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The concept of fragility provides a possibility to rank different supercooled liquids on the basis of
the temperature dependence of dynamic and/or thermodynamic quantities. We recall here the
definitions of kinetic and thermodynamic fragility proposed in the last years and discuss their
interrelations. At the same time we analyze some recently introduced models for the statistical
properties of the potential energy landscape. Building on the Adam—Gibbs relation, which connects
structural relaxation times to configurational entropy, we analyze the relation between statistical
properties of the landscape and fragility. We call attention to the fact that the knowledge of number,
energy depth, and shape of the basins of the potential energy landscape may not be sufficient for
predicting fragility. Finally, we discuss two different possibilities for generating strong behavior.
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I. INTRODUCTION dence could be, for example, described blydependence of
, . . the activation energy\). The relaxation time is a quantity

Soon after the introduction of the concept of thel LLOPO- that is rather difficult to access, in particular, when the value
graphic view of the Potential Energy LandscdB&L),” ““it ¢ . s |arge, and, moreover, it seems also to be technique
became immediately clear that a key role in controlling thedependent. For these reasons, in nonpolymeric liquids, the
kinetic arrest characterizing the glass transition was playeﬂ'agility is usually defined through the dependence of the
by the number of distinePEL local minima(inherent struc- g o, viscosity;.> This choice leads to a first ambiguity,
tures, Qy, and by their energy distributiofi)\(E). Indeed,  ggpecially in comparing different systems, as the fragility
it was suggested that the qualitatively different behavior ofyafined throughr,(T) and that defined throughy(T) are
different supercooled liquids could be traced back to the dify,o+ coincident. This can be rationalized by recalling the
ference in the(Q)y function, or, more specifically, to the \1qxwell relation, 7=G..7, (here G.. is the infinite fre-
steepness of th dependence of this quantity. From generalquency shear modulus of the liqijénd recalling tha6., at
arguments, in a monocomponent collection of a large NUMT spans over about two decades among different systems.
ber, N of units (atoms, molecules,),.it can be shown that - Anqther possible definition of fragility comes from the tem-
Qy~expeN). — Similarly, it holds  that On(E) — perature dependence of the mass diffusion coefficient. In
~ exp%(e)/kg). HereX(e) assumes the meaning of “con- ihiq case, according to the Stokes—Einstein relafién
figurational entropy" and it is an extensive fqnctlon of the =KgT/(67T 7), r being the effective hydrodynamic radius
energy per particle e=E/N. The quantity @ (@ s the mobility . (=D/T) that is (inversely proportional
=max{%(€)}/Nkg) is a measure of the total number of “in- 5 e yiscosity and, therefore, must be analyzed. Once more,
herent structures{individual minima of the potential energy i should be expected that the fragility defined via mobility
hypersurfack In comparing the behavior of different glass- 504 that defined via viscosity are not coincident. Indeed,
for_mi_ng systems, particular emp_h_asis is placed in the relatiom the effective hydrodynamic radius may have a tempera-
existing betweenw and the “fragility” of the system under e gependence ari) it is well known that in supercooled
investigation. o liquid at low temperature the “decoupling” phenomenie
~ The *fragility” concept, in its modern form, has been tajjyre of the Stokes—Einstein relatipaccurs. In the recent
introduced, developed, and widespread by Anfetl.de- years, the fragility has been quantified according to The

scribes, in its kinetic version, how fast the structural relax-penavior of , but this has been done following different
ation time (r,) increases with decreasing temperature Orbrescription(v,ide infra).

approaching the glass transition temperatlig, defined as Despite minor ambiguities introduced by its different
the temperature where, becomes equal 10100 s. "Strong” efinitions, the concept of fragility has a deep influence on
systems(low values of fragility show a “weak”T depen- o stydy of relaxation processes in supercooled liquids.
dence ofr,(T), that can be_defcrlb_ed" by an Arrhenius law \1any studies have evidenced the existence of correlations
[7(T) = 7. exp@/kgT)], while *fragile” systems show—  panyeen the values of the fragility and other properties of the
close toT,—a much fastefl dependence of the relaxation g,nercooled liquids, such & the “visibility” of the Boson
time, which is also markedly non-Arrheniughis depen-  pea87 (ji) the T dependence of the shear elastic modulus
in liquids (shoving modet®~!* (iii) the stretching of the
dElectronic mail: giancarlo.ruocco@romad.infn.it decay of the correlation functions at the glass transition
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temperaturé®®® (iv) the nonlinearity of the relaxation Vogel-Tamman—Fulcher relation, or both—lead to a differ-
functions* and, very recently(v) the vibrational properties ent expression for the fragility in terms of the parameters
of the glass aff—0.1°> Other works have tried to extract characterizing the “landscapes.” In the subsequent sections,
physical information on the nature of the glass transitionwe review the Speedy and the Sastry propositions omthe
from the existence of these correlatidfi¢’ Finally, we re-  dependence of the fragility for the examined landscapes. Fi-
call a recent attempt to extend the dimensionality of thenally, we emphasize that landscapes with the same statistical
space spanned by the fragility index. Instead of using groperties(i.e., the same total number of basins, the same
single value to classify th& dependence of the viscosity, energy distribution of the basins depthay be characterized
Ferrer et al!® proposed to associate two indexes to everyby different fragilities, calling attention on the role of the
glassformer. The first indexfragile/nonfragile¢ measures different parameters entering in the Adam—Gibbs expression.
how much the viscosity is Arrhenius-type at low temperaturéWe conclude, discussing the obtained results in the context
while the second ongstrong/weakdoes the same around the of the strong-to-fragile transition observed in some strong
melting point. A deeper discussion on the correlation beglass-forming liquids.
tween fragility and other supercooled liquid properties can
be found in Ref. 19.

The relation between the statistical properties of thel- FRAGILITIES

landscape and the fragility is thought to be a central issue in  As discussed in the Introduction, and following Andell,
the comprehension of the physics behind the glass transitiogye will define the kinetic fragility in terms of the tempera-
Debenedetti and Stillingét state in a very recent review: tyre behavior of the viscosity and not of the structural relax-
“Equally important is the translation of qualitative pictures... ation time. Having clarified this point, however, we have to
into precise measures of strength and fragility based on thgyce—for the present purpose—different definitions of the
basin enumeration function.” A first connection between thesindex of (kinetic) fragility.” The robustness of a concept
fragility and the topographic differences in the energy landyjke the fragility lies in the observation that—when plotting
scape is found in Ref. 21. There the landscapes of strongg(,(T)) vs T/T4—the curves for different liquidébeside
liquids were supposed to have a “uniform” roughness, whileyery few exceptionsdo not intersect each other, and con-
a two-length scale arrangement of the minima—uwith the i”'verge to a common point &=T, (by definition and at
troduction of themeta basinsa concept that has been re- T_.«. Gijven this situation, it is possible to sort the systems,
cently revitalized by Doliwa and Heué—was expected to j e to unambiguously assess whether or not a system is
characterize the PEL of fragile liquids. In 1995, Angéll, more fragile than another. It is, therefore, natural to assign a

rationalizing the much larger specific heat jump at the glasgumerical value to this concept: the index of fragility.
transition shown by the fragile liquids with respect to the

strong ones, concluded that “Fragile liquids would have high™- Kinetic fragility: Local definitions

density of minima per unit energy...” and “Surfaces with few  The first definition, let us call it “Angell’s kinetic fragil-
minima...generate strong liquids... .” Similar conclusions areity,” m,, is

reported in Ref. 24 and by Debenedetti and Stillifdavho,

more recently, wrote that “...strong landscape may consist of mAtd log(7(T)/ 7-.) _ (1)
a single metabasin whereas fragile ones display a prolifera- d(Tg/T) =T

tion of well-separated metabasin.” ¢

Summing up, there seems to be consensus on the stafd€’® 7= iS the limiting high-temperature viscosity afig is

ments defined from the conditiony(T,) = 10" Poise. As it is ex-
perimentally observed that all the liquids share a very similar
strong systemssmall «, value of 7,.=10 4 Poise, this quantity isconventionally
fixed to this value. Accordingly, an ideal strong gléssictly
fragile systerslarge «. Arrhenius behavigr would havem,=17, whereas higher

