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The concept of fragility provides a possibility to rank different supercooled liquids on the basis of
the temperature dependence of dynamic and/or thermodynamic quantities. We recall here the
definitions of kinetic and thermodynamic fragility proposed in the last years and discuss their
interrelations. At the same time we analyze some recently introduced models for the statistical
properties of the potential energy landscape. Building on the Adam–Gibbs relation, which connects
structural relaxation times to configurational entropy, we analyze the relation between statistical
properties of the landscape and fragility. We call attention to the fact that the knowledge of number,
energy depth, and shape of the basins of the potential energy landscape may not be sufficient for
predicting fragility. Finally, we discuss two different possibilities for generating strong behavior.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1736628#

I. INTRODUCTION

Soon after the introduction of the concept of the ‘‘topo-
graphic view of the Potential Energy Landscape~PEL!,’’ 1,2 it
became immediately clear that a key role in controlling the
kinetic arrest characterizing the glass transition was played
by the number of distinct3 PEL local minima~inherent struc-
tures!, VN , and by their energy distribution,VN(E). Indeed,
it was suggested that the qualitatively different behavior of
different supercooled liquids could be traced back to the dif-
ference in theVN function, or, more specifically, to the
steepness of theN dependence of this quantity. From general
arguments, in a monocomponent collection of a large num-
ber, N of units ~atoms, molecules,...!, it can be shown that
VN; exp(aN). Similarly, it holds that VN(E)
; exp„S(e)/kB…. HereS(e) assumes the meaning of ‘‘con-
figurational entropy’’ and it is an extensive function of the
energy per particle e5E/N. The quantity a (a
5maxe$S(e)%/NkB) is a measure of the total number of ‘‘in-
herent structures’’~individual minima of the potential energy
hypersurface!. In comparing the behavior of different glass-
forming systems, particular emphasis is placed in the relation
existing betweena and the ‘‘fragility’’ of the system under
investigation.

The ‘‘fragility’’ concept, in its modern form, has been
introduced, developed, and widespread by Angell.4 It de-
scribes, in its kinetic version, how fast the structural relax-
ation time (ta) increases with decreasing temperature on
approaching the glass transition temperature,Tg , defined as
the temperature whereta becomes equal to 100 s. ‘‘Strong’’
systems~low values of fragility! show a ‘‘weak’’ T depen-
dence ofta(T), that can be described by an Arrhenius law
@ta(T)5t` exp(D/kBT)#, while ‘‘fragile’’ systems show—
close toTg—a much fasterT dependence of the relaxation
time, which is also markedly non-Arrhenius~this depen-

dence could be, for example, described by aT dependence of
the activation energyD!. The relaxation time is a quantity
that is rather difficult to access, in particular, when the value
of ta is large, and, moreover, it seems also to be technique
dependent. For these reasons, in nonpolymeric liquids, the
fragility is usually defined through theT dependence of the
shear viscosity,h.5 This choice leads to a first ambiguity,
especially in comparing different systems, as the fragility
defined throughta(T) and that defined throughh(T) are
not coincident. This can be rationalized by recalling the
Maxwell relation, h5G`ta ~here G` is the infinite fre-
quency shear modulus of the liquid!, and recalling thatG` at
Tg spans over about two decades among different systems.
Another possible definition of fragility comes from the tem-
perature dependence of the mass diffusion coefficient. In
this case, according to the Stokes–Einstein relation@D
5kBT/(6prh), r being the effective hydrodynamic radius#,
it is the mobility m (5D/T) that is ~inversely! proportional
to the viscosity and, therefore, must be analyzed. Once more,
it should be expected that the fragility defined via mobility
and that defined via viscosity are not coincident. Indeed,
~i! the effective hydrodynamic radius may have a tempera-
ture dependence and~ii ! it is well known that in supercooled
liquid at low temperature the ‘‘decoupling’’ phenomenon~the
failure of the Stokes–Einstein relation! occurs. In the recent
years, the fragility has been quantified according to theT
behavior ofh, but this has been done following different
prescription~vide infra!.

Despite minor ambiguities introduced by its different
definitions, the concept of fragility has a deep influence on
the study of relaxation processes in supercooled liquids.
Many studies have evidenced the existence of correlations
between the values of the fragility and other properties of the
supercooled liquids, such as~i! the ‘‘visibility’’ of the Boson
Peak,6,7 ~ii ! the T dependence of the shear elastic modulus
in liquids ~shoving model!;8–11 ~iii ! the stretching of the
decay of the correlation functions at the glass transitiona!Electronic mail: giancarlo.ruocco@roma1.infn.it
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temperature;12,13 ~iv! the nonlinearity of the relaxation
functions,14 and, very recently,~v! the vibrational properties
of the glass atT→0.15 Other works have tried to extract
physical information on the nature of the glass transition
from the existence of these correlations.16,17 Finally, we re-
call a recent attempt to extend the dimensionality of the
space spanned by the fragility index. Instead of using a
single value to classify theT dependence of the viscosity,
Ferrer et al.18 proposed to associate two indexes to every
glassformer. The first index~fragile/nonfragile! measures
how much the viscosity is Arrhenius-type at low temperature
while the second one~strong/weak! does the same around the
melting point. A deeper discussion on the correlation be-
tween fragility and other supercooled liquid properties can
be found in Ref. 19.

The relation between the statistical properties of the
landscape and the fragility is thought to be a central issue in
the comprehension of the physics behind the glass transition.
Debenedetti and Stillinger20 state in a very recent review:
‘‘Equally important is the translation of qualitative pictures...
into precise measures of strength and fragility based on the
basin enumeration function.’’ A first connection between the
fragility and the topographic differences in the energy land-
scape is found in Ref. 21. There the landscapes of strong
liquids were supposed to have a ‘‘uniform’’ roughness, while
a two-length scale arrangement of the minima—with the in-
troduction of themeta basins, a concept that has been re-
cently revitalized by Doliwa and Heuer22—was expected to
characterize the PEL of fragile liquids. In 1995, Angell,23

rationalizing the much larger specific heat jump at the glass
transition shown by the fragile liquids with respect to the
strong ones, concluded that ‘‘Fragile liquids would have high
density of minima per unit energy...’’ and ‘‘Surfaces with few
minima...generate strong liquids... .’’ Similar conclusions are
reported in Ref. 24 and by Debenedetti and Stillinger,20 who,
more recently, wrote that ‘‘...strong landscape may consist of
a single metabasin whereas fragile ones display a prolifera-
tion of well-separated metabasin.’’

Summing up, there seems to be consensus on the state-
ments

strong systems⇔small a,

fragile system⇔ large a.

An attempt to determine a quantitative relation between
fragility and number of states on a theoretical basis, within
the framework of the ‘‘Gaussian landscape model’’~see be-
low!, is due to Speedy,25 who derived a direct proportionality
between kinetic fragility anda. This relation has been then
criticized by Sastry,26 who—again using the Gaussian model
to fit his molecular dynamics simulation of the Kob–
Andersen Lennard-Jones Binary Mixture~BMLJ! at different
densities—reached the conclusion of a proportionality be-
tween fragility and the square root ofa.

In this paper we first present a summary of the different
definitions of ‘‘fragility’’ that are commonly used in the cur-
rent literature, and then recall several models of configura-
tional entropy~several ‘‘landscapes’’! proposed in the past
that—with the help of the Adam–Gibbs equation, or of the

Vogel–Tamman–Fulcher relation, or both—lead to a differ-
ent expression for the fragility in terms of the parameters
characterizing the ‘‘landscapes.’’ In the subsequent sections,
we review the Speedy and the Sastry propositions on thea
dependence of the fragility for the examined landscapes. Fi-
nally, we emphasize that landscapes with the same statistical
properties~i.e., the same total number of basins, the same
energy distribution of the basins depth! may be characterized
by different fragilities, calling attention on the role of the
different parameters entering in the Adam–Gibbs expression.
We conclude, discussing the obtained results in the context
of the strong-to-fragile transition observed in some strong
glass-forming liquids.

