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We analyze differences in dynamics and in properties of the sampled potential energy landscape between
different equilibrium trajectories, for a system of rigid water molecules interacting with a two-body potential.
On entering in the supercooled region, differences between different realizations increase and survive even
when particles have diffused several time their average nearest neighbor distance. We observe a strong
correlation between the mean square displacement of the individual trajectories and the average energy of the
sampled landscape.

I. Introduction

The potential energy landscape (PEL)1,2 is the surface
generated by the potential energy of a system. In the case of a
system composed byN rigid molecules, it is a highly complex
surface defined in a 6N dimensional space. In recent years,
numerical studies,3-11 boosted by the increased computational
resources, have attempted to quantify the statistical properties
of this surface (for example, quantifying the distribution in
energy of specific points of the surface, like local minima and
saddles) in the attempt to develop a thermodynamic description
fully based on PEL properties. This line of thinking, pioneered
by Frank Stillinger and co-workers,12 has been very fruitful in
the study of supercooled liquids, both in equilibrium4,5,8,13and
in out-of equilibrium conditions.14-17 Stillinger’s formalism
builds on the idea that the PEL surface can be partitioned into
disjoint basins. A basin is unambiguously defined as the set of
points in configuration space connected to the same local
minimumsnamed an inherent structure (IS)svia a steepest
descent trajectory. In this respect, the PEL’s statistical properties
entering in the evaluation of the partition function are the
number, shape, and depth of the PEL basins. For its conceptual
simplicity and its strict connection with a numerical implemen-
tation, the PEL formalism has become one of the modern tools
to interpret and analyze simulation data.

Water, due to its intrinsic interest as the liquid of life, has
been extensively studied in computer simulations. Models have
been developed that are able to reproduce qualitatively the
thermodynamic and dynamic anomalies of this liquid.18-20

Indeed, the thermodynamics of water is characterized by a line
of isobaric density maxima and compressibility minima. Its
specific heatCp increases on cooling.21,22 Recent studies have
attempted to connect the thermodynamic anomalies to the
presence of a line of first order transition between two liquid
structures, eventually ending in a second-order critical point.23,24

The dynamics of water also shows anomalies. The diffusion
coefficient decreases as pressure is increased up to a maximum
value (approximately 400 MPa25) at room temperature. For
greater pressures, the dynamics of water becomes progressively
slower, as expected for simple liquids.

Water simulations have been among the first to be scrutinized
using the methods developed by Stillinger4,6,26-30 in the attempt

to clarify differences in local structures and relations between
structural properties and dynamics. More recently, extensive
studies of the PEL properties have been published, providing a
detailed description of the landscape properties of several models
of water.6,31-34 Within the PEL formalism, attempts have also
been presented in the direction of connecting thermodynamic
properties (like the number of explored minima or the number
of diffusive directions in the PEL) to dynamics.4,8,35-43 The
outcome of these works, and related studies on different models
of glass forming liquids, suggests a strong connection between
dynamics and landscape properties. Still, the interpretation
schemes require fitting parameters whose physical interpretation
is often unclear. As an example, it has been shown that ln(D)
is consistent with a 1/(TSconf) dependence4,5,8,13,44(Sconf being
the configurational entropy) but no understanding of the
proportionality coefficient in term of PEL properties has been
reported.45

In this article we report analysis of distinct equilibrium
trajectories of a system of 216 water molecules interacting via
a two-body potential. The novel aspect is the possibility of
comparing a large number of independent trajectories (more than
100 for each state point) for a large number of state points.
Each of these (previously equilibrated) independent trajectories
last more than 20 ns, at which timeseven at the slowest studied
temperaturesthe average displacement of the molecule is longer
than three nearest neighbors. The analysis of this set of data
shows that, though individually each trajectory appears to be
to a very good approximation a diffusive trajectory (i.e., with a
mean square displacement which increases linearly with time),
different realizations are characterized by apparent values of
the diffusion coefficient that differ by more than 1 order of
magnitude, a clear evidence of dynamic heterogeneities. We
also show that differences in dynamics are strongly coupled
with the location of the system on the PEL, providing evidence
that dynamic heterogeneities are related to inhomogeneities in
the local basin energies. For completeness, we briefly discuss
the distribution of IS energies for this model and the temperature
and density (F) dependence of the diffusion coefficient, present-
ing new data with significantly improved statistics.