. o . values are an indication of higher fragility. While in principle
An attempt to determine a quantitative relation betweennere is no upper limit fom,, on a practical ground the
fragility and number of states on a theoretical basis, withinyst fragile system seems to be tri-phenyl-phosphate, with
the framework of the “Gaussian landscape modeée be- y ~160.

low), is due to Speed$? who derived a direct proportionality Avery similar definition has been proposed by Spe&ty:
between kinetic fragility andv. This relation has been then

criticized by Sastry® who—again using the Gaussian model log(7(T)/ 7..)
to fit his molecular dynamics simulation of the Kob- . 109(n(Tg)/ 7:)
Andersen Lennard-Jones Binary Mixtu@&VLJ) at different Ms= d(T4/T) ' (2)
.. . . . 9 T=T
densities—reached the conclusion of a proportionality be- 9
tween fragility and the square root af At a first sight, it seems that a trivial normalization factor

In this paper we first present a summary of the differentwould bring us frommg to m,. However, this expression
definitions of “fragility” that are commonly used in the cur- becomes more useful than EQ@) if we want to relax the
rent literature, and then recall several models of configuraassumptiony.,.=10"“ Poise. In conjunction with Eq2), it
tional entropy(several “landscapes”proposed in the past is also useful to define the glass transition temperalyras
that—with the help of the Adam-Gibbs equation, or of thethe temperature Where,r(Tg)/nleoﬂ; we will use this
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definition hereafter. As we will see below, if we aim to study, Plugging Eq.(3) in Eqg. (2), and using Eq(4), one gets that
for example, the density dependence of the fragility of athe parameteb is related to the previously defined fragili-
given system, it will be easier to use E), where the ties:

density dependence af,,, although small, has been washed

out. It is worth pointing out, however, that for all practical 171n(10)
purposes, when dealing with the experimental data, the dif- =
ference in using Eq(1) or Eq.(2) is by all means irrelevant
(apart from a trivial factor very close to 17The fragility
index mg ranges from one for strong glasses~d0 for the
more fragile systems.

The previous two definitions focus on the behavior o
7n(T) at the glass transition temperature. More recently, an
other index of fragility—often referred to d5,,—has been
introduced by Richert and Angéfito “measure” the fragil-

ity at an intermediate temperatuf@so see the discussion in _1ne assumption of the validity of the VTF law for the
Ref. 28. Naming T* the temperature that satisfies viscosity also leads to a relation between the local fragility

log((T*))=[log(n(Tg))+log(n(T.))/2 (ie., the tem- defined at different temperatures. Indeed, recalling the defi-

perature where the viscosity is halfway—in logarithmic Mtion of Fy, and Eq.(2), one get¥’
scale—betweeny,, and 1062 Poise), F,, is defined as

F12=2(T4/T*)—1. Itis worth mentioning thaf ,, andmy, _mg—1

(or mg) do not provide “exactly” the same information: a V2 mg+1"

plot of one quantity against the other does not indicate a

perfect correlation, rather it shows a scatter of the points

around an average treAdiThe existence of such a scattering C. Thermodynamic fragility

has been recently rationalized by Chandler and Garrahan

within the framework of a coarse-grained model of o pg| properties has been certainly achieved with the in-

0
glassforrl?erg lized. t wred dent fragili troduction of the “thermodynamic fragility.3? Similar to
_minally, a generalized, temperature-cependent agiliy, o jnetic fragility that naturally emerges from the Angell
(eitherm, or mg) is sometimes introduced, using equations

- . ) - “plot[log(z) versusT, /T for different systemk the vigor of
fgfr:a"rzLE:OeE?;rfwlge?;ii)r 'é'Wh\(/a\;zTg\’/inTI Slcj:glsltlttL;\t(SSebyqigr?tri]t?ensc the concept of thermodynamic fragility arises from the tem-
' ture d f th t fi
asmu(T) andmg(T), with the implicit definition that when perature dependence of the excess enty), defined as

h . L h " lculated the difference between the entropy of the liquid and the en-
EriTzrgument Is missing, the quantities are calculate aH‘opy of the stable crystal. On plottir,(Tg)/Se(T) versus

T4/T, one obtains a plot very similar to the Angell plot,
where the different systems stand in the same otder.

In similar fashion to the kinetic fragility,,,, it has been
B. Kinetic fragility: Global definitions defined a “thermodynamic” fragilityF5,: naming T* the

The previous indexes of fragility were associated to thetemperature, WherseX(Tg)/SeX(T) 3/4, i.e., the tempera
. ; " ture where the inverse excess entropy equals 3/4 of jts
behavior of »(T) at a given temperature. Other definitions : ' - * )
. . : value,F, is defined a$3,=2(T4/T*)— 1. In this case, the
are based on the global behavior of the viscosity, and neces- g -
. . : : value 3/4, and not 1/2, has been chosen because of the diffi-
sarily rely on the existence of a functional expression for " - : : ;
2(T) culties associated to determine the excess entropy at high

A global definition of kinetic fragility arises from the /Ty in strong liquids. In a recent paper, Martinez and

32 ; ; ;
experimental observation that the temperature dependence @Pgell have shown that it exists a remarkable correlation

. : etweenF 1, andF3,: with few exceptions it turns out that
the viscosity follows rather closely a Vogel-Tamman—_"" " L o . ) ; )
Fulcher(VTF) law:3 Fio~F3, within 10%. This observation rationalizes the

well-known fact that the amplitude of the specific heat jump
DT at Ty is linked to the fragility, but also points out that is not
2T)= 7 ex% 0 ) (3)  the specific heat jump alone, but rather this jump divided by
T-To the excess entropy dy;, that is actually related to, .

In analogy withm, (or with mg), it would be natural to
where .., D and T, are §ystem-dependent parameters. ASjefine a further index of the thermodynamic fragility as the
long as the VTF description of(T) is correct, one of the derivative atT, of the inverse reduced excess entropy with
two parameters in the argument of the exponential can bgaspect to the inverse reduced temperature. To our knowl-
eliminated in favor ofTy as—from the definition of glass eqge, this index has not been yet introduced, but—as we will
transition temperature—the following relation hoRis: see below—this quantity naturally appears when the Adam—
Gibbs relation is used to work out a link between kinetic and
thermodynamic fragility. It is useful, therefore, to introduce
this thermodynamic fragility ;) index as

®)

 omg—1

and, therefore, can be assumed to be a further fragility index.
This index, which ranges from for strong liquids(actually
§D~100 for vitreous silicato =5 for the fragile ones, is in
same sense “weaker” than the other three previously intro-
duced, as its validity is based on the assumeatbpendence

of the viscosity[Eqg. (3)].