II. FRAGILITIES

As discussed in the Introduction, and following Angell,4

we will define the kinetic fragility in terms of the tempera-
ture behavior of the viscosity and not of the structural relax-
ation time. Having clarified this point, however, we have to
face—for the present purpose—different definitions of the
‘‘index of ~kinetic! fragility.’’ The robustness of a concept
like the fragility lies in the observation that—when plotting
log„h(T)… vs T/Tg—the curves for different liquids~beside
very few exceptions! do not intersect each other, and con-
verge to a common point atT5Tg ~by definition! and at
T→`. Given this situation, it is possible to sort the systems,
i.e., to unambiguously assess whether or not a system is
more fragile than another. It is, therefore, natural to assign a
numerical value to this concept: the index of fragility.

A. Kinetic fragility: Local definitions

The first definition, let us call it ‘‘Angell’s kinetic fragil-
ity,’’ mA , is

mA8
d log„h~T!/h`…

d~Tg /T!
U

T5Tg

. ~1!

Hereh` is the limiting high-temperature viscosity andTg is
defined from the conditionh(Tg)51013 Poise. As it is ex-
perimentally observed that all the liquids share a very similar
value of h`>1024 Poise, this quantity isconventionally
fixed to this value. Accordingly, an ideal strong glass~strictly
Arrhenius behavior! would havemA>17, whereas higher
values are an indication of higher fragility. While in principle
there is no upper limit formA , on a practical ground the
most fragile system seems to be tri-phenyl-phosphate, with
mA'160.

A very similar definition has been proposed by Speedy:25

mS8

dF log„h~T!/h`…

log„h~Tg!/h`…
G

d~Tg /T!
U

T5Tg

. ~2!

At a first sight, it seems that a trivial normalization factor
would bring us frommS to mA . However, this expression
becomes more useful than Eq.~1! if we want to relax the
assumptionh`51024 Poise. In conjunction with Eq.~2!, it
is also useful to define the glass transition temperatureTg as
the temperature whereh(Tg)/h`51017; we will use this
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definition hereafter. As we will see below, if we aim to study,
for example, the density dependence of the fragility of a
given system, it will be easier to use Eq.~2!, where the
density dependence ofh` , although small, has been washed
out. It is worth pointing out, however, that for all practical
purposes, when dealing with the experimental data, the dif-
ference in using Eq.~1! or Eq. ~2! is by all means irrelevant
~apart from a trivial factor very close to 17!. The fragility
index mS ranges from one for strong glasses to'10 for the
more fragile systems.

The previous two definitions focus on the behavior of
h(T) at the glass transition temperature. More recently, an-
other index of fragility—often referred to asF1/2—has been
introduced by Richert and Angell27 to ‘‘measure’’ the fragil-
ity at an intermediate temperature~also see the discussion in
Ref. 28!. Naming T* the temperature that satisfies
log„h(T* )…5@ log„h(Tg)…1 log„h(T`)…#/2 ~i.e., the tem-
perature where the viscosity is halfway—in logarithmic
scale—betweenh` and 1013 Poise), F1/2 is defined as
F1/252(Tg /T* )21. It is worth mentioning thatF1/2 andmA

~or mS) do not provide ‘‘exactly’’ the same information: a
plot of one quantity against the other does not indicate a
perfect correlation, rather it shows a scatter of the points
around an average trend.29 The existence of such a scattering
has been recently rationalized by Chandler and Garrahan
within the framework of a coarse-grained model of
glassformers.30

Finally, a generalized, temperature-dependent fragility
~eithermA or mS) is sometimes introduced, using equations
similar to Eqs.~1! or ~2!, whereTg is substituted by a generic
reference temperatureT. We will call these quantities
asmA(T) andmS(T), with the implicit definition that when
the argument is missing, the quantities are calculated at
T5Tg .

B. Kinetic fragility: Global definitions

The previous indexes of fragility were associated to the
behavior ofh(T) at a given temperature. Other definitions
are based on the global behavior of the viscosity, and neces-
sarily rely on the existence of a functional expression for
h(T).

A global definition of kinetic fragility arises from the
experimental observation that the temperature dependence of
the viscosity follows rather closely a Vogel–Tamman–
Fulcher~VTF! law:31

h~T!5h` expS DT0

T2T0
D , ~3!

whereh` , D and T0 are system-dependent parameters. As
long as the VTF description ofh(T) is correct, one of the
two parameters in the argument of the exponential can be
eliminated in favor ofTg as—from the definition of glass
transition temperature—the following relation holds:5

Tg5T0S 11
D

17 ln~10! D . ~4!

Plugging Eq.~3! in Eq. ~2!, and using Eq.~4!, one gets that
the parameterD is related to the previously defined fragili-
ties:

D5
17 ln~10!

mS21
~5!

and, therefore, can be assumed to be a further fragility index.
This index, which ranges from̀ for strong liquids~actually
D'100 for vitreous silica! to '5 for the fragile ones, is in
same sense ‘‘weaker’’ than the other three previously intro-
duced, as its validity is based on the assumedT dependence
of the viscosity@Eq. ~3!#.

The assumption of the validity of the VTF law for the
viscosity also leads to a relation between the local fragility
defined at different temperatures. Indeed, recalling the defi-
nition of F1/2 and Eq.~2!, one gets27

F1/25
mS21

mS11
. ~6!

C. Thermodynamic fragility

An important step forward in relating the fragility with
the PEL properties has been certainly achieved with the in-
troduction of the ‘‘thermodynamic fragility.’’32 Similar to
the kinetic fragility that naturally emerges from the Angell
plot @ log(h) versusTg /T for different systems#, the vigor of
the concept of thermodynamic fragility arises from the tem-
perature dependence of the excess entropySex(T), defined as
the difference between the entropy of the liquid and the en-
tropy of the stable crystal. On plottingSex(Tg)/Sex(T) versus
Tg /T, one obtains a plot very similar to the Angell plot,
where the different systems stand in the same order.33

In similar fashion to the kinetic fragilityF1/2, it has been
defined a ‘‘thermodynamic’’ fragilityF3/4: naming T* the
temperature, whereSex(Tg)/Sex(T)53/4, i.e., the tempera-
ture where the inverse excess entropy equals 3/4 of itsTg

value,F3/4 is defined asF3/452(Tg /T* )21. In this case, the
value 3/4, and not 1/2, has been chosen because of the diffi-
culties associated to determine the excess entropy at high
T/Tg in strong liquids. In a recent paper, Martinez and
Angell32 have shown that it exists a remarkable correlation
betweenF1/2 andF3/4: with few exceptions it turns out that
F1/2'F3/4 within 10%. This observation rationalizes the
well-known fact that the amplitude of the specific heat jump
at Tg is linked to the fragility, but also points out that is not
the specific heat jump alone, but rather this jump divided by
the excess entropy atTg , that is actually related tomA .

In analogy withmA ~or with mS), it would be natural to
define a further index of the thermodynamic fragility as the
derivative atTg of the inverse reduced excess entropy with
respect to the inverse reduced temperature. To our knowl-
edge, this index has not been yet introduced, but—as we will
see below—this quantity naturally appears when the Adam–
Gibbs relation is used to work out a link between kinetic and
thermodynamic fragility. It is useful, therefore, to introduce
this thermodynamic fragility (mT) index as
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mT8
d„Sex~Tg!/Sex~T!…

d~Tg /T!
U

T5Tg

5Tg

Sex8 ~Tg!

