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Molecular-dynamics simulations are presented for two correlation functions formed with the partial density
fluctuations of binary hard-sphere mixtures in order to explore the effects of mixing on the evolution of glassy
dynamics upon compressing the liquid into high-density states. Partial-density-fluctuation correlation functions
for the two species are reported. Results for theelaxation process are quantified by parameters for the
strength, stretching, and time scale, where the latter varies over almost four orders of magnitude upon com-
pression. The parameters exhibit an appreciable dependence on the wave vector, and this dependence is
different for the correlation function referring to the smaller and that for the larger species. These features are
shown to be in semiquantitative agreement with those calculated within the mode-coupling theory for ideal
liquid-glass transitions.
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I. INTRODUCTION for the description of the glass-forming Ni-P mixtuf8].
This system has been used extensively to analyze all facets

If one compresses or cools a liquid, there appear slovof glassy dynamics in the equilibrium liquid and also for the
dynamical processes which are referred to as structural rejuenched nonequilibrium systefd,10]. In the mentioned
laxation. These processes are precursors of the liquid-glagsevious studies, mixing was merely introduced as a means
transition. The study of these phenomena has been a vepf suppressing crystallization. In the present paper, we ana-
active field of research in recent years. Several new experlyze the influence of mixing on the structural relaxation.
mental techniques were introduced to measure the evolution In order to identify the effect of mixing on the glassy
of structural relaxation spectra within the GHz band.dynamics, we have performed molecular-dynamics simula-
Molecular-dynamics simulation techniques have been imtions for four binary hard-sphere mixtures differing in the
proved considerably so that correlation functions of liquidssize ratio of the constituents and in the composition. By in-
in equilibrium can be obtained for time intervals covering creasing the total packing fraction up to 0.605, the evolution
five to six orders of magnitude. The wealth of information of structural relaxation was detected for a time interval up to
obtained on glassy dynamics is a challenge for the theory dive orders of magnitude. As reported earljéd], two sce-
amorphous condensed matter. However, consensus on tharios for mixing effects have been identified. For a mixture
understanding of the slow dynamics in glass-forming liquidswith a small-size disparity of the constituents, the increase of
has not yet been achievéd,2]. the mixing percentage of the small particles for a fixed total

Simple monoatomic liquids crystallize before structuralpacking fraction leads to a slowing down of the long-time
relaxation dynamics is fully developed. Therefore, studies oflynamics. In this case, mixing stabilizes the glass state.
the glassy dynamics have to be performed on simple molectHowever, upon mixing particles with a large-size disparity,
lar systems or suitable mixtures. Recently, for example, @he increase of the percentage of the small particles at fixed
four-component mixture was studied by neutron-scatteringpacking fraction speeds up the structural relaxation. In this
spectroscopy. This system transforms to a metallic glass aase, mixing stabilizes the liquid. The present paper reports a
low temperatures, but it exhibits the same scenario for theletailed analysis of the long-time relaxation processes, tradi-
evolution of structