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Via Cinthia (Monte S Angelo) Ed. G, I-80126 Napoli, Italy

Received 14 September 2004
Published 29 October 2004
Online at stacks.iop.org/JPhysCM/16/L489
doi:10.1088/0953-8984/16/45/L01

Abstract
We address the question of the dependence of the fragility of glass forming
supercooled liquids on the ‘softness’ of an interacting potential by performing
numerical simulation of a binary mixture of soft spheres with different power
n of the interparticle repulsive potential. We show that the temperature
dependence of the diffusion coefficients for various n collapses onto a universal
curve, supporting the unexpected view that fragility is not related to the hard
core repulsion. We also find that the configurational entropy correlates with the
slowing down of the dynamics for all studied n.

When a liquid is cooled below its melting temperature, if crystallization does not take place,
it becomes supercooled. In this supercooled region, the viscosity increases by more than
15 orders of magnitude in a small T -range. When the viscosity η reaches a value of about
1013 P the liquid can be treated as an amorphous solid, i.e. a glass [1–4] and the corresponding
temperature is defined as the glass transition temperature (labelled Tg).

The T -dependence of the viscosity η differs for different glass formers. Angell has
proposed a classification based on the behaviour of η(T ). Glasses are said to be fragile if they
show large deviations from an Arrhenius law (η(T ) ∝ exp[E/T ]) or strong otherwise [5]. The
fragility m of a glass forming liquid can be quantified by the slope of log η(T ) versus Tg/T ,
evaluated at Tg, i.e. as

m = d log η

d(Tg/T )

∣∣∣∣
T =Tg

. (1)

While the original definition of fragility is based on a purely dynamic quantity, correlation
between m and other physical properties of glass forming liquids, both with dynamic and
thermodynamic properties, have been reported. Recently, a correlation with vibrational
properties of the glass state has also been reported [6]. One of the main challenges in the
physics of supercooled liquid and glasses is to understand the connection between dynamical
properties of the liquid close to the glass transition, i.e. the fragility, and microscopic properties.
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Figure 1. T -dependence of the diffusion
coefficient for all n investigated. D is

measured in units
√

σ 2
AAεAA/M .

Is the fragility most affected by the steepness of the repulsive potential or by the interparticle
attraction? Is it controlled by other properties of the interaction potential? In the present letter
we address this question calculating numerically the fragility of several models for liquids,
differing only in the softness of the repulsive potential. We aim at understanding whether
changing the softness of the repulsive potential changes the fragility accordingly. We show
more generally that the diffusion coefficient D can be scaled on a universal master curve by
changing the softness of the repulsive potential. This implies that the fragility does not depend
on the softness of the interaction potential. We complement this dynamical study with the
evaluation of the configurational entropy to check the validity of the Adam–Gibbs [7–10]
relation. In this letter we consider a simple glass former, a 80:20 binary mixture of N = 1000
soft spheres [11–13], which is an ensemble of spheres interacting via the following potential

Vαβ(r) = 4εαβ

(σαβ

r

)n
(2)

where α, β ∈ A, B, σAA = 1.0, σAB = 0.8, σB B = 0.88, εAA = 1.0, εAB = 1.5, εB B = 0.5
and n is a parameter by which is possible to tune the ‘softness’ of the interaction [14]. This
interaction potential is a Kob–Andersen potential [15] in which the attractive part of the
potential has been dropped. In particular we investigate the values n = 6, 8, 12, 18.

This choice for the binary mixture is motivated by the fact that such a system is not prone
to crystallization, that is it can be easily supercooled below its melting temperature. Still, for
n < 6, crystallization takes place within the simulation time, determining a lower limit to the
range of investigated n values. Reduced units will be used in the following, length will be in
units of σAA , energy in units of εAA and time in units of (Mσ 2

AA/εAA)1/2, where M is the mass
of all particles. In physical units, assuming the atom A is argon, the units are a length of 3.4 Å,
an energy of 120 K kB and a time of 2.15 ps.

At fixed n, the self-similar nature of the soft-sphere potential couples T and V . It can
be shown that all thermodynamic properties depend on the quantity T V n/3 [16]. Dynamic
properties can also be scaled accordingly [17]. Hence, it is sufficient to quantify the T -
dependence or the V -dependence of any observable to fully characterize the behaviour of the
system. As a consequence the fragility does not change upon changing the density of the soft
binary mixture, at fixed n.