Sex~Tg!
, ~7!

Sex8 (T) being the temperature derivative ofSex(T).

D. Relation between kinetic
and thermodynamic fragility

The Adam–Gibbs equation34 establishes a relation be-
tween the structural relaxation time and the configurational
entropyS(T):

t~T!5t` expS E
TS~T! D , ~8!

or, relying on the Maxwell relation, between the viscosity
and the configurational entropy:

h~T!5h` expS E
TS~T! D , ~9!

wheret`(h`) is the usual infinite temperature limit for the
relaxation time~viscosity! andE a system-dependent param-
eter with the physical dimension of an energy that is some-
how related to the energy barrier for activated processes.
This equation is the key relation that allows us to create a
link between kinetic and thermodynamic fragility and, ulti-
mately, via the configurational entropy a link between kinetic
fragility and the statistical properties of the PEL. Let us first
observe that, as the energy barrier is expected to have a weak
and smooth temperature behavior and not to diverge at any
temperature, according to Eq.~9! the viscosity diverges at
the temperature~Kauzmann temperatureTK), where the con-
figurational entropy vanishes. If both the Adam–Gibbs@Eq.
~9!# and Vogel–Tamman–Fulcher relations@Eq. ~3!# are
valid, then necessarilyT0 andTK are equal one to each other.
This equality has been recently disputed.35 We do not discuss
this problem further, with the aim of studying the mathemati-
cal consequences of the different landscape models intro-
duced in the literature; we will assume~when necessary! that
E is a slowly varying smooth function ofT ~thus, thatT0

5TK). It must also be noted that the thermodynamic fragility
is defined through the experimentally accessibleexcessen-
tropy, while the Adam–Gibbs relation calls into play thecon-
figurational entropy. In the following we will not make dif-
ference between the two entropies, relying upon the
observation that configurational and excess entropy seems to
be actually proportional to each other,36 even if other studies
indicate the failure of such a proportionality.37 Assuming that
the Adam–Gibbs relation correctly describes theT depen-
dence of the viscosity in a supercooled liquids, by plugging
Eq. ~9! into the definition ofmS , Eq. ~2!, we get @using
h(Tg)/h`51017]:

mS511Tg

S8~Tg!

S~Tg!
, ~10!

and, recalling Eq.~7!, we have the desired relation between
kinetic and thermodynamic fragility:

mS511mT . ~11!

Equation~10! also constitutes the basis to obtain a link be-
tween the kinetic fragilitymS and the number of statesa.
Indeed, recalling the relationa5maxe$S(e(T))%/NkB , if we
know—or have a model for—the configurational entropy of
a given system, we could determinea andmS , and thus try
to relate one to the other.

III. MODELS OF LANDSCAPE

In this section we will briefly recall the main models that
have been introduced in the recent literature to represent the
configurational entropy of supercooled liquid systems. In the
first three subsections we elucidate models of configurational
entropy and derive the relations between the different quan-
tities of interest~T and e dependence ofS, fragility, etc.!
with the specific hypothesis that the vibrational entropy as-
sociated to a specific minimum of the PEL is independent
from its energy elevation. In the following subsection, we
relax this hypothesis, assuming a linear dependence of the
vibrational free energy frome, and showing how the equa-
tions relating the relevant physical quantities to the configu-
rational entropy parameters are modified.

A. Gaussian model

The Gaussian model is at the basis of the interpretation
of the configurational entropy in simulated supercooled liq-
uids. After the first studies,38–40the Gaussian model has been
chosen to describe quantitatively the energy dependence of
S(e) in different systems.25,26,41–43According to this model,
an explicit functional form~Gaussian! for VN(E)—the en-
ergy distribution of the minima of the PEL—is assumed,

VN~E!5exp~aN!expF2
~E2Eo!2

e2 G . ~12!

From this equation, the configurational entropy of the Gauss-
ian model becomes (e5E/N)

S~e!5kBNFa2
~e2eo!2

ē2 G , ~13!

being ē5e/AN. In this expressionsa counts the total num-
ber of states@it is the maximum ofS(e)/N in kB units#, eo is
an irrelevant parameter~it fixes the zero of the energy scale!,
and ē is the width of the distribution. In order to express the
configurational entropy as a function of the temperature, we
must first determine the energy of the minima of the PEL
populated at a given temperature. Using44,45

1

T
5

dS~e!/N

de
, ~14!

we get

e~T!5eo2
ē2

2kBT
, ~15!

and, finally, inserting Eq.~15! into Eq. ~13!, we have the
explicit expression of the configurational entropy as a func-
tion of the temperature:

S~T!5kBNFa2
ē2

~2kBT!2G . ~16!
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From Eq.~13!, the Kauzmann energyeK , i.e., the energy
whereS(e)50, is promptly derived:

eK5eo2 ēAa, ~17!

and, plugging the Kauzmann energy@Eq. ~17!# in Eq. ~15!,
we find the Kauzmann temperature:

kBTK5
ē

2Aa
. ~18!

It is useful to eliminateē from the expression of the
configurational entropy~in its explicit T-dependent expres-
sion! in favor of Tk , using Eq.~18!, to obtain

S~T!5kBNaF12
Tk

2

T2G . ~19!

Once we have a model for the configurational entropy,
we can—applying Eq.~10!—find an expression for the fra-
gility in terms of the parameters of the model itself. As pa-
rameters, we have the freedom to choose among
(a,ē,TK ,eK). One compact possibility, which has the advan-
tage to explicitly depend only onTK , is

mS5
Tg

21TK
2

Tg
22TK

2 . ~20!

In this expression,Tg appears explicitly and cannot be elimi-
nated because in the Gaussian model~a pure thermodynamic
model! the dynamics is not defined and thereforeTg must be
regarded as a parameterexternalto the theory. Another pos-
sible selection of parameters, and thus other expressions for
the fragility, are of course possible. Equation~20! ~as well as
similar expressions for other landscape models; see below!
makes clear the well-known fact that the fragility is some-
how related to the ‘‘distance’’ betweenTg andTK : the higher
the ratioTg /TK the strongest the liquid.

As a final remark, we observe how—having imposed the
validity of both the Adam–Gibbs relation and the Gaussian
model for the configurational entropy—the temperature de-
pendence of the viscosity turns out to be controlled by the
law

h~T!5h` expS DTK

T2TK

T

T1TK
D , ~21!

with D5E/(aNkBTK), which is different by a VTF relation.
In other words, the VTF law, the Adam–Gibbs relation and
the Gaussian model cannot be simultaneously invoked~espe-
cially when the shape of the PEL basins is independent on
the depth!. Equation~21! can be regarded as a VTF law with
a temperature-dependentcoefficient D8(T)5DT/(T1Tk).
In the high-T limit ( T@Tk), D8→D while in the low-T re-
gime ~T approachingTk) D8→D/2.

B. Hyperbolic model

For 30 years it has been realized46 that the temperature
dependence of the~constant volume! excess specific heat can
be described by a hyperbolic law (C'const1const8/T), and
this law is commonly used to represent the experimental
data.27 The ‘‘landscape model’’ that gives rise to such a tem-
perature dependence for the excess specific heat is the so-

called hyperbolic model, recently introduced and discussed
in detail by Debenedetti, Stillinger, and Lewis.47 In Ref. 47,
the model is derived from the assumption of a hyperbolic
temperature dependence of the ‘‘configurational’’ heat capac-
ity, and ~assuming the validity of the Adam–Gibbs relation!,
it implies as a mathematical consequence the validity of the
VTF relation. For simplicity, here we prefer to start assuming
the mathematical validity of both the Adam–Gibbs and the
VTF, the hyperbolic temperature dependence of the excess
specific heat results as consequence. Obviously, as discussed
in Ref. 48, the two routes are equivalent. It is worth to point
out that the ‘‘Gaussian landscape’’ is named after thee de-
pendence of the number of states, while the ‘‘hyperbolic
landscape’’ is named after theT behavior of the specific
heat,27 a rather different quantity. It is our aim to write down
the main expressions for this model using the same notation
of the previous section, and to extract the equations for the
fragilities. By comparing Eqs.~3! and ~9!, it turns out an
explicit temperature dependence forS(T):

S~T!5
E

DTK
F12

TK

T G . ~22!