(6

An important step forward in relating the fragility with

Tg=To| 1+ (4)

17In(10))'
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. d(sex(Tg)/Sex(T))‘ Séx(Tg) Equation(lO) aIsp con_sftitutes the basis to obtain a link be-
=TT | TTeg Ty (7)  tween the kinetic fragilitymg and the number of states.
9 T=T, ext g Indeed, recalling the relation=max{3(e(T))}/Nkg, if we

S.(T) being the temperature derivative 8£(T). know—or have a model for—the configurational entropy of

a given system, we could determineandmg, and thus try
to relate one to the other.

D. Relation between kinetic
and thermodynamic fragility Ill. MODELS OF LANDSCAPE

The Adam-Gibbs equatidh establishes a relation be- In this section we will briefly recall the main models that
tween the structural relaxation time and the configurationahave been introduced in the recent literature to represent the
entropy>(T): configurational entropy of supercooled liquid systems. In the

< first three subsections we elucidate models of configurational

(T)=1. exp{— , (8) entropy and derive the relations between the different quan-

T(T) tities of interest(T and e dependence ok, fragility, etc)

or, relying on the Maxwell relation, between the viscosity With the specific hypothesis that the vibrational entropy as-
and the configurational entropy: sociated to a specific minimum of the PEL is independent

from its energy elevation. In the following subsection, we
9) relax this hypothesis, assuming a linear dependence of the
vibrational free energy frone, and showing how the equa-
tions relating the relevant physical quantities to the configu-
rational entropy parameters are modified.

&
T)= 7. exp ===/,
where 7..(7.) is the usual infinite temperature limit for the
relaxation time(viscosity) and€& a system-dependent param-
eter with the physical dimension of an energy that is someA. Gaussian model
hO\.N relateq tq the energy bgrrler for activated processes. The Gaussian model is at the basis of the interpretation
This equation is the key relation that allows us to create %f the configurational entropy in simulated supercooled lig-

link between kinetic and thermodynamic fragility and, ulti- g oy P q

. : . . .~ uids. After the first studie®~*°the Gaussian model has been
mately, via the configurational entropy a link between klnetlcChoserl to describe quantitativelv the enerav dependence of
fragility and the statistical properties of the PEL. Let us first q y gy dep

observe that. as the enen o 3\(€) in different system$>2641-43according to this model,
, gy barrier is expected to have a wed o . .

. : an explicit functional form(Gaussiah for \(E)—the en-
and smooth temperature behavior and not to diverge at ané/r distribution of the minima of the PEL—is assumed
temperature, according to E() the viscosity diverges at 9y '
the temperaturéKauzmann temperatufg;), where the con- (E—Ey)?
figurational entropy vanishes. If both the Adam—GilpBs. QN(E)=exp(aN)exp{ T &2 I
(9)] and Vogel-Tamman—Fulcher relatiofgq. (3)] are i i _ _
valid, then necessarilj, and T are equal one to each other. _From this equation, the configurational entropy of the Gauss-
This equality has been recently dispuéiive do not discuss 20 model becomese=E/N)
this problem further, with the aim of studying the mathemati- (e—e,)?
cal consequences of the different landscape models intro- %(e)=kgN ——
duced in the literature; we will assuni@hen necessa)yhat
£ is a slowly varying smooth function of (thus, thatT,  beinge=e/\N. In this expressions counts the total num-
=T). It must also be noted that the thermodynamic fragility 0er of statesit is the maximum o (e)/N in kg units], e, is
is defined through the experimentally accessikeessen- ~ an irrelevant parametéit fixes the zero of the energy scale
tropy, while the Adam—-Gibbs relation calls into p|ay - ande is the width of the distribution. In order to express the
figurational entropy. In the following we will not make dif- configurational entropy as a function of the temperature, we
ference between the two entropiES, re|ying upon théﬂust first determine the energy of the minima of the PEL
observation that configurational and excess entropy seems Bpulated at a given temperature. USHey
be actually proportional to each oth8reven if other studies 1 d3(e)/N

(12

: (13

a—

indicate the failure of such a proportionalf§yAssuming that T~ " de (14
the Adam—Gibbs relation correctly describes thelepen-
dence of the viscosity in a supercooled liquids, by pluggingwe get
Eqg. (9) into the definition ofmg, Eq. (2), we get[using 2
Ty) 17..=10"7: e S
7(Tg)/ 7 | e(T)=¢, KT (15
ms=1+T >'(Tg) (100  and, finally, inserting Eq(15) into Eq. (13), we have the

I%(Ty) explicit expression of the configurational entropy as a func-
and, recalling Eq(7), we have the desired relation between tion of the temperature:
kinetic and thermodynamic fragility: —

E(T)ZkBN o — m

. (16)

ms=1+my. (11
S T
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From Eq.(13), the Kauzmann energy, i.e., the energy called hyperbolic model, recently introduced and discussed
where (e)=0, is promptly derived: in detail by Debenedetti, Stillinger, and Lewisin Ref. 47,
_ the model is derived from the assumption of a hyperbolic
E= €™ eVer, 17 temperature dependence of the “configurational” heat capac-
and, plugging the Kauzmann enerffyg. (17)] in Eq. (15), ity, and (assuming the validity of the Adam—-Gibbs relatipn
we find the Kauzmann temperature: it implies as a mathematical consequence the validity of the
— VTF relation. For simplicity, here we prefer to start assuming
KeT=—r—. (18) the mathematical validity of both the Adam—Gibbs and the
2\a VTF, the hyperbolic temperature dependence of the excess
It is useful to eliminatée from the expression of the ;pecific heat results as consequence. Obviqusly, as discqssed
configurational entropyin its explicit T-dependent expres- I Ref. 48, the two rputes are equwglent. It is worth to point
sion) in favor of T,, using Eq.(18), to obtain out that the “Gaussian landscape” is named after e¢hae- _
pendence of the number of states, while the “hyperbolic
landscape” is named after th€ behavior of the specific
heat?’ a rather different quantity. It is our aim to write down
the main expressions for this model using the same notation

lying Eq(10)—find ion for the f 'of the previous section, and to extract the equations for the
we can—applying Eqil—Iind an expression for the ira- fragilities. By comparing Eqs(3) and (9), it turns out an

gility in terms of the parameters of the model itself. As pa—explicit temperature dependence B(T):
rameters, we have the freedom to choose among

(a,€, Tk ,ex). One compact possibility, which has the advan-

Tk

E(T):kBNa’ _?

