to make concerning
the application of the potential energy landscape approach to
liquids at large volumes. Indeed, betweenVSastryandVs , the
constant volume minimization procedure produces an inho-
mogeneous IS configuration.52 When the inherent structure
contains voids, the determination of the landscape param-
eters proposed in this work becomes meaningless, and the
link between the inherent structure and the corresponding
liquid state requires a more detailed modeling.

Next, we focus on the location of the relevant stability
loci of the liquid phase under supercooling. Within the
Gaussian landscape model, the limit of stability of the super-
cooled liquid is defined by the line at which the configura-
tional entropy vanishes, the so-called Kauzmann locus@Eq.
~9!#. As the spinodal curve is preempted by the homogeneous
nucleation and, therefore, cannot be approached in equilib-
rium, the Kauzmann locus cannot be accessed due to the
extremely slow structural relaxation times close to it. Still,
these two loci provide a characterization of the domain of
stability of the liquid state, and retain some meaning in a
limiting mean-field sense.

Figures 7 and 8 show theSconf50 locus and the spinodal
locus in the (T,V) and~P,T! planes. The~P,T! data have been
calculated using the potential energy landscape equation of
state introduced in Ref. 35. Figure 7 also shows curves at
constant configurational entropy, in the region where no ex-

FIG. 5. Total system pressureP as a function of the volumeV along the
indicated isotherms. For each isotherm, the highest volume shown is the
volume where a jump in the inherent structure pressure is first observed,
signaling bubble formation—cavitation—in the system. The nucleation line
~solid line! and the spinodal line~dashed line! are also shown.

FIG. 6. Inherent structures pressure,PIS , as a function ofV, for several
isotherms. Each curve has been shifted byn330 MPa, for a more clear
presentation. Solid lines are the theoretical predictions according to the po-
tential energy landscape equation of state of Ref. 35. The shadowed region
marks the range of variability ofVSastry, the limit of stability for the inherent
structures. Inset:VSastryas a function of temperature for all the studied vol-
umes is shown. Dashed line is the average value 224.9 cm3/mol.
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trapolations are required. In analogy with the findings in
Lennard-Jones systems,29 the volume where the two loci ap-
pear to meet is close toVSastry, but at a temperatureTI

.73 K different fromT50. Hence, the spinodal line termi-
nates at a finite temperature, by merging with theSconf50
line; this is at odds with what was suggested in Ref. 49. For
TI.73 K, the glass will meet a mechanical instability on
stretching; it is an interesting topic of research29,53,54to un-
derstand the relations between the volume at which such in-
stability takes place andVSastry.

A recent thermodynamic analysis addresses the issue of
the relative location of the two loci and the way these two
loci intersect.30,31 It has been suggested that the two lines
must meet in~P,T! plane with the same slope. Making use of
the equation of state of Ref. 35, the (T,V) data of Fig. 7 can
be represented in the~P,T! plane. The phase diagram in~P,T!
is shown in Fig. 8, where alsoTK(P), the spinodal line and
some iso-entropy curves are shown. An extrapolation of the
low pressure behavior of the spinodal line shows that data

are consistent with the possibility that the two lines meet
with the same slope, but no definitive conclusion is possible
with the avaible data.

If the pressureP(T) along the spinodal increases withT,
as usually found in liquids, the meeting point defines the
lowest temperature and pressure that can be reached by the
liquid in equilibrium. These values areTI.73 K and PI

.2360 MPa.

VIII. SUMMARY AND CONCLUSIONS

In summary, we have studied the stability domain of the
liquid state for a simple molecular model for ortho-terphenyl.
In particular, we have focused on the two limits of stability,
one provided by the divergence of the structural relaxation
times, the other one provided by the cavitation of the gas
phase. Both of them have theoretical mean-field bounds, the
locus at which the configurational entropy vanishes and the
locus at which the compressibility diverges, respectively.

To evaluate the configurational entropy, we have devel-
oped, along the lines of previous work for the same model,17

a potential energy landscape description of the system free
energy, in the framework of the inherent structure thermody-
namic formalism.18 The landscape analysis has required the
evaluation of the statistical properties of the landscape,
which we have quantified in the volume dependence of total
number, energy distribution, and relation between energy
depth and shape of the potential energy landscape basins.

The landscape analysis performed here is limited to vol-
umes such that the minimization procedure, used for the
evaluation of the inherent structures, results in an homoge-
neous structure. We have found that for volumes larger than
the so-called Sastry volume51 (VSastry.225 cm3/mol) the
system always cavitates upon minimization. Cavitation pre-
vents the possibility of estimating the statistical properties of
the landscape forV>VSastry. This poses a serious problem to
the application of landscape approaches in the version where
minimizations are performed at constantV if the region close
to the spinodal curve has to be investigated. Indeed, as
shown in Fig. 7, the region of stability of the liquid phase
extends well beyondVSastry. This suggests also that the re-
gion close to the spinodal curve is stabilized by vibrational
contributions, which must overcome the destabilizing contri-
bution arising from the configurational degrees of freedom
~as discussed in Sec. VI!. The stabilization in the vibrational
properties appears to be accomplished by a softening of the
vibrational density of states on approachingVSastry. We note
on passing that, while in the (T,V) ensemble, estimates of
the liquid free energy in the IS formalism are limited toV
,VSastry, formulations of the IS formalism in the~P,T! en-
semble does not suffer from such limitation, since the mini-
mization path would not meet any instability curve. In this
formulation one minimizes the Hentalpy at constantP.

In the framework of the IS formalism, we have estimated
the locus at which configurational entropy vanishes. The pos-
sibility of a finite T at whichSconf vanishes is encoded in the
model selected to represent the data. For all densities and
temperatures studied in the present work, the Gaussian
landscape21 well represents the data and provides a well de-
fined Kauzmann locus, whose location in the phase diagram

FIG. 7. Spinodal~open squares! and Kauzmann~open circles! lines, to-
gether with their extrapolations~dashed lines! in the (T,V) plane. The Kauz-
mann locus has been evaluated from Eq.~9!. The relation between these two
curves is discussed in the text. The vertical dashed line marks the Sastry
volume, the limit of stability for the inherent structures. Some iso-entropic
lines are also shown.

FIG. 8. Spinodal~open squares! and Kauzmann~open circles! lines, to-
gether with their extrapolations~dashed lines! in the ~P,T! plane. The verti-
cal dashed line marks the Sastry volume. Some iso-entropic lines are also
shown.
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has been compared with the location of the spinodal line. We
have shown that the spinodal and theSconf50 loci may be
extrapolated to meet atVSastry at a finite T. Data are also
consistent with the possibility that, in the~P,T! plane, the two
curves are tangent atVSastry. These two observations are in
agreement with the behavior recently predicted for hard and
soft spheres complemented by a mean field attraction. It will
be interesting to address in the future the relation between
the field of stability of the liquid as compared to the field of
stability of the glass state.
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