It is implicit in this expression the coincidence ofT0 andTK .
This equation can be cast in form very similar to Eq.~16! by
defining the quantitiesa and ē:

a8
E

DNkBTK
, ~23!

ē8
2E
DN

52kBTKa. ~24!

As we will see soon,a andē play here the same role as they
have in the Gaussian model; therefore the first equation is a
link between the ‘‘number of states’’ and the constants enter-
ing in the AG~E! and VTF~D andTK) relations. The second
equation can be compared to Eq.~18!, whereAa appears
instead ofa. Rewriting Eq.~22! with the elimination ofE
andD in favor of a and ē, we have

S~T!5kBNFa2
ē

2kBTG , ~25!

an expression that can be directly compared with Eq.~16!,
or, expressing the prefactor in Eq.~22! in terms ofa via Eq.
~23!,

S~T!5kBNaF12
TK

T G , ~26!

that can be compared with Eq.~19!.
At variance with the Gaussian model, where we started

with a model forS(e) and derivedS(T), we now have a
model for S(T). To obtain an expression forS(e) we first
derive the temperature dependence of the energy of the
minima visited by Eq.~14!:

e~T!5eR1E
TR

T

T
dS

dT
dT5eR1akBTK ln~T/TR!, ~27!
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whereeR andTR are integration constants whose values, as
we will see, are not relevant for the interesting physical
quantities. Inverting Eq.~27! and plugging the resultingT(e)
into Eq. ~25! we get

S~e!5NkBaF12
TK

TR
expS 2

2~e2eR!

ē D G . ~28!

Obviously, we can eliminateTR from this equation, by prop-
erly redefining eR . A useful possibility is to chooseTR

5TK ; then, from Eq.~27!, eR5eK and

S~e!5NkBaF12expS 2
2~e2eK!

ē D G . ~29!

At variance with the configurational entropy of the Gaussian
model, the presentS(e) does not show any maxima; rather it
increases continuously, asymptotically approaching the value
NkBa.

From Eq.~26!, using Eq.~10!, we can easily determine
the fragility of this model:

mS5
Tg

Tg2TK
. ~30!

It is worth pointing out that this expression is the expansion
of the fragility of the Gaussian model to first order in
Tg2TK .

C. Logarithmic „or binomial … model

The previous two models for the configurational entropy
share the property thatdS/de is nondiverging ate5eK , so
the Kauzmann temperature exists and it is nonvanishing. In
order to introduce a more flexible model, embedding the pos-
sibility of having a vanishing Kauzmann temperature, De-
benedetti, Stillinger, and Shell49 recently proposed a modifi-
cation of the Gaussian model that, with a slight change in
notation with respect to the original definition, reads as

S~e!5NkBaH ~12g!F12S u

Aa
D 2G1gF 12

S 11
u

Aa
D lnS 11

u

Aa
D 1S 12

u

Aa
D lnS 12

u

Aa
D

2 ln~2!
G J , ~31!

with u(2Aa,u,Aa) given by

u5
e2eo

ē
. ~32!

This is a linear combination-weighted by the parameterg-of
the parabolic configurational entropy typical of the Gaussian
model and a term that depends on the logarithm of the en-
ergy. Here we want to describe in detail the properties of this
model for the specific caseg51, i.e., of a model that is
totally ‘‘logarithmic.’’ The logarithmic model is essentially a
binomial distribution, i.e., a model for the thermodynamics
of a gas of binary excitations.50 It has been used to model the

thermodynamics of supercooled liquids and theT depen-
dence of the inherent structure energy.50 Obviously, the loga-
rithmic term in Eq. ~31! become dominant in the
low-T/ low-(e2eK) region; therefore the model discussed in
this section can be thought as an approximation of the De-
benedetti, Stillinger, and Shell model valid in the low-T
limit. It is, however, interesting to study such a model in the
whole energy range. Indeed, as we will see below, a visual
inspection of the functionS(e) indicates that this model and
the Gaussian model represent very similar ‘‘landscapes,’’ i.e.,
very similar distribution of the minima energy. Thus, we de-
fine the ‘‘logarithmic’’ landscape as

S~e!5NkBaF 12

S 11
u

Aa
D lnS 11

u

Aa
D 1S 12

u

Aa
D lnS 12

u

Aa
D

2 ln~2!
G . ~33!

This expression for the configurational entropy has the
properties to vanish atu56Aa, therefore the Kauzmann
energy results to be atu52Aa or, explicitly, eK5eo

2 ēAa. At this energy, the derivative ofS(e) shows a
logarithmic divergence, thus implying that the Kauzmann
temperature must vanish. Similar to the Gaussian model,

the parametereo is the energy of the ‘‘top of the land-
scape’’ and a represents the maximum ofS(e)/NkB .
Using Eq. ~32! and the expression foreK , Eq. ~33!
can be explicitly written in terms of the reduced energy
measured with respect to the Kauzmann energy
v5(e2eK)/ ē as
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S~e!5NkBaF 12

v

Aa
lnS v

Aa
D 1S 22

v

Aa
D lnS 22

v

Aa
D

2 ln~2!
G .

~34!

We can now follow the same route used in the discussion of
the Gaussian model. Via Eq.~14!, with straightforward alge-
bra, we obtain the temperature dependence of the energy of
the minima:

e~T!2eo52 ēAa tanhF2 ln~2!ē

AakBT
G , ~35!

and inserting this expression in Eq.~34!, the temperature
dependence of the configurational entropy is promptly de-
rived:

S~T!5NkBaH 1

ln~2!
lnF2 coshS ln~2!ē

AakBT
D G

2
ē

AakBT
tanhS ln~2!ē

AakBT
D J . ~36!

As a consequence of the infinite value ofdS(e)/de at
eK , this function does vanish only atT50, i.e., for this
modelTK50. It is convenient, for the sake of compactness,
to define a typical temperature, which—in analogy withTK

in the Gaussian and hyperbolic models—could be used to
scale the temperatures in the logarithmic model. We arbi-
trarily introduce the quantity

TK* 5
1

3
ln~2!

ē

kBAa
, ~37!

whose value is very close to the ‘‘apparent’’ Kauzmann tem-
perature that would have been identified by extrapolating Eq.
~36! toward zero using only information onS(T) at ‘‘high’’
temperature, similar to what is done experimentally. In other
words, the logarithmic model predicts a temperature depen-
dence of the configurational entropy that—around the inflec-
tion region—can be approximated by a straight line that goes
to zero atkBTKAa/ ē'0.23@' ln(2)/3#. Having introduced
the ‘‘apparent’’ Kauzmann temperature for the logarithmic
model, we can write Eqs.~35! and ~36! as

e~T!2eo5
3

ln~2!
akBTK* tanhS 3TK*

T D ,

~38!

S~T!5
NkBa

ln~2! H lnF2 coshS 3TK*

T D G2
3TK*

T
tanhS 3TK*

T D J .