II. Simulation Details

We analyze molecular dynamics trajectories of a system
composed of 216 rigid water molecules in the (NVE) ensemble.
Molecules interact via the widely studied two-body simple point† Part of the special issue “Frank H. Stillinger Festschrift”.
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charge extended (SPC/E) model.18 The integration step is 1 fs,
and long range interactions are taken into account using the
reaction field method. Dynamics and thermodynamics properties
for the SPC/E model have been extensively studied in the past46

over a wide range of temperatures and densities. Analysis of
the statistical properties of the potential energy landscape have
also been characterized.4,6,31-34 Here we analyze a large set of
data, on the basis of five different temperatures in supercooled
states and nine different densities, from 0.9 to 1.4 g/cm3. At
each state point, we analyze equilibrated trajectories of more
than 100 independent realizations, to both reduce significantly
the numerical error and to estimate the self-averaging properties
of this model for differentT and F. Each trajectory covers a
time interval of about 20 ns. Potential energy landscape
properties have been based on the analysis of the inherent
structures, which has been calculated using a standard conjugate
gradient minimization algorithm with a 10-15 tolerance.47

III. IS Energies: the Random Energy Model

A quantification of the statistical properties of the potential
energy landscape, i.e., the distribution of basin’s depth and
shapes, for the SPC/E model of water has been recently
reported.34 It has been shown that the numberΩ(eIS) deIS of
distinct basins of energy deptheIS betweeneIS andeIS + deIS

follows a Gaussian distribution,

whereeRN is the total number of distinct basins of the PEL for
the system ofN molecules,E0 is the energy scale of the
distribution, andσ2 is the variance. The coefficientsσ, Eo, and
R depend only on the system density. The corresponding
probability distributionP(eIS,T) of sampling an IS of deptheIS

in equilibrium at temperatureT is given by

whereâ ) 1/kT and fvib(T,eIS) is the basin free energy.3,5 The
hypothesis of a Gaussian form forΩ(eIS), together with the
assumption of aneIS independence of the basin anharmonicities
implies (i) that theT dependence of the average IS energy〈eIS-
(T)〉, at constant volume, is linear as a function ofT-1,48-50

that is

where the coefficientsA andB depend only onF and can be
expressed in term of landscape properties,50 and (ii) that the
probability distributionP(eIS,T) is Gaussian with aT-independent
variance.48-54

To provide evidence of this behavior, we report in Figure 1
〈eIS(T)〉 at all studied densities. In all cases, in the investigated
T range, the expectedT-1 dependence holds. Nevertheless, two
breakdowns of eq 3 are expected outside the investigatedT
region. At high T, due to the increasing importance of the
anharmonic contribution to the basin free energy49 and at low
T due to possible presence of non-Gaussian corrections to the
eIS probability distribution (eq 1). The lowT region cannot be
numerically studied due to the huge increase of the relaxa-
tion times. Figure 2 shows theF dependence ofA and B
(which have well-defined landscape interpretations50). As a first

approximation (but see ref 49 for a more precise discussion),A
is related toE0 andB to σ2.

The large available data set allows us to evaluateP(eIS,T)
and test the prediction of a Gaussian form ofP(eIS,T). Figures
3a and 4a showP(eIS,T) respectively forF ) 0.95 g/cm3 andF
) 1.00 g/cm3. The figures show that the shape of the distribution
is, to a first approximation, Gaussian and that the variance of
the distribution only weakly increases withT, as can be inferred
by the small change of the heigh of the distribution withT.