1 . (19

Once we have a model for the configurational entropy,

T
tage to explicitly depend only om, is (M= =—11- =1 (22
DTk T
Tot Tk S _ .
ms=?27. (20 It is implicit in this expression the coincidence©f and Ty .
g 'K

This equation can be cast in form very similar to Etp) by
In this expressionT, appears explicitly and cannot be elimi- defining the quantitiesx and e
nated because in the Gaussian mddgqiure thermodynamic

mode) the dynamics is not defined and therefdgemust be = < (23)
regarded as a parametexternalto the theory. Another pos- DNkgTk'

sible selection of parameters, and thus other expressions for

the fragility, are of course possible. Equati@®) (as well as _. 2

similar expressions for other landscape models; see below € DN~ 2KeTke. 24

makes clear the well-known fact that the fragility is some-

how related to the “distance” betwedfy and Ty : the higher AS we will see soonq ande play here the same role as they
the ratioT /Ty the strongest the liquid. have in the Gaussian model; therefore the first equation is a

As a final remark, we observe how—having imposed thdink between the “number of states” and the constants enter-
validity of both the Adam—Gibbs relation and the Gaussiarind in the AG(€) and VTF(D andTy) relations. The second
model for the configurational entropy—the temperature de€duation can be compared to Ed8), where \a appears

pendence of the viscosity turns out to be controlled by thdnstead ofa. Rewriting Eq.(22) with the elimination of&
law andD in favor of o and e, we have

. DT« T
7(D=7n- 80 73, 757, )

\INith E =& (C:jN kBr-:— K)\’/_I\f\llzhiICh Is : iffz:jent byGab\t:TF rlelgtion. 4" expression that can be directly compared with @&6),
n other words, the aw, the Adam—Gibbs relation an or, expressing the prefactor in E@2) in terms of« via Eq.

the Gaussian model cannot be simultaneously invdkspe- 23)
cially when the shape of the PEL basins is independent og '

(21 3(T)=kgN

€
o — m y (25)

the depth. Equation(21) can be regarded as a VTF law with T
a temperature-dependeroefficient D' (T)=DT/(T+Ty). 3(T)=kgNa|1- ?} (26)
In the highT limit (T>T,), D' —D while in the low-T re-
gime (T approachingr,) D' —D/2. that can be compared with E€L9).
At variance with the Gaussian model, where we started
B. Hyperbolic model with a model for>(e) and deriveds(T), we now have a

For 30 years it has been reali#Bdhat the temperature Model for%(T). To obtain an expression fdi(e) we first
dependence of theonstant volumpeexcess specific heat can derive the temperature dependence of the energy of the
be described by a hyperbolic lavC & constrconst/T), and ~ Minima visited by Eq(14):
this law is commonly used to represent the experimental TS
data?’ The “landscape model” that gives rise to such a tem- e(T):eR+J T——=dT=er+akgTcIn(T/Tg), (27
perature dependence for the excess specific heat is the so- r dT
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whereeg and Ty are integration constants whose values, as T
we will see, are not relevant for the interesting physical ~Ms=3—+"- (30
quantities. Inverting Eq27) and plugging the resulting(e) g K
into Eq. (25) we get It is worth pointing out that this expression is the expansion
of the fragility of the Gaussian model to first order in
3 (e)=Nkga|1l— —exg ————| | (289 g~ K-
TR €
Obviously, we can eliminat&g from this equation, by prop-
erly redefiningeg. A useful possibility is to choosdg
=Tk ; then, from Eq.(27), eg=¢€x and o ) )
C. Logarithmic (or binomial ) model
2(e—e
> (e)=Nkga 1—ex;{ - %) . (29 The previous two models for the configurational entropy

share the property that>/de is nondiverging ae=¢ey, so

At variance with the configurational entropy of the Gaussiarthe Kauzmann temperature exists and it is nonvanishing. In
model, the preserii (e) does not show any maxima; rather it order to introduce a more flexible model, embedding the pos-
increases continuously, asymptotically approaching the valusibility of having a vanishing Kauzmann temperature, De-

Nkga. benedetti, Stillinger, and Shé‘ilrecently proposed a modifi-
From Eq.(26), using Eq.(10), we can easily determine cation of the Gaussian model that, with a slight change in
the fragility of this model: notation with respect to the original definition, reads as
1+u|1+“+1u|(1u
3 =Nk 1 1 - 2 + 1 \/; \/E \/E \/E 31
T
with u(—Ja<u</a) given by thermodynamics of supercooled liquids and fhedepen-
oo dence of the inherent structure enet§pbviously, the loga-
u= —2. (32 rithmic term in Eqg. (31 become dominant in the

€ low-T/low-(e—e) region; therefore the model discussed in

This is a linear combination-weighted by the parametef  this section can be thought as an approximation of the De-
the parabolic configurational entropy typical of the Gaussiarbenedetti, Stillinger, and Shell model valid in the Idw-
model and a term that depends on the logarithm of the enlimit. It is, however, interesting to study such a model in the
ergy. Here we want to describe in detail the properties of thisvhole energy range. Indeed, as we will see below, a visual
model for the specific casg=1, i.e., of a model that is inspection of the functioiX (e) indicates that this model and
totally “logarithmic.” The logarithmic model is essentially a the Gaussian model represent very similar “landscapes,” i.e.,
binomial distribution, i.e., a model for the thermodynamicsvery similar distribution of the minima energy. Thus, we de-
of a gas of binary excitatior.It has been used to model the fine the “logarithmic” landscape as

u u u u
) 1+ﬁ)ln 14‘\/—Z + 1—\/—2)“’1(1—\/—;)
S (e)=Nkga| 1— 2 . (33)

This expression for the configurational entropy has theéhe parameter, is the energy of the “top of the land-
properties to vanish ai=+ /o, therefore the Kauzmann scape” and « represents the maximum of(e)/Nkg.
energy results to be ati=—+a or, explicitly, ex=e, Using Eqg. (32 and the expression foex, Eq. (33
—eJa. At this energy, the derivative ok (e) shows a can be explicitly written in terms of the reduced energy
logarithmic divergence, thus implying that the Kauzmannmeasured with respect to the Kauzmann energy
temperature must vanish. Similar to the Gaussian model;=(e—eg)/€ as
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In(2 3Tk 3Tk
2—\7—;> In(z—%) 77(T)=77mexp{ n; )D(T—:)[In Zcosv(?'(”

21In(2) ' (31?) ;_<3T§) -1
(39 |\ tan _ . (40

9
We can now follow the same route used in the discussion of

the Gaussian model. Via E(L4), with straightforward alge- p. Summary of models
bra, we obtain the temperature dependence of the energy of

the minima:
2 In(2)1 guantities. These quantities are as follows:

e(T)—eoz—e\/Ztam‘{ Tt | (35)

and inserting this expression in E(B4), the temperature
dependence of the configurational entropy is promptly de
rived:

v

il

+

3 (e)=Nkga| 1—

In Table I, we summarize the expressions derived in the
framework of the three models examined before for different

(i) and(ii) The configurational entropy as a functioneyfin
this case we explicitly repoi (e) as a function of the vari-
ablesu=(e—e,)/e andv = (e—e)/e to emphasize that the
zero of the energy is irrelevant and thatonly acts as an
energy scale.

(i) The explicit expression of the Kauzmann energy in
terms ofe,, «, ande.

(iv) and(v) The relations used to eliminatein favor of Ty

] (or T% in the case of the logarithmic model

1
E(T)szBa[Mln

(36) (vi) and (vii) The temperature dependence of the inherent
structures energy, reported in termsTgf.