Once the explicitT dependence ofS(T) is known, both
the fragility mS , defined in Eq.~10!, and theT dependence
of the viscosity ~from the Adam–Gibbs equation! can be
worked out. The two expressions read as

mS511S 3TK*

Tg
D 2H cosh2S 3TK*

Tg
D lnF2 coshS 3TK*

Tg
D G

2S 3TK*

Tg
D coshS 3TK*

Tg
D sinhS 3TK*

Tg
D J 21

, ~39!

h~T!5h` expH ln~2!

3
DS 3TK*

Tg
D H lnF2 coshS 3TK*

T D G
2S 3TK*

Tg
D tanhS 3TK*

T D J 21J . ~40!

D. Summary of models

In Table I, we summarize the expressions derived in the
framework of the three models examined before for different
quantities. These quantities are as follows:

~i! and~ii ! The configurational entropy as a function ofe; in
this case we explicitly reportS(e) as a function of the vari-
ablesu5(e2eo)/ ē andv5(e2eK)/ ē to emphasize that the
zero of the energy is irrelevant and thatē only acts as an
energy scale.
~iii ! The explicit expression of the Kauzmann energy in
terms ofeo , a, and ē.
~iv! and~v! The relations used to eliminateē in favor of TK

~or TK* in the case of the logarithmic model!.
~vi! and ~vii ! The temperature dependence of the inherent
structures energy, reported in terms ofTK .
~viii ! The temperature dependence of the configurational en-
tropy, now reported in terms ofTK .
~ix! The expression for the fragility reported in terms of the
thermal parameters.
~x! Finally, we report the temperature dependence of the vis-
cosity resulting from the application of the model. In the last
expression, the parameterD is D5E/(aNkBTK).

In Fig. 1 we sketched thee-dependence of the configu-
rational energy for the examined models: Gaussian~full
line!, hyperbolic~dashed line!, and logarithmic~dot–dashed
line!. As an example, the three configurational entropies are
reported for the specific case ofa50.8 @as the scaling of
S(e) with a for the hyperbolic model is different from that
for the Gaussian and logarithmic models, we cannot use a
reduced variable#.

Similarly, in Figs. 2 and 3 we report the corresponding
configurational entropy as a function ofT/TK and TK /T,
respectively. In the case of the logarithmic modelTK* defined
in Eq. ~37! is used to scale the temperatures.

In Fig. 4 we report the temperature dependence of the
energy elevation~normalized to the factorakBTK) with re-
spect toeK of the minima of the PEL visited at equilibrium
for the three examined models: Gaussian~full line!, hyper-
bolic ~dashed line!, and logarithmic~dot–dashed line!. The
hyperbolic model shows a nonphysical continued rise of
e(T) on increasingT.

Finally, in Fig. 5 we report in an Arrhenius scale the
temperature dependence of the viscosity for the three exam-
ined models: Gaussian~full line!, hyperbolic~dashed line!,
and logarithmic~dot–dashed line!.

E. Gaussian models with nonconstant
vibrational entropy

All the discussions in the previous sections were based
on the assumption that thevibrationalentropy associated to a
given basin is independent from the energy elevation of the
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minimum of the basin itself. These assumptions lead to the
simplified microcanonical definition of temperature reported
in Eq. ~14!. Following recent experimental37 and
numerical26,42evidences indicating a vibrational entropy that
actually depends on the energy of the minima, in the present
section we relax the previous assumption, and, for the spe-
cific case of the Gaussian model, we develop the calculation
in the case of an explicit dependence of the vibrational en-
tropy, Sv , on e. In particular, taking advantage of the out-
come of recent molecular dynamics calculations, we develop

Sv(e) in a series ofe2eK and retain only the first-order
term, an approximation certainly valid for low enough tem-
peratures:

Sv~e!5Sv
K1

dSv

deU
e5eK

~e2eK!. ~41!

The quantitydSv /de is a further system-dependent param-
eter. For sake of simplicity let us define as parameter a ‘‘vi-
brational’’ temperatureTv via

TABLE I. A summary of the main relations relating the relevant quantities~left column! for the three configurational entropy models introduced before. The
relation that defines the model is reported in the box. The variableu is defined as the reduced energy measured with respect toeo : u5(e2eo)/ ē, while v is
that measured starting from the Kauzmann energy:v5(e2eK)/ ē. The variablew is a shortcut for 3TK* /Tg . In the case of the logarithmic model,TK* is used
@see Eq.~37!# in place of the Kauzmann temperature.

FIG. 1. A sketch of the energy dependence of the configurational energy for
three models: Gaussian~full line!, hyperbolic~dashed line!, and logarithmic
~dot–dashed line!. The reduced entropyS(e)/NkB is plotted as a function of
(e2eK)/ ē for the specific case ofa50.8.

FIG. 2. A plot of the temperature dependence of the configurational entropy
for three models: Gaussian~full line!, hyperbolic~dashed line!, and loga-
rithmic ~dot–dashed line!. The reduced entropyS(T)/NkB further normal-
ized to a is plotted as a function ofT/TK . In the case of the logarithmic
model,TK* defined in Eq.~37! is used in substitution ofTK .
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N

Tv
5

dSv

deU
e5eK

. ~42!

The calculation proceeds along the same line outlined in the
case of the Gaussian model. First, from the generalization of
Eq. ~14!, i.e., from

1

T
5

dS/N

de
5

dS~e!/N

de
1

dSv /N

de
5

dS~e!/N

de
1

1

Tv
,

~43!

we get the temperature dependence of the energy of the vis-
ited minima:

e~T!5eo2
ē2

2 S 1

kBT
2

1

kBTv
D , ~44!

and inserting Eq.~44! into the definition of the Gaussian
model, Eq.~13!, we have the explicit expression of the con-
figurational entropy as a function of the temperature:

S~T!5kBNFa2
ē2

4 S 1

kBT
2

1

kBTv
D 2G . ~45!

We can now eliminateē by introducing the Kauzmann tem-
perature defined byS(TK)50:

ē52AakBTKS Tv

Tv2TK
D ; ~46!

thus, substituting this expression in Eq.~45!,

S~T!5kBNaF12S TK

Tv2TK
D 2S Tv

T
21D 2G . ~47!

Through the configurational entropy, we can apply Eq.
~10! to find an expression for the fragility:

mS5
~Tg

21TK
2 !22TgTK~Tg /Tv!

~Tg
22TK

2 !22TK~Tg2TK!~Tg /Tv!
. ~48!

In this expression, besidesTg—the parameter that embodies
our choice of the value of viscosity that defines the glass
transition temperature—there are the two system-dependent
parameters:TK ~a way to expressē) and Tv . Finally, the
temperature dependence of the viscosity turns out to be con-
trolled by the law:

h~T!5h` expF DTK

T2TK

T

T1TK22T~TK /Tv! S Tv2TK

Tv
D 2G ,

~49!

with, as before,D5E/(aNkBTK).
Similar to Fig. 3, in Fig. 6 we report the temperature

dependence of the configurational entropy of the Gaussian
model with energy-dependent vibrational entropy as a func-
tion of TK /T for different values ofTv /TK ~reported in the
figure! and compared with the similar quantity for the Gauss-
ian and the hyperbolic models.

Analogously, Fig. 7 shows the temperature dependence
of the viscosity, as predicted by the Gaussian model, with
energy-dependent vibrational entropy for different values of
Tv /TK . As it can be noticed, it seems that the values ofTv

FIG. 3. Similar to Fig. 2, the temperature dependence of the configurational
entropy for three models@Gaussian~full line!, hyperbolic~dashed line!, and
logarithmic~dot–dashed line!# is plotted as a function ofTK /T. In the case
of the logarithmic modelTK defined in Eq.~37! is used in the substitution
of TK .