Figure 1 shows the T -dependence of the diffusion coefficients, evaluated from the long
time limit behaviour of the mean square displacement, for all n investigated and covering a
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Figure 2. Master curve for diffusion coefficient D calculated rescaling the temperature by an n-
dependent quantity. Full curve is a Vogel–Fulcher–Tamman fit to all points lying in the landscape-
influenced region [20, 21], which for the present model corresponds to ξ < 0.78 with ξ = T/Tn ,
i.e. D(ξ) = A exp[B/(ξ − ξ0)]. The fitting parameters ln A, B and ξ0 are, respectively, −2.46,
−0.857 and 0.209. From this master curve one can also estimate the dynamic fragility, which is
about 130.4. The dashed curve is a fit to all points lying in the interval 0.328 < ξ < 0.833, to
a power law [22–24], i.e. D(ξ) = Am (ξ − ξc)

γ , where ln Am = −2.41, ξc = 0.309, γ = 1.88.
The dot–dashed curve is a fit to D(ξ) = exp(A0ξ

2 + A1ξ + A2), according to [25]. The fitting
parameters A0, A1, A2 for the latter case are, respectively, −1.61, 3.79, −6.38. The inset shows
the n-dependence of the scaling parameter Tn . The bottom part shows the error of all three fitting
functions (ln Ddata − ln Dfit).

window of about four orders of magnitude. At high T the behaviour is consistent with the quasi-
universal behaviour proposed by Rosenfeld [18]. In the attempt to compare the n-dependence
of the diffusion coefficient, we report in figure 2 the data as a function of Tn/T , where Tn is
chosen in such a way to maximize the overlap between data of different n, i.e. to collapse all
data onto a single master curve. Figure 2 shows that all curves can be successfully scaled onto
the master curve D choosing a proper set of scaling parameters Tn (whose n-dependence is
plotted in the inset of this figure). The very good quality of the resulting master curve

D(T ) = D(T/Tn) (3)

suggests that the n-dependence enters only via a rescaling of the temperature3,4. The
remarkable consequence of the latter result is that the fragility of the system does not depend
on the repulsive interaction potential. In fact according to equation (3) and from the definition

3 Note that linear extrapolation of Tn with n shows that Tn goes to 0 at same value n � 2. This may suggest that
below a critical value of the range of the potential the T -dependence of the diffusivity coefficients exhibits a strong
crossover to a different regime. Below this critical value the T -dependence of the diffusion coefficient should be
weak.
4 The scaling behaviour of the temperature dependence of the diffusion coefficients on varying the density for ortho-
terphenyl has been studied in [19].
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of the liquid’s fragility m given in equation (1), assuming D ∝ η−1, we get:

m = Tg(n)

Tn

1

D[Tg(n)/Tn]

dD(x)

dx

∣∣∣∣
x=Tg(n)/Tn

(4)

where Tg(n) is the glass transition temperature for the system with softness n, which can be
defined as the temperature at which diffusivity reaches an arbitrary small value 10K,5 i.e.

− log D[Tg(n)] = − logD
[

Tg(n)

Tn

]
= K. (5)

Equation (4) shows that the fragility index m is a function only of the scaled variable Tg(n)

Tn

and hence, as far as the scaling reported in figure 2 keeps holding even at temperatures lower
than the one we are able to equilibrate, the dynamic fragility m is independent of n as well.
By fitting the master curve to a Vogel–Fulcher–Tamman (VFT) fit, as shown in figure 2, an
estimate of Tg(n)

Tn
= 10K can be calculated, resulting into a estimation of m ≈ 130. This figure

should be compared with the value m = 81 for o-terphenyl (OTP), which is a typical fragile
liquid and m = 20 for the prototypical strong glass the liquid silica (SiO2).

For completeness, we report also in figure 2 a fit of the master curve according to the
prediction of mode-coupling theory (MCT), which has been shown to be consistent with
numerical data for several models in the weak supercooled region. A best fit procedure requires
the exclusion of the low T points, for which deviations from the power-law fit are observed6.
We also show for completeness a fit to the functional form proposed by kinetically facilitated
models [25]. Figure 2-bottom shows the errors of all three fit functions.