As a consequence of the infinite value di (e)/de at (viii) The temperature dependence of the configurational en-

ex, this function does vanish only &=0, i.e., for this OPY, now reported in terms Gf . _
model Tx=0. It is convenient, for the sake of compactness,('x) The expression for the fragility reported in terms of the

to define a typical temperature, which—in analogy witp ~ thermal parameters.

in the Gaussian and hyperbolic models—could be used t§¥) Finally, we report the temperature dependence of the vis-
scale the temperatures in the logarithmic model. We arbicosity re_sultlng from the appllcatlon of the model. In the last
trarily introduce the quantity expression, the paramet®ris D=E&/(aNKkgTk). _

In Fig. 1 we sketched the-dependence of the configu-
E € rational energy for the examined models: Gausdiaul
3 line), hyperbolic(dashed ling and logarithmiqdot—dashed

keVer' : jariinm .
. . i line). As an example, the three configurational entropies are
whose value is very close to the “apparent” Kauzmann tem'reported for the specific case of=0.8 [as the scaling of

perature that would have been identified by extrapolating qu(e) with « for the hyperbolic model is different from that

(36) toward zero using only information dB(T) at *high” o the Gaussian and logarithmic models, we cannot use a
temperature, similar to what is done experimentally. In othet sy ced variable

words, the logarithmic model predicts a temperature depen- Similarly, in Figs. 2 and 3 we report the corresponding
dence of the configurational entropy that—around the i”ﬂectonfigurational entropy as a function @iTy and Ty/T,

tion region—can be approximated by a straight line that goegagpectively. In the case of the logarithmic mo@gl defined

to zero athTK\/E/?~0.23[~In(2)/3]. Having introduced Eq. (37) is used to scale the temperatures.

the “apparent” Kauzmann temperature for the logarithmic In Fig. 4 we report the temperature dependence of the

€ . In(2)e
— an
JVakgT JVakgT

Ti=>In(2) 37)

model, we can write Eq$35) and (36) as energy elevatiorinormalized to the factorkgTy) with re-
3 3TE spect toey of the minima of the PEL visited at equilibrium
e(T)—eo=makBT;§ tam{?), for the three examined models: Gaussi&ull line), hyper-

bolic (dashed ling and logarithmic(dot—dashed line The

. . . (38) hyperbolic model shows a nonphysical continued rise of
S(T)= W{m 2 COS,{ 3TK) 3Tk tanr( 3TK)} e(T) on increasingr.
In(2) T T T /) Finally, in Fig. 5 we report in an Arrhenius scale the

temperature dependence of the viscosity for the three exam-
ined models: Gaussiafiull line), hyperbolic(dashed ling
and logarithmic(dot—dashed line

Once the explicifl dependence af (T) is known, both
the fragility mg, defined in Eq(10), and theT dependence
of the viscosity (from the Adam-Gibbs equatiprcan be
worked out. The two expressions read as

3Tx\? 3Tx 3T E. Gaussian models with nonconstant
mg=1+ T_) (COSH(T—> In| 2 cosr( T_> vibrational entropy
9 9 9
3T* 3T* 3T*\ ) -1 All the discussions in the previous sections were based
- _K) cos?‘( _K) sin?’(—K) } , (39)  Onthe assumption that thébrational entropy associated to a
Tg Tg Tg given basin is independent from the energy elevation of the
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TABLE |. A summary of the main relations relating the relevant quantitiefs column for the three configurational entropy models introduced before. The
relation that defines the model is reported in the box. The variaiselefined as the reduced energy measured with respegt to=(e—e,)/e, while v is

that measured starting from the Kauzmann enevgy(e—ex)/e. The variablew is a shortcut for 3% /T, . In the case of the logarithmic moddl is used
[see Eq.(37)] in place of the Kauzmann temperature.

Gaussian model Hyperbolic model Logarithmic model

a—u’ al 1 —exp(—2u)] PRI [ PYLIN P PN Y PR )ln(l u)
s T om@ | Ve Ve Vol | Va
(5)/NkB{ .2 1— -2
v2 42+ av af 1 —exp(—2v)] 1 [ ( v v ) ( v )
a|1—- ——|—=Mh|—| +| 2— —=|I|2——
2n@) | Vo Ve Va Va
ex go—g\/z e, e,~ EJa
kpTx z g In(2) &
2Ja 2a 3 Ja
3 2y akpTx 2akpTx 3 JakT?
_111(2) akply
e(—e, Tx T 3 . 37%
—2akgTx| T akpgTx In T_K - m akpTy tanh T
(D= dokgTr] 1 & kT In| — 2 kT 1 — tanh|
akgl'x T akgly Te ma Bl x tanh) ==
3(T)/Nkg Ty \2 Ty @ 3rE\] 3T 37%
-5 1—|x Gl SIS SN e
@ (T) 173 (T) m(z){mZCosh(T) T tanh(T
T2 +T3 T
mg £ X g 1 +w?{cosh’(w)In[2 cosh(w)]—w cosh(w)sinh(w)}
T;-Tg T,—Tx
In(7(T)/ 5..) DIy T DTy ln(z)Dﬁ la hﬁ L i 3T -1
T—Tg T+Tx T—Tx 3 U cosm T T T

minimum of the basin itself. These assumptions lead to th& (e) in a series ofe—ex and retain only the first-order
simplified microcanonical definition of temperature reportedierm, an approximation certainly valid for low enough tem-

in Eg. (14). Following recent experimentdl and peratures:

numericaf®*2evidences indicating a vibrational entropy that

actually depends on the energy of the minima, in the present Sv(e):SKerj (e—ey) (41)
section we relax the previous assumption, and, for the spe- v de e K

cific case of the Gaussian model, we develop the calculation _ _
in the case of an explicit dependence of the vibrational enThe quantitydS, /de is a further system-dependent param-
tropy, S,, one. In particular, taking advantage of the out- €ter. For sake of simplicity let us define as parameter a “vi-

come of recent molecular dynamics calculations, we developrational” temperaturd’, via

a_
.
A
Z L ’
—~— .
~ ,
(]
N’
A
d T 7 T T T
0.0 0.5 1.0 1.5
(e-e e

0.0 b—7—>++—+——F—F—7—T1+1—
00 05 10 15 20 25 30 35 40
/T,

FIG. 2. Aplot of the temperature dependence of the configurational entropy

FIG. 1. A sketch of the energy dependence of the configurational energy fofor three models: Gaussigiull line), hyperbolic(dashed ling and loga-

three models: Gaussidfull line), hyperbolic(dashed ling and logarithmic
(dot—dashed line The reduced entropy(e)/Nkg is plotted as a function of
(e—ek)/e for the specific case ak=0.8.

rithmic (dot—dashed line The reduced entrop}.(T)/NKkg further normal-
ized to « is plotted as a function of /Ty . In the case of the logarithmic
model, T defined in Eq(37) is used in substitution of .
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o)
3 =
= £
= =
= £
N i=!
| | ! . "
TK/ T TK/ T

FIG. 3. Similar to Fig. 2, the temperature dependence of the configuration
entropy for three modelGaussiar(full line), hyperbolic(dashed ling and
logarithmic (dot—dashed ling is plotted as a function of « /T. In the case

of the logarithmic modeT« defined in Eq.(37) is used in the substitution

afl—'IG. 5. A plot of the temperature dependence of the viscosity for three
models: Gaussiatfull line), hyperbolic(dashed ling and logarithmiqdot—
dashed ling The logarithm of the viscosity normalized by(T..), normal-

ized toD, is plotted as a function of ¢ /T. In the case of the logarithmic

of Ty model Tg defined in Eq(37) is used in substitution of .
ﬁ _d_S” (42 el 1 1 \2
Tv de e—ey E(T):kBN a_Z(kB_T_ FTU) } (45)