FIG. 4. A plot of the temperature dependence of the energy elevation for
three models: Gaussian~full line!, hyperbolic~dashed line!, and logarithmic
~dot–dashed line!. The energy elevatione2eK , normalized tokBTK , and
further normalized toa, is plotted as a function ofT/TK . In the case of the
logarithmic modelTK* defined in Eq.~37! is used in substitution ofTK .

FIG. 5. A plot of the temperature dependence of the viscosity for three
models: Gaussian~full line!, hyperbolic~dashed line!, and logarithmic~dot–
dashed line!. The logarithm of the viscosity normalized byh(T`), normal-
ized toD, is plotted as a function ofTK /T. In the case of the logarithmic
modelTK* defined in Eq.~37! is used in substitution ofTK .

10674 J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 Ruocco et al.

Downloaded 06 Dec 2004 to 141.108.6.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



allows one to interpolate between the behavior of the Gauss-
ian model~obviously reached forTv→` or 2`! and that of
the hyperbolic model~that is approximately obtained for
Tv /TK'21\21.5). It is worth remembering that, in most
numerical simulations of model liquids,Tv is found to be
negative for constant density~thus constant PEL! simula-
tions, whileTv.0 for constant pressure simulations.51 In the
case of a model for water, the sign ofTv has been found to
be density dependent.43,52 On the experimental side, at con-
stant pressure, the sign ofTv turns out to be both positive37

and negative,53 depending on the specific system.
Finally, in Table II we report the relevant expression

relative to the Gaussian model with energy-dependent vibra-
tional entropy (TvÞ`) compared with those of the Gaussian
model (Tv5`).

IV. FRAGILITY AND NUMBER OF STATES

In the following sections we will discuss the possibility
to predict the fragility of a system from the knowledge of the

parameters characterizing the distribution of the minima of
the PEL. First, we analyze the recent works that have at-
tempted to relate the fragility to the ‘‘number of states.’’
Second, we will see how—given a fixed configurational en-
tropy model—one can obtain the whole range of fragilities,
thus demonstrating that, in order to assess the fragility of a
system, some additional information is needed.

A. Speedy’s expression of fragility

In 1999, Speedy25—working in the framework of the
Gaussian model and assuming the validity of the Adam–
Gibbs relation—choose to expressmS ~‘‘ f’’ in his language!
in terms ofa andS(Tg) @‘‘ Dg

l S(Tg)’’ in Ref. 25#. With these
variables, Eq.~20! becomes

mS5
2a

S~Tg!/NkB
21. ~50!

Speedy used this relation to state that ‘‘...this quantifies the
Angell observation that fragile liquids sample more basins in
configuration space than strong liquids.’’ Actually, Eq.~50!
does not help much in establishing whether or not the re-
ported Angell observation is correct. Indeed, the proportion-
ality betweenmS anda holds only if one neglects the possi-
bility that S(Tg), a system-dependent quantity, depends on
a. In principle, its implicit dependence ona can also reverse
the fragility–number of states relation.

B. Sastry’s expression of fragility

More recently, another expression for the fragility in
terms of the PEL features was derived by Sastry.26 Also in
this case, the Gaussian model and the Adam–Gibbs equation
are at the basis of the theory. However, Sastry does not use
Eq. ~10! to obtain the fragility. He assumed~i! the validity of
the VTF law, so as to relate@compare Eqs.~9! and ~3!# the
configurational entropy to the coefficientD, which, as dis-
cussed before, is an index of kinetic fragility~actually, Sastry

FIG. 6. Similar to Fig. 2, the temperature dependence of the configurational
entropy is reported for the Gaussian model with energy-dependent vibra-
tional entropy for different values of the parameterTv /TK ~dot–dashed
line!. For comparison, also the two corresponding function for the Gaussian
~full line! and hyperbolic~dashed line! models are reported.

FIG. 7. Similar to Fig. 5, the temperature dependence of the viscosity is
reported for the Gaussian model with energy-dependent vibrational entropy
for different values of the parameterTv /TK ~dot–dashed line!. For compari-
son, also the two corresponding function for the Gaussian~full line! and
hyperbolic~dashed line! models are reported.

TABLE II. A summary of the main relations relating the relevant quantities
~left column! for the Gaussian configurational entropy models: the simple
Gaussian model (Tv5`) and the Gaussian model with energy-dependent
vibrational entropy.

dSv

de
50

dSv

de
Þ0

kBTK ē

2Aa

kBTvē

2AakBTv1 ē
ē 2AakBTK

2AakBTKF Tv

Tv2TK
G

e(T)2eo
2akBTKS TK

T D 2akBTKF TvTK

~Tv2TK!2GFTv

T
21G

S(T)/NkB
aF12STK

T D 2G aF12S TK

Tv2TK
D 2S Tv

T
21D 2G

mS Tg
21TK

2

Tg
22TK

2

~Tg
21TK

2 !22TgTK~Tg /Tv!

~Tg
21TK

2 !22TK~Tg2TK!~Tg /Tv!

ln„h(T)/h`… DTK

T2TK

T

T1TK

DTK

T2TK

T

T1TK22T~TK /Tv! FTv2TK

Tv
G2
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reports his expression for the fragilityK51/D), and~ii ! the
coincidence ofT0 with TK . The Sastry expression takes also
into account the possible energy–depth dependence of the
basin vibrational free energy. In order to compare the expres-
sion reported in Ref. 26 with Eqs.~20! and~39!, however, we
can put the quantitydS ~in Sastry’s notation! equal to zero.
The Sastry expression becomes~with the change of notation
from s to ē)

K5
ēAa

2E S 11
TK

Tg
D . ~51!

Here ‘‘Tg’’ is the MD glass transition temperatures. In Eq.
~51! we have explicitly included the Adam–Gibbs constantE
that was implicitly assumed constant and landscape-
independent in Ref. 26~see also Ref. 54!.

After the conversion fromK to mS , using Eq.~5!, we
have

mS517 ln~10!
ēAa

2E S 11
TK

Tg
D11. ~52!

Similar to Eq. ~50!, also this equation cannot be used to
predict thea dependence of the fragility. Indeed,a appears
here explicitly but also implicitly, via the system-dependent
quantitiesTg andTK ~see Table I!. Finally, we want to stress
that the approach followed in the derivation of the previous
expression of the fragility is intrinsically inconsistent. In-
deed, as previously pointed out, the Gaussian landscape~i!,
the VTF law ~ii !, and the Adam–Gibbs relation~iii ! are not
mutually consistent, and, as also noticed by Sastry,26 the hy-
potheses~i!–~iii ! can only be consistent if one uses a low-
temperature expansion ofS(T).

C. Can the fragility be derived entirely
from the configurational entropy?

We aim now to prove with an example that, in general,
the configurational entropy alone is not sufficient to deter-
mine the fragility of a system. We will use the Gaussian
model for the configurational entropy and, with the help of
Eq. ~21!, we will set up an ‘‘Angell plot.’’ We could have
selected any other landscape model, reaching the same con-
clusion. Let us suppose to have a hypothetical system, fully
defined by a Gaussian landscape with a given value of the
relevant parametersa, e, and eo . The temperature depen-
dence of the viscosity in this model is reported in Eq.~21!.
To set up an Angell plot, we need to define the ‘‘glass tran-
sition temperature’’Tg . As done experimentally, once theT
dependence of the viscosity is known,Tg is defined from the
condition log„h(Tg)/h`…517. Using Eq.~21!, the solution
of this equation for~positive! Tg is

Tg5TKH 1

2

D

17 ln~10!
1A11

1

4 S D

17 ln~10! D
2J , ~53!

with D5E/(aNkBTK)52E/(AaNē). For the sake of com-
pactness, let us define the functiong(x):

g~x!5
1

2

x

17 ln~10!
1A11

1

4 S x

17 ln~10! D
2

, ~54!

so that

Tg5TKg~D !. ~55!