The availability of 100 independent realizations allows us to
study also the distribution ofP(〈eIS〉i,T), defined as the distribu-
tion of the average depth sampled in each independent trajectory
i in the simulated 20 ns time interval. In this case, of course,
each distribution is evaluated only over 100 points. If the length
of each trajectory is sufficiently long, so that the system is able
to sample all basins that are statistically relevant at that
temperature, the distribution should be peaked around the
average ofP(eIS,T), with a small variance. Figures 3b and Figure
4b show that this is the case only at the higherT. On cooling,
the relaxation time of the system increases and, within the time
of the simulation, the system retains memory of the initial basin.
It is important to observe that the distribution becomes very
asymmetric, developing a long tail at low basin energies. This
may suggest a strong relation between depth of the explored

Ω(eIS) deIS ) eRNe-(eIS-Eo)2/2σ2

x2πσ2
deIS (1)

P(eIS,T) )
Ω(eIS)e-â[eIS+fvib(T,eIS)]

∫P(eIS,T) deIS

(2)

〈eIS(T)〉 ) A + B
T

(3)

Figure 1. Temperature dependence of the average〈eIS〉(T) for all
investigated densities.

Figure 2. Density dependence of the fitting parametersA andB in eq
3.
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basin and dynamics, which cannot be attributed to differences
in thermal energy, because all different realizations have the
same kinetic energy. In particular, the asymmetry in the resulting
distribution suggests that configurations starting from low energy
basins do not have time to explore phase space sufficiently. It
is worth stressing that similar results are observed at all
investigated densities. To support this hypothesis, we show in
Figure 5 the time evolution ofeIS and of the center of mass
mean square displacement MSDi for two different trajectories
at the sameT and F. More precisely, the mean square
displacement of the trajectoryi is defined as

whererbj
CM(t) is the location of the center of mass of molecule

j in the trajectoryi at time t. The averagedMSD is defined as

whereNt is the number of independent trajectories. The two
chosen trajectories differ by the value ofeIS at time 0. In the
studiedt range (nanoseconds), both configurations sample a
restricted interval ofeIS values. The memory of the energy of
the starting basins is preserved during the simulation time.
Comparing Figure 5,b, we note that the configuration with large
eIS is characterized by a larger MSD.

IV. Dynamic Heterogeneities

We next focus the attention on dynamic heterogeneities via
a study of the mean square displacement of the individual
trajectories.35,55 For each state point (T, F) we calculate MSDi
for each of theNt trajectories. Figure 6 shows MSDi for F )
0.95 g/cm3 at three selectedT, but similar results are obtained
for all the other studied densities. In all cases, no averaging
over different time origins is performed. In the figure, the time
axis are chosen in such a way that the average MSD at the
maximum reported time coincides for all temperatures. A
comparison of the spreading of the different realizations at fixed
value of the average MSD, for example at the maximum
reported time, reveals a clear increase in the fluctuations of the
different trajectories on loweringT.

To better quantify fluctuations in dynamics and the role of
T, we calculate the variance of the mean square displacement
of different trajectories. More precisely, we evaluate, for each
time t

Figure 7 shows the behavior of the varianceσMSD as a
function of the average MSD, parametrically int, for several
differentT. This representation, which accounts for the intrinsic
effect of the slowing down of the dynamics on cooling by
eliminating t, confirms that dynamic heterogeneities grow
significantly on supercooling. Data in Figure 7 quantify that
the spreading of the MSDi values is much more enhanced at
low T. TheT dependence of the slope of the curves shown in
Figure 7 is shown in Figure 8.

It is interesting to compare results reported in Figures 7 and
8 with expectations for a Gaussian random walk process. For
this case, the probability of finding the walker after timet at

Figure 3. (a) Probability distribution of theeIS (per molecule) at density
d ) 0.95 g/cm3, for differentT values. (b) Probability distribution of
〈eIS〉, where each average is calculated over one distinct trajectory. Units
are arbitrary. EachP(eIS,T) is calculated using 5000 points, because
from each of the 100 independent trajectories we evaluated 50 different
inherent structures, minimizing at intervals equally spaced in time.

Figure 4. Same as Figure 3 ford ) 1.40 g/cm3.

MSDi )
1

N
∑
j)1

N

[ rb j
CM(t) - rb j

CM(0)]2 (4)

MSD )
1

Nt
∑

i

Nt

MSDi (5)

Figure 5. eIS and the mean square displacement as a function of time
for two different trajectory atT ) 210 K andF ) 0.95 g/cm3.