The calculation proceeds along the same line outlined in th#Ve can now eliminate by introducing the Kauzmann tem-
case of the Gaussian model. First, from the generalization gerature defined b (T)=0:
Eqg. (14), i.e., from

_ T,
1_dSN_d¥(e/N dS/N_d¥(e/N 1 f=2@kBTK(Tv_TK): (46)
T de  de de  de T, - . o
v 43) thus, substituting this expression in E¢5),
we get the temperature dependence of the energy of the vis- S (T) = keNa 1_( Tk )2 T, 1)2} 47
ited minima: T,— Tk T
e 1 1 Through the configurational entropy, we can apply Eq.
e(T)=e,— ?(kB_T_ kaT, )" (44 (10) to find an expression for the fragility:
and inserting Eq(44) into the definition of the Gaussian _ (Te+TR) —2TgTk(Ty/T,) 49
model, Eq.(13), we have the explicit expression of the con- S (T3—TR) —2TW(Tg—TW)(Tg/T,)

figurational entropy as a function of the temperature: In this expression, besiddg—the parameter that embodies

our choice of the value of viscosity that defines the glass
transition temperature—there are the two system-dependent

25 % parametersTy (a way to expres%) and T, . Finally, the
I ’ temperature dependence of the viscosity turns out to be con-
HM 20 trolled by the law:
4 sk DTy T T, T2
3 . 7(T)= 7. ex ;
-~ A T-Tg T+T—2T(T/TH\ T,
2 1of (49
— with, as beforeD = &/(aNkgTy).
% 05 Similar to Fig. 3, in Fig. 6 we report the temperature
~ - dependence of the configurational entropy of the Gaussian
0.00 model with energy-dependent vibrational entropy as a func-

tion of Ty /T for different values ofT, /Tx (reported in the
figure) and compared with the similar quantity for the Gauss-
ian and the hyperbolic models.

FIG. 4. A plot of the temperature dependence of the energy elevation for Analogously Fig. 7 shows the temperature dependence

three models: Gaussidfull line), hyperbolic(dashed ling and logarithmic . . . . .
(dot—dashed line The energy elevatioe— ey, normalized tokgTy , and of the viscosity, as predicted by the Gaussian model, with

further normalized tax, is plotted as a function of/T . In the case of the ~ €N€rgy-dependent vibrational entropy for different values of
logarithmic modelT§ defined in Eq(37) is used in substitution of . T,/Tk. As it can be noticed, it seems that the valued pf
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TABLE Il. A summary of the main relations relating the relevant quantities
1.0 (left column for the Gaussian configurational entropy models: the simple
Gaussian modelT, =) and the Gaussian model with energy-dependent
08 | vibrational entropy.
3 L
24" 06 5 oS
Z | Te e’
= 04
o aT ‘ WTie
N’ r -
AN 2\a 2\aksT, +€
L7 € 2\/;kBTK \/_ T }
2\akgT >
0.0F T Y BK T,—Tk
0.0 0.5 1.0 e(T)—e, T T, Tk T,
T /T ot | 2w 2
3(T)/Nkg T2 Te \3T, 2
FIG. 6. Similar to Fig. 2, the temperature dependence of the configurational @ 1_(7 all- T,-T \T 1
entropy is reported for the Gaussian model with energy-dependent vibra- m 2, 12 2, 12y _
tional entropy for different values of the paramefgy/Ty (dot—dashed S Izgl} 2(T92 Tk = 2T Tk(Ty/T,)
line). For comparison, also the two corresponding function for the Gaussian Tg—Tk (Tg+ Ti) = 2Tk(Tg=Ti)(Tg/T,)
(full line) and hyperboliqdashed lingmodels are reported. IN(7(T)/ 7..) DT, T DTy T T,—T]?
T-Te T+Tx  T-Tk T+TK—2T(TK/TU){ T, }

allows one to interpolate between the behavior of the Gauss=
ian model(obviously reached fof ,—c or —=) and that of
the hyperbolic modelthat is approximately obtained for
T,/Tg=—1\—1.5). It is worth remembering that, in most
numerical simulations of model liquidg;, is found to be
negative for constant densitithus constant PELsimula-
tions, whileT,>0 for constant pressure simulatiotdn the
case of a model for water, the sign ©f has been found to
be density dependefit®? On the experimental side, at con-
stant pressure, the sign &f, turns out to be both positivé
and negativé® depending on the specific system.

Finally, in Table Il we report the relevant expression
relative to the Gaussian model with energy-dependent vibra- In 1999, Speedy—working in the framework of the
tional entropy T, # ) compared with those of the Gaussian Gaussian model and assuming the validity of the Adam-—
model (T,=). Gibbs relation—choose to express (“ f” in his language
in terms ofa andX(T,) [* A'gS(Tg)" in Ref. 25]. With these
variables, Eq(20) becomes

parameters characterizing the distribution of the minima of
the PEL. First, we analyze the recent works that have at-
tempted to relate the fragility to the “number of states.”
Second, we will see how—given a fixed configurational en-
tropy model—one can obtain the whole range of fragilities,
thus demonstrating that, in order to assess the fragility of a
system, some additional information is needed.

A. Speedy’s expression of fragility

IV. FRAGILITY AND NUMBER OF STATES

In the following sections we will discuss the possibility Me— 2a 1 (50)
to predict the fragility of a system from the knowledge of the S 2(T4)/Nkg

Speedy used this relation to state that “...this quantifies the
Angell observation that fragile liquids sample more basins in

5
configuration space than strong liquids.” Actually, E§0)

4l does not help much in establishing whether or not the re-
e ported Angell observation is correct. Indeed, the proportion-
~ 5L ality betweemmg and « holds only if one neglects the possi-
§ bility th_at _E(Tg_), a sy_st_em-dependent quantity, depends on
~ a. In principle, its implicit dependence ancan also reverse
~ 2F . .
= the fragility—number of states relation.
=

: _ B. Sastry’s expression of fragility

0 — . : , More recently, another expression for the fragility in

0.0 0.5 1.0 terms of the PEL features was derived by Sa&lso in

TK/T this case, the Gaussian model and the Adam—Gibbs equation
are at the basis of the theory. However, Sastry does not use
FIG. 7. Similar to Fig. 5, the temperature dependence of the viscosity if£ . (10) to obtain the fragility. He assumed the validity of
reported for the Gaussian model with energy-dependent vibrational entrop%/he VTE law. so as to rela@ompare Eqs(9) and (3)] the
for different values of the paramet€y /T (dot—dashed line For compari- . o - . .
son, also the two corresponding function for the Gaus¢falh line) and configurational entropy to the coefficieBt which, as dis-
hyperbolic(dashed ling models are reported. cussed before, is an index of kinetic fragiligctually, Sastry
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reports his expression for the fragiliy=1/D), and(ii) the ~. L0
coincidence ofly with Ty . The Sastry expression takes also EO
into account the possible energy—depth dependence of the
basin vibrational free energy. In order to compare the expres- -
sion reported in Ref. 26 with Eq&20) and(39), however, we L;-/
can put the quantity’S (in Sastry’s notationequal to zero. = o5}
The Sastry expression beconiesth the change of notation -~
from o 1o €) é‘
o Ty Z

K= 25(1 Tg)' (51 :;'00
Here “T," is the MD glass transition temperatures. In Eq. 0.0 0?5 1.0
(51) we have explicitly included the Adam—Gibbs constént T/T
that was implicitty assumed constant and landscape- £
independent in Ref. 26ee also Ref. 54 FIG. 8. Reconstructed Angell plof16g(7(T)/7..)1/[log(7(T4)/ 7..)] vs