Obviously, the expression ofTg , besides the trivial tempera-
ture scaleTK , depends on the parameterD„52E/(AaNē)…
that, in turn, embodies the information on the ‘‘number of
states’’ but also from quantities distinct from the statistics of
the minima ~specifically from the parameterE!. We want
now to plot the rescaled logarithmic viscosityy(T)
[@ log(h(T)/h`)#/@log(h(Tg)/h`)# as a function ofTg /T. The
quantityy(T), by definition ofTg , turns out to be equal to
y(T)5@ log(h(T)/h`)#/17, or, by using the expression for
h(T) reported in Eq.~21!, to

y~T!5
D

17 ln~10!

TK

T2TK

T

T1TK
. ~56!

We can now eliminateTK from this equation in favor ofTg

using Eq.~55! @TK5Tg /g(D)# to get

y~T!5S Tg

T D g~D !221

g~D !22S Tg

T D 2 . ~57!

In Fig. 8 we have reported the quantityy(T) of Eq. ~57!
versusTg /T, i.e., we have made an Angell plot, for different
values of the parameterE at fixeda andē. The fragilitiesmS

are the slopes of these curves at the upper right corner of the
plot. What is remarkable here is that, by varying the quantity
E entering in the numerator of the exponent in the Adam–
Gibbs relation@Eq. ~9!# at fixed configurational entropy, we
can span the whole range of fragilities. In other words, for a
given ~Gaussian in the present example! landscape, with
well-defined statistical properties~fixed a and ē), we can
have a strong system~largeE! as well as a fragile one~small
E!. Therefore, we conclude this section with the statement
that, in principle—whenever the Adam–Gibbs relation rep-
resents a good approximation of the relation between trans-
port properties and configurational entropy—the knowledge
of the configurational entropy alone would be not sufficient
to define the fragility of a system.56 This statement, and the
role of the effective barrier height in determining the fragility
of a glass, has been already discussed in the literature~see,

FIG. 8. Reconstructed Angell plot (@ log„h(T)/h`…#/@ log„h(Tg)/h`…# vs
Tg /T) for the case of the Gaussian model. The different curves correspond
to differentE values: from top to bottomE580, 40, 20, 10 and 5 in units of
AaNē/2.
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e.g., Ref. 57!. The previous conclusion does not imply that
the fragility cannot be derived from the landscape properties:
indeed, it is possible, and actually most likely, that the quan-
tity E could be derived from other features of the PEL than
the minima distribution, as, for example the minimum-to-
minimum barrier heights. Future studies must focus on the
relation betweenE and the PEL properties and on the physi-
cal range of values ofE.

D. Strong-to-fragile transition

In the previous section we have shown that, on a general
ground, a simple Gaussian landscape with fixed statistical
properties could be shared by the whole class of known sys-
tems; they would simply differ in the value ofE that, in turn,
induces a different value ofTg /TK , thus a different fragility.
In this scheme a fragile system—havingTg close toTK @as
deduced from Eq.~20!#—visits that part of the landscape
where S(e) is strongly e dependent, thus@see Eq.~10!#
pushingmS up. On the contrary, a strong system hasTg far
away fromTK , and the system is confined to visit the region,
whereS(e) is almost flat. In other words, if all the system
shared the same landscape, due to the difference in the pa-
rameterE, a strong system~largeE! would visit the ‘‘top-of-
the-landscape,’’ while a fragile system~small E! would be
allowed to go down in energy. If this scenario were correct,
we would expect that real systems verify Eq.~20! @or ~30!, or
~39!#. In Fig. 9 we report, for those systems where all the
three quantitiesTg , TK , andmA are known~see Table III!,
the fragility mA as a function ofTg /TK ~symbols!. Also
shown in the same figure are the predictions of Eqs.~20!,
~30!, ~39! ~lines!. A few points must be underlined:~i! there
is rather good general agreement, but the single systems does
not strictly verify any of the three predictions. This can be
due to the existence of landscapes different from the three
simple cases discussed at the beginning of this chapter, or,
most likely, to the presence of a finite value forTv . Indeed,
recent molecular simulations of model liquids45 clearly show

such a phenomenology, indicating a non-negligible energy
dependence of the vibrational entropy.~ii ! The differences
among Eqs.~20! and~30! are so small that the experimental
data do not allow us to discriminate among these two differ-
ent landscape models, while the~pure! logarithmic model
seems to be definitively unacceptable. Most likely, a Gauss-
ian model with a small logarithmic correction would still be
acceptable.~iii ! Among the systems represented in Fig. 9, the
lowest fragility is '35, i.e., the strong systems are absent
~for these systems a reliable estimation ofTK does not exist!,
and this does not allow us to firmly establish the general
validity of one of the three models, and, more generally, of
the idea presented before that strong systems and fragile sys-
tems are characterized by a common configurational entropy
and a different elevation in the PEL.

Of course, we are not stating that the depicted behavior
is the actual one. Different systems have different value ofa
and may even not be described by a common landscape
model. A typical example, one that it is worth discussing
here, is the case of silica. As shown by Horbach and Kob,58

vitreous silica~as described by the BKS potential model59!
shows a strongT dependence of the fragility. More specifi-
cally, v-SiO2 , which is a well-known strong system close to
the glass transition temperature, turns toward a more fragile
behavior on increasingT. This phenomenon, called ‘‘strong-
to-fragile’’ transition, first proposed for the case of water,60

has been observed in simulations of water61 and ~simulated!
berillium fluoride.62 It is obvious that the fragile-to-strong
transition cannot be framed within the possibility described
in the first paragraph of this section.

In a recent simulations work, Saika-Voivod, Sciortino,
and Poole63 have shown that the configurational entropy for
liquid silica—as derived from a MD simulation based on the

FIG. 9. Experimental values of the kinetic fragilitymA plotted as a function
of the ratioTg /TK for those systems where the three quantities (mA , Tg ,
and TK) are available. The input data are reported in Table III. For those
systems where more than one determination of the parameters is known, we
have reported in the plot the average value together with an ‘‘error’’ bar that
indicates the whole dispersion.

TABLE III. A summary of the quantity relevant to test Eq.~20! (Tg , TK ,
andmS) for those systems where the three quantities are all known. The last
column reports the references where the data has been found. In those case
where more than one value of the parameters are known, we have reported
here the average value. The first of the two references refers to the couple
(Tg , TK) and the second tomS .

Tg TK mA Ref.

2-metylpentane 80.5 58 58 24, 24
Butyronitrile 100 81.2 47 24, 24
Ethanol 92.5 71 55 24, 55
n-propanol 102.5 73 36.5 24, 24
Toluene 126 96 59 24, 55
1-2 propan diol 172 127 52 24, 24
Glycerol 190 135 53 24, 24
Triphenil phospate 205 166 160 24, 24
Orthoterphenyl 244 200 81 24, 24
m-toluidine 187 154 79 24, 24
Propylene carbonate 156 127 104 24, 24
Sorbitol 266 226 93 24, 24
Selenium 307 240 87 24, 24
ZnCl2 380 250 30 24, 55
As2S3 455 265 36 24, 55
CaAl2Si2O8 1118 815 53 24, 55
Propilen glycol 167 127 52 27, 27
3-Methyl pentane 77 58.4 36 27, 27
3-Bromopentane 108 82.5 53 27, 27
2-methyltetrahydrofuran 91 69.3 65 27, 27
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BKS interaction potential model—is far from being ‘‘Gauss-
ian.’’ More specifically, they found thatS(T)—at low
T—shows a tendency toward a positive curvature and does
not seem to extrapolate to zero entropy at a finite tempera-
ture. This behavior is shared by the logarithmic model~or by
a combination of the logarithmic and Gaussian models, as
proposed in Ref. 49! for S(e). This model predicts an infi-
nite slope ofS(e) at eK , and this could be in agreement with
the simulation results of Ref. 63 as the low statistics in the
tail of VN(E)—as measured by MD—does not allow us to
safely determinedS(e)/de evaluated ateK .