σMSD ) x∑
i

(MSDi - MSD)2

Nt - 1
(6)
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distancer2 from the location at the time origin is

The first and second moments of this distribution are given by

and

The varianceδ of r2 between different trajectories of the
walker is

Hence, a plot ofδ vs 〈r2(t)〉 has, for a single Gaussian walker,
a slope ofx2/3, a universal value independent of the diffusion
constant. If the dynamics in simulated water could be repre-
sented by the dynamics ofN ) 216 independent walker, then
σMSD should be related to MSD by the relation

because each MSDi would be the sum ofN independent
Gaussian processes (with a reduction of the variance by a factor
xN as compared to the single random walker case). Data in
Figures 7 and 8 show that this limit is approached at highT.

In another extreme theoretical case, each realization can be
considered as a single random Gaussian process (for example,
in the limit of strong correlation between allN molecules, or in
the limit of one single diffusing molecule). In this limit, the
expected relation betweenσMSD and MSD would be

Figure 6. Individual mean square displacement for 100 independent
realizations at three different temperatures. Filled symbols indicate the
MSD averaged over the different realizations. Note that no average
over starting time has been performed.

P(r2,t) dr2 ) x27
2π

xr2

〈r2(t)〉3/2
e-3r2/2〈r2(t)〉 dr2 (7)

〈r2〉 ) ∫0

∞
r2P(r2,t) dr2 ) 〈r2(t)〉 (8)

〈r4〉 ) ∫0

∞
r4P(r2,t) dr2 ) 5

3
〈r2(t)〉2 (9)

Figure 7. VarianceσMSD of the MSD as a function of the average
MSD for F ) 0.95 g/cm3, for differentT. The two full lines indicate
the two extreme limits provided by eqs 11-12. Note that in water the
nearest neighbor distance is 0.28 nm, corresponding to a square
displacement of≈0.09 nm2.

Figure 8. Slope ofσMSD vs MSD as a function ofT for F ) 0.95
g/cm3. The two lines indicate the two extreme limits provided by eqs
11-12.

δ2 ) 〈(r2 - 〈r2〉)2〉 ) 2
3

〈r2(t)〉2 (10)

σMSD ) x2
3

1

xN
MSD (11)
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For reference, this limit is also reported in Figures 7 and 8.
Data shown in Figures 7 and 8 show that a crossover from

the behavior of eq 11 to the behavior of eq 12 takes place on
supercooling. It will be very interesting to study the size,T,
and t dependence of these effects. Moreover, because each of
the equilibrium trajectories of the 216 molecule system can be
thought as representative part of a large system, the increase of
the variance with decreasingT provides a strong evidence of
growing dynamic heterogeneities in the system. In this respect,
this set of data, or analogous data for simpler potentials, may
become a relevant tool for discriminating between different
theories of the glass transitions, in particular between the ones
based on facilitated dynamics ideas56 and trap models.57,58

V. Correlation between Diffusion Coefficient andeIS

Bulk dynamic properties of SPC/E water have been previously
investigated in detail.59-63 In particular, PEL inspired studies
have investigated the relation between theT andF dependence
of the diffusion coefficientD and the number of unstable
directions in configuration space,36 as well as the relation
betweenD and the configurational entropy.4 Figure 9 shows
the average diffusion coefficientD, evaluated from the MSD
long time limit, for several studied density and temperatures.
The present set of data improves the precision of previous
estimate for the same model.62 Despite the relatively smallT
range investigated in this study,D varies over more than 3 orders
of magnitudes. It also clearly show that, among all the studied
densities,D is largest around density 1.1 g/cm3. When F
increases, dynamics slow due to the packing effect, whereas
whenF decreases, dynamics slow due to the development of a
network of hydrogen bonds.

Most of previous studies on dynamic heterogeneities64-66 have
focused on the dynamics of different subsets of molecules in
the same system, raising sometimes the question if the observed
results were somehow associated with the chosen rules for
identifying slow and fast particles. It is also fairly difficult to
correlate properties of the subset of molecules to energetic
properties, due to the difficulty of separating unambiguously
the single particle energy contributions. In the present approach,
heterogeneities are addressed globally, as a fluctuation phe-
nomenon. To better clarify the connection between dynamic
and energetic (static) heterogeneities, we correlate the apparent
diffusion coefficient of each trajectory with the corresponding
average inherent structure. Indeed, it is important to observe
that, when each trajectory is averaged over different time origins,
the resulting MSD behaves linearly witht, such that an apparent
trajectory diffusion coefficientDi can be estimated. Differences
in Di values between different trajectories persist even for time
such that molecules have diffused over distances larger than
two molecular diameters (≈0.3 nm being the distance between
the center of mass of two nearest neighbor molecules).