After the conversion fronK to mg, using Eq.(5), we T4/T) for the case of the Gaussian model. The different curves correspond
have to different& values: from top to bottord= 80, 40, 20, 10 and 5 in units of

JaNer2.

a

€ TK
mg=17In(10) e 1+ —

T
9
Similar to Eqg.(50), also this equation cannot be used to
predict thea dependence of the fragility. Indeed,appears
here explicitly but also implicitly, via the system-dependentthat’ in turn. embodies the information on the “number of

quantitiesT, andTy (see Taple)l Fmall_y, we want to stregs states” but also from quantities distinct from the statistics of
that the approach followed in the derivation of the previous - o

. L T : . the minima (specifically from the parametef). We want
expression of the fragility is intrinsically inconsistent. In-

. . . ) now to plot the rescaled logarithmic viscosity(T)
deed, as previously pointed out, the Gaussian landsGape _ .
the VTF law (i), and the Adam-Gibbs relatidiiii) are not L 09UAT/7)J109(Tg)/.)] as a function off¢/T. The

. . uantityy(T), by definition of T, turns out to be equal to
mutually consistent, and, as also noticed by S&Sttlye hy- q - 9 = .
potheseqdi)—(iii) can only be consistent if one uses a Iow—y(T)_[IOg(n(T)/%)]/N’ or, by using the expression for

temperature expansion &f(T). 7(T) reported in Eq(21), to

Tk T
17In(10) T—Tx T+ Tk’
We can now eliminatd 'k from this equation in favor of g

We aim now to prove with an example that, in general,using Eq.(55) [Tx=T,/¥(D)] to get
the configurational entropy alone is not sufficient to deter-

+1. (52)

T,=Tk¥(D). (55)

Obviously, the expression dfy, besides the trivial tempera-
ture scaleT,, depends on the paramet@(=2&/(\/aNe))

y(T)= (56)

C. Can the fragility be derived entirely
from the configurational entropy?

2_
mine the fragility of a system. We will use the Gaussian (T):(E)le. (57)
model for the configurational entropy and, with the help of (D)2— E
Eqg. (21), we will set up an “Angell plot.” We could have Y T

selected any other landscape model, reaching the same con- . .
clusion. Let us suppose to have a hypothetical system, fult_j‘/lr:e Fig. 8 we have reported the quantifT) of Eq. (57)

defined by a Gaussian landscape with a aiven value of the rsusT,/T, i.e., we have made an Angell plot, for different
' y uss| pe wi given vai Values of the parametérat fixed« ande. The fragilitiesmg
relevant parametersa, €, ande,. The temperature depen-

. o . . . are the slopes of these curves at the upper right corner of the
dence of the viscosity in this model is reported in E2{l). b bperng

To set up an Angell plot, we need to define the “glass tran_pIot. What is remarkable here is that, by varying the quantity

sition temperatureT, . As done experimentally, once tfe & entering in the numerator of the exponent in the Adam—
9 "= : ! i relation Eq. fix nfigurational entr w
dependence of the viscosity is knowl, is defined from the Gibbs relationEq. (9)] at fixed configurational entropy, we

condition log((T,)/7.)=17. Using Eq.(21), the solution can span the whole range of fragilities. In other words, for a

. . ” . given (Gaussian in the present examplandscape, with
of this equation forpositivg) T is well-defined statistical propertiedixed « and’e), we can
1 D 1 2
Tg=Tk §m+ 1+ 2 m , (53 E). Therefpre_, we conclude this section With the st.atement
that, in principle—whenever the Adam-Gibbs relation rep-

have a strong systeftarge&) as well as a fragile onesmall
with D =&/(aNKkgTy) =2&/(JaNe). For the sake of com- resents a good approximation of the relation between trans-

pactness, let us define the functig(x): port properties and configurational entropthe- knowledge
1 X 1 X ) of the configurational entropy alone would be not sufficient
yX)= 5 =+ \/1+ —(—) , (54)  to define the fragility of a systet This statement, and the
2 17In(10) 41171n(10) role of the effective barrier height in determining the fragility
so that of a glass, has been already discussed in the literdsee
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200 TABLE Ill. A summary of the quantity relevant to test EQO) (Tg, Tk,
andmyg) for those systems where the three quantities are all known. The last
column reports the references where the data has been found. In those case

1504 where more than one value of the parameters are known, we have reported
here the average value. The first of the two references refers to the couple
(Tq, T) and the second tms.

= 1001~ T, T my Ref.
2-metylpentane 80.5 58 58 24, 24
50 4 Butyronitrile 100 81.2 47 24, 24
Ethanol 92.5 71 55 24, 55
1 n-propanol 102.5 73 36.5 24, 24
0 Toluene 126 96 59 24,55
’ ' ' ' " ! ' 1-2 propan diol 172 127 52 24, 24
1.0 1.2 1. . . '
4 1.6 18 Glycerol 190 135 53 24,24
T / TK Triphenil phospate 205 166 160 24, 24
g Orthoterphenyl 244 200 81 24, 24
FIG. 9. Experimental values of the kinetic fragility, plotted as a function s-tolulldlne b 181756 151427 7204 242’42424
of the ratio T, /T for those systems where the three quantities ( Ty, roE_y elne carbonate 5 29 24 2’4
and Ty) are available. The input data are reported in Table IIl. For thosesor |t_0 66 6 93 '
systems where more than one determination of the parameters is known, v €nium 307 240 87 24,24
have reported in the plot the average value together with an “error” bar that?"NCl 380 250 30 24, 55
indicates the whole dispersion. As;S; 455 265 36 24,55
CaAl,Si,Oq 1118 815 53 24, 55
Propilen glycol 167 127 52 27, 27
. . . 3-Methyl pentane 77 58.4 36 27, 27
e.g., Ref. 57. The previous conclusion does not imply that 3 gromopentane 108 825 53 27 27
the fragility cannot be derived from the landscape propertiesz-methyitetrahydrofuran 91 69.3 65 27, 27

indeed, it is possible, and actually most likely, that the quan
tity £ could be derived from other features of the PEL than
the minima distribution, as, for example the minimum-to-
minimum barrier heights. Future studies must focus on théuch a phenomenology, indicating a non-negligible energy

relation betweert and the PEL properties and on the physi- dependence of the vibrational entrogyy) The differences
cal range of values of. among Egs(20) and(30) are so small that the experimental