The logarithmic model, however, similar to the other
models presented before, is not capable of catching the phys-
ics of the strong-to-fragile transition. Indeed, the fragility
expressions for all the examined models@Eqs. ~20!, ~30!,
~39!# show amonotonic Tdependence, with a tendency to-
ward a decreaseof the fragility on increasing temperature
~see Fig. 10!. A behavior opposite to that is observed in
simulated vitreous silica. It is therefore clear that an infinite
slope ofS(e) at eK alone is not sufficient to guarantee the
existence of a strong-to-fragile transition. What is actually
sufficient~necessary?! for a strong to fragile transition—i.e.,
to have a maximum in themS versusTg /TK function—is
that the configurational entropy—as a function ofT—had a
nonzero limit forT→0. This can be understood, looking at
Eq. ~10!. It is clear that a fragile system is characterized by a
large value ofS8(T) ~fragile systems explore the ‘‘steep’’
part of the PEL!, while a strong system will have a small
value of S8(T), but also a nonzeroS(T). This certainly
happens at the ‘‘top of the landscape,’’ but could also happen
at low T if S(0)Þ0 @in the logarithmic model, at lowT,
S8(T)→0, but the same doesS(T) and the resulting fragil-
ity increases continuously#. Thus, a strong-to-fragile transi-
tion could take place only if the landscape of the systems
allows for a finite number of states at zero temperature, i.e.,
for a ~exponentially large withN! degenerate fundamental
state. The existence of such a degeneracy for system with a
short-range interaction~non-mean field systems! poses sev-
eral problems~see the discussion in Ref. 49!, and is certainly
calling for a further investigation.

V. DISCUSSION AND CONCLUSION

In conclusion, in this paper we have first summarized the
main definitions of fragility; then we have recalled and stud-
ied different models for the configurational entropy present
in the literature. Using the Adam–Gibbs relation to link the
dynamics of a glass forming system to its configurational
entropy, we have reported the explicit expressions for differ-
ent quantities, among which the fragility. From the reported
relation, it is clear that, in generalthe fragility cannot be
derived by the knowledge of the configurational entropy.
More specifically, given a fixed ‘‘landscape,’’ different sys-
tem fragility can be mimicked by varying the parameterE
entering in the numerator of the exponent of the Adam–
Gibbs equation. On a general ground, the fragility of a sys-
tem depends on the ratioE/aNkBTK .

The fact that the whole range of fragility can be derived
from a given PEL model~e.g., the Gaussian model! with the
same statistical properties seems an interesting possibility. If
this was the case, the strong glass-forming materials would
be characterized by a large value ofE and would explore the
‘‘top-of-the-landscape,’’ while the most fragile ones would
have smallE and would visit the states around the inflection
point of S(T). Obviously other possibilities exist, as, for
example, that all the systems were characterized by the same
E, and in this case strong glass would have a small number of
states~smalla!, at variance to the fragile systems with more
states~largea!. A further scenario can be hypothesized; that
would also explain the existence of a strong-to-fragile tran-
sition: in this case the strong systems would explore the bot-
tom of a landscape characterized by a nonvanishing zero-
point entropy. This is an interesting possibility that deserves
deeper investigation.

Overall, the present discussion, which heavily builds on
the validity of the Adam and Gibbs relation, indicates that, in
principle, at least two possible classes of strong glass-
forming materials can actually exist. On one side we have
those systems that—close toTg—visit state at the top of the
landscape and have a ‘‘regular’’~Gaussian-type! configura-
tional entropy~let us call these systems class A strong glass-
forming materials!. On the other side we find the—let us say-
class B strong liquids, that visit minima deep in the PEL, but
with an exponentially large degeneracy of the fundamental
state. The answer to the question of whether class A and/or B
strong systems actually exist requires further investigations.

As a final comment, we would like to recall that fragility
is often measured atconstant pressure, while all the configu-
rational entropy-based models—as those presented here—are
built on the assumption of a well-definedS(e) function i.e.,
they assumeconstant density. The relationship between con-
stant density and constant pressure fragilities is one of the
topic under discussion at the present time. As an example, in
the case of soft sphere systems it has been shown64 that
Sc(T) along isochoric and isobaric paths are very close to
each other. Similarly, in a very recent work,65 Tarjus and
co-workers show that—in alcohols—the change in density
only slightly affects the fragility, thus indicating that under
the experimentally accessible density changes the landscape
suffers only minor modifications. For other systems, on the
contrary, a large deviation~'40%! between constant density

FIG. 10. Temperature dependence of the fragility for the three examined
models: Gaussian~full line!, hyperbolic~dashed line! and logarithmic~dot–
dashed line!. The quantitymS is reported as a function ofTg /TK .
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and constant pressure fragilities has been observed.46 This
ongoing discussion, however, does not affect the conclusions
of the present work since all the formalism could have been
based on theenthalpy landscape, instead ofenergy land-
scape, without any changes in the results.
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5( ēAa/2E)(11TK /T), reported in Eq.~51!.

55D. Huang and G. B. McKenna, J. Chem. Phys.114, 5621~2001!.
56The existing correlation between thermodynamic (mT) and kinetic (mS)

fragilities—as experimentally observed in Ref. 32—is NOT in contradic-
tion with the statement thatS(T) alone is not sufficient to determine
fragility. Indeed, the experimentally observed correlation betweenmT and
mS @discussed in Eq.~11! of the manuscript# can be derived—beyond
assuming the proportionality between configurational and excess
entropy—from
~i! the definition ofmT @Eq. ~7!#; ~ii ! the definition ofmS @Eq. ~2!#; and
~iii ! the AG relation.
We stress that Eq.~11! is independent from whether or not the fragility
could be derived fromS(T) only. Note that, as shown in Eq.~7!, the
evaluation ofmT requires the knowledge of two thermodynamic quantities
~the excess entropy and theT derivative of it!, but also the knowledge of
one dynamical quantity (Tg). The presence ofTg in the definition ofmT

highlights the need for dynamical information in the evaluation of the
fragility.

57D. Perera and P. Harrowell, Phys. Rev. E54, 1652~1996!.
58J. Horbach and W. Kob, Phys. Rev. B60, 3169~1999!.
59B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys. Rev. Lett.

64, 1955~1990!.

10679J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 Landscapes and fragilities

Downloaded 06 Dec 2004 to 141.108.6.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



60C. A. Angell, J. Phys. Chem.97, 6339~1993!; K. Ito, C. T. Moynihan, and
C. A. Angell, Nature~London! 398, 492 ~1999!.

61F. Starr, F. Sciortino, and H. E. Stanley, Phys. Rev. E60, 6757~1999!.
62M. Hemmatti, C. Moynihan, and C. A. Angell, J. Chem. Phys.115, 6663

~2001!.

63I. Saika-Voivod, P. H. Poole, and F. Sciortino, Nature~London! 412, 514
~2001!.

64R. J. Speedy, J. Phys.: Condens. Matter15, S1243~2003!.
65G. Tarjus, D. Kivelson, S. Mossa, and C. Alba-Simionesco cond-mat/

0309579, 2003.

10680 J. Chem. Phys., Vol. 120, No. 22, 8 June 2004 Ruocco et al.

Downloaded 06 Dec 2004 to 141.108.6.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