Figure 10 shows a plot of the averageD(T) as a function
〈eIS〉(T) for one selected isochore. It also shows for each
trajectory i (at the sameT and F), the apparent diffusion
coefficientDi vs the average sampled〈eIS〉i. While at largerT,
self-averaging is well accomplished on the time scale of the
simulation, at lowerT, each trajectoryseven if diffusive over
distances of several molecular diametersssamples only a small
part of the statistically relevant configurational space, resulting
in a large spreading in the value of〈eIS〉i. Interestingly enough,

such a spreading in〈eIS〉i is strongly correlated to the spreading
in the Di values.

The relation betweenDi and 〈eIS〉i displayed by the data is
not very different from the corresponding relationD vs 〈eIS〉
for the averaged values. A more detailed study ofDi vs 〈eIS〉i

over a smaller grid of temperatures, allowing for overlap of
different (Di - 〈eIS〉i) pairs of points could help sort out theT
andeIS roles. Indeed, one could associate eacheIS with a precise
value of D(eIS) and, in analogy with the thermodynamics
formalism developed by Stillinger, one could attempt to calculate
D(T) as11

Figure 9. Average diffusion coefficientD as a function ofT for several
studied densities.

Figure 10. Comparison between the average diffusion coefficient (line
with open circles) and the diffusion coefficient of each single trajectory
at F ) 0.95 g/cm3 (top panel) andF ) 1.40 g/cm3 (lower panel).

σMSD ) x2
3
MSD (12)
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whereF(eIS,T) account for the role ofT in dynamics andP(eIS,T)
is calculated according to Stillinger’s PEL formalism. If this
goal would be reached, the PEL formalism would become an
exceptionally rich tool not only for describing the thermody-
namics of supercooled liquids but also their dynamics.

VI. Conclusion

One of the key features in the slowing down of the dynamics
of liquids on approaching supercooled statessi.e., when the
dynamics begin to slow significantly as compared to the standard
liquid valuessis the development of local fluctuations both in
static and in dynamic properties. Current computational re-
sources allow us to start looking carefully into this prob-
lem, by performing an analysis of these fluctuations.54 These
approaches, compared to the corresponding studies of the
average properties, are complicated by the interplay between
space and time. The data reported in this article, more than
providing conclusive answers, hopefully clarify the richness of
this type of analysis and should stimulate further studies focusing
on the time and space evolution of these fluctuations. The
presented preliminary analysis reported here clearly shows that
the role of fluctuations significantly grows on cooling. Compar-
ing fluctuations in dynamics at fixed mean square displacement
(Figure 7), we have detected a progressive increase of the
fluctuations on cooling, already in the region of early supercool-
ing, where MCT appears to provide a consistent description of
the dynamics.60 Interestingly, self-averaging properties appear
to set in only after molecules have diffused several particle
diameters. This finding not only clarifies the difficulty of
calculating reliable values for dynamical quantities in deep
supercooled states but calls attention on the fact that a complete
decorrelation of the system requires, at lowT, rearrangements
that extend much beyond the first neighbor shell.

We have also observed a clear correlation between the
apparent diffusion coefficient of the individual realizations and
depth of the sampled PEL (Figure 10). Again, the comparison
of different trajectories, all at the same temperature, helps in
eliminating trivial (but a priori unknown) thermal effect,
highlighting the connection between dynamics and IS energies.
In this respect, one goal of future studies should be the
development of a (size dependent) dynamical histogram re-
weighting formalism, conceptually similar to the one used to
calculate the density of states, from which the relationD(eIS)
could be extracted. This would allow us to sort out the role of
T andeIS in dynamics, and to describe in terms of PEL properties
not only the thermodynamics of supercooled liquids but also
their dynamics.
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