data do not allow us to discriminate among these two differ-
ent landscape models, while ttipure logarithmic model
seems to be definitively unacceptable. Most likely, a Gauss
In the previous section we have shown that, on a generaan model with a small logarithmic correction would still be
ground, a simple Gaussian landscape with fixed statisticadcceptable(iii) Among the systems represented in Fig. 9, the
properties could be shared by the whole class of known sydewest fragility is ~35, i.e., the strong systems are absent
tems; they would simply differ in the value éfthat, in turn,  (for these systems a reliable estimationffdoes not exigt
induces a different value df, /Ty, thus a different fragility. ~and this does not allow us to firmly establish the general
In this scheme a fragile system—nhaviiig close toTy [as  validity of one of the three models, and, more generally, of
deduced from Eq(20)|—visits that part of the landscape the idea presented before that strong systems and fragile sys-
where X (e) is strongly e dependent, thugsee Eq.(10)] tems are characterized by a common configurational entropy
pushingmg up. On the contrary, a strong system fgsfar  and a different elevation in the PEL.
away fromT , and the system is confined to visit the region, Of course, we are not stating that the depicted behavior
whereX (e) is almost flat. In other words, if all the system is the actual one. Different systems have different value of
shared the same landscape, due to the difference in the pand may even not be described by a common landscape
rameterE, a strong systenflarge£) would visit the “top-of-  model. A typical example, one that it is worth discussing
the-landscape,” while a fragile systefsmall £) would be  here, is the case of silica. As shown by Horbach and ¥ob,
allowed to go down in energy. If this scenario were correctyitreous silica(as described by the BKS potential motigl
we would expect that real systems verify E20) [or (30), or  shows a strond dependence of the fragility. More specifi-
(39)]. In Fig. 9 we report, for those systems where all thecally, v-SiO,, which is a well-known strong system close to
three quantitiedy, Ty, andm, are known(see Table 1l),  the glass transition temperature, turns toward a more fragile
the fragility m, as a function ofT,/Ty (symbolg. Also  behavior on increasing. This phenomenon, called “strong-
shown in the same figure are the predictions of H86), to-fragile” transition, first proposed for the case of water,
(30), (39 (lines). A few points must be underlinedi) there  has been observed in simulations of w&tend (simulated
is rather good general agreement, but the single systems doksrillium fluoride®? It is obvious that the fragile-to-strong
not strictly verify any of the three predictions. This can betransition cannot be framed within the possibility described
due to the existence of landscapes different from the threin the first paragraph of this section.
simple cases discussed at the beginning of this chapter, or, In a recent simulations work, Saika-Voivod, Sciortino,
most likely, to the presence of a finite value fby. Indeed, and Pool€® have shown that the configurational entropy for
recent molecular simulations of model liqufdslearly show  liquid silica—as derived from a MD simulation based on the

D. Strong-to-fragile transition
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V. DISCUSSION AND CONCLUSION

In conclusion, in this paper we have first summarized the
main definitions of fragility; then we have recalled and stud-
ied different models for the configurational entropy present
in the literature. Using the Adam—Gibbs relation to link the
dynamics of a glass forming system to its configurational
entropy, we have reported the explicit expressions for differ-
ent quantities, among which the fragility. From the reported
relation, it is clear that, in generdhe fragility cannot be
derived by the knowledge of the configurational entropy
0 . . i : . : : More specifically, given a fixed “landscape,” different sys-

2 3 4 tem fragility can be mimicked by varying the parameter
Tg / T, entering in the numerator of the exponent of the Adam-—

Gibbs equation. On a general ground, the fragility of a sys-

FIG. 10. Temperature dependence of the fragility for the three examinedem depends on the rat@ aNkgTy .
models: Qaussia(full que), hyperbolic(dashed Iin}aa_md logarithmiddot— The fact that the whole range of fragility can be derived
dashed ling The quantitymg is reported as a function af, /Ty . from a given PEL modefe.g., the Gaussian modatith the

same statistical properties seems an interesting possibility. If

this was the case, the strong glass-forming materials would
BKS interaction potential model—is far from being “Gauss- be characterized by a large value&and would explore the
ian.” More specifically, they found tha®(T)—at low  “top-of-the-landscape,” while the most fragile ones would
T—shows a tendency toward a positive curvature and doelsave small€ and would visit the states around the inflection
not seem to extrapolate to zero entropy at a finite tempergoint of %(T). Obviously other possibilities exist, as, for
ture. This behavior is shared by the logarithmic mddelby ~ example, that all the systems were characterized by the same
a combination of the logarithmic and Gaussian models, ag, and in this case strong glass would have a small number of
proposed in Ref. 49for 3 (e). This model predicts an infi- states(small «), at variance to the fragile systems with more
nite slope of2 (e) atex, and this could be in agreement with states(large ). A further scenario can be hypothesized; that
the simulation results of Ref. 63 as the low statistics in thewould also explain the existence of a strong-to-fragile tran-
tail of Qy(E)—as measured by MD—does not allow us to sition: in this case the strong systems would explore the bot-
safely determinalX (e)/de evaluated agy . tom of a landscape characterized by a nonvanishing zero-

The logarithmic model, however, similar to the other point entropy. This is an interesting possibility that deserves
models presented before, is not capable of catching the physdeeper investigation.
ics of the strong-to-fragile transition. Indeed, the fragility Overall, the present discussion, which heavily builds on
expressions for all the examined mod¢Egs. (20), (30), the validity of the Adam and Gibbs relation, indicates that, in
(39)] show amonotonic Tdependence, with a tendency to- principle, at least two possible classes of strong glass-
ward adecreaseof the fragility on increasing temperature forming materials can actually exist. On one side we have
(see Fig. 10 A behavior opposite to that is observed in those systems that—close Tg—visit state at the top of the
simulated vitreous silica. It is therefore clear that an infinitelandscape and have a “regulatGaussian-typeconfigura-
slope of2(e) at ek alone is not sufficient to guarantee the tional entropy(let us call these systems class A strong glass-
existence of a strong-to-fragile transition. What is actuallyforming materials On the other side we find the—let us say-
sufficient(necessaryor a strong to fragile transition—i.e., class B strong liquids, that visit minima deep in the PEL, but
to have a maximum in theng versusT, /Ty function—is  with an exponentially large degeneracy of the fundamental
that the configurational entropy—as a functionTef-had a  state. The answer to the question of whether class A and/or B
nonzero limit forT—0. This can be understood, looking at strong systems actually exist requires further investigations.
Eq. (10). It is clear that a fragile system is characterized by a  As a final comment, we would like to recall that fragility
large value ofY'(T) (fragile systems explore the “steep” is often measured @bnstant pressuravhile all the configu-
part of the PEL, while a strong system will have a small rational entropy-based models—as those presented here—are
value of 3'(T), but also a nonzer@(T). This certainly  built on the assumption of a well-definéde) function i.e.,
happens at the “top of the landscape,” but could also happethey assumeonstant densityThe relationship between con-
at low T if 2(0)#0 [in the logarithmic model, at lowl,  stant density and constant pressure fragilities is one of the
2'(T)—0, but the same does(T) and the resulting fragil- topic under discussion at the present time. As an example, in
ity increases continuouslyThus, a strong-to-fragile transi- the case of soft sphere systems it has been stotiat
tion could take place only if the landscape of the systems..(T) along isochoric and isobaric paths are very close to
allows for a finite number of states at zero temperature, i.egach other. Similarly, in a very recent wdtkTarjus and
for a (exponentially large withN) degenerate fundamental co-workers show that—in alcohols—the change in density
state. The existence of such a degeneracy for system withanly slightly affects the fragility, thus indicating that under
short-range interactionon-mean field systemgoses sev- the experimentally accessible density changes the landscape
eral problemgsee the discussion in Ref. ¥@nd is certainly  suffers only minor modifications. For other systems, on the
calling for a further investigation. contrary, a large deviatio~40%) between constant density
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and constant pressure fragilities has been obséf/@tis
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ongoing discussion, however, does not affect the conclusionssl74202(2003-

of the present work since all the formalism could have bee
based on theenthalpylandscape, instead afnergy land-
scape, without any changes in the results.
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