Recently, evidence has been presented that kinetic fragility strongly correlates with
thermodynamic fragility [26]. In this respect, it is worth looking if the scaling observed in
dynamic properties has a counterpart in thermodynamic properties. In particular, we evaluate
the configurational entropy for the system, within the potential energy landscape framework
as discussed in detail in [27–32]. In brief, we estimate Sc as difference between the liquid
entropy (calculated via thermodynamic integration from the ideal gas) and of the vibrational
entropy (calculated via thermodynamic integration, including anharmonic corrections, from
the very low temperature harmonic dynamics of the disordered solid associated to the liquid
configuration). We then focus on the ability of the Adam–Gibbs (AG) relation, which states
that

D(T ) = AAGe
BAG
T Sc , (6)

to model the temperature dependence of D. Figure 3 shows the AG plot for the studied n
values. For all n, a satisfactory linear representation of log(D) versus 1/T Sc(T ) is observed.
As discussed in more detail in [33], the simultaneous validity of the VFT description of D and
of the AG relation requires the identity of the kinetic and thermodynamic fragilities. In this
respect, the independence of n discussed above for the case of kinetic fragility carries on also
to thermodynamic fragility.

A remarkable consequence of the validity of the AG relation (equation (6)), associated to
the scaling with n of D (equation (3)) is that the configurational entropy can be written as

Sc(T ) = S0(n)F(T/Tn) (7)

where F(x) is a scaling function and S0(n) = BAG/Tn. To support such a proposition, we
show in figure 4 Sc multiplied by the factor BAG/Tn as a function of T/Tn , where Tn are the

5 In particular we have made the choice D[Tg(n)] = 10K = 5.75 × 10−16, this value for the diffusion coefficient
ensures that at Tg the relaxation time is about 100 s.
6 We also note that a Bassler form (D(ξ) = A exp(B/ξ2)) does not reproduce the data in a manner comparable to
VFT and MCT.
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Figure 3. Test of the Adam–Gibbs relation based on the configurational entropy values calculated
subtracting the anharmonic and harmonic entropies from the total entropy (see [27] for details).
The fitting parameters ln AAG and BAG are: for n = 6, −1.112, −1.584; for n = 8, −1.303,
−2.105; for n = 12, −1.271, −3.481; for n = 18, −1.657, −4.002. T Sc is measured in units of
εAA .

Figure 4. Master plot of the configurational entropy (see equation (7)). The inset shows the
temperature dependence of the configurational entropy.

values for which D scaling is recovered (inset of figure 2). Again, the quality of the data
collapse stresses the validity of the scaling with n.

To conclude, the relevant result that has been shown in this letter is that in the case of
soft sphere potentials, the dynamic fragility is independent of the power n of the short range
repulsion. This conclusion is based on the hypothesis that the scaling observed in the range
of T where simulations are feasible extends also to lower temperatures, down to the glass
transition temperature. Indeed, a particular effort has been made to equilibrate configurations
to temperatures lower than the MCT temperature, where dynamical processes different from
the ones captured by MCT are active. If the scaling is indeed valid, the results presented in this
letter strongly support the possibility that, contrary to our common understanding, fragility in
liquids is mostly controlled by other properties of the potential, more than by the hard core
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repulsion. This suggests that the attractive part of the interaction as well as the non-sphericity
of the interaction must intervene in the determination of the system fragility. Finally we note
that one could be tempted to associate the fact that the diffusion coefficient data can be rescaled
only by changing the energy scale by Tn to a simple overall rescaling of the landscape potential.
The data in figure 4 suggest that this is not the case since Sc(E) is not just a scaling function
of T/Tn but it needs to be rescaled by a factor S0(n) and hence the number of distinct basins
explored at the same T/Tn changes with n. A non-trivial compensation mechanism between
the scaling of the static properties (Sc) and the scaling of the kinetic coefficient BAG(n) (defined
in equation (6)) on n must be present.
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INFM Initiative Parallel Computing, Marie Curie Network and Miur FIRB and COFIN2002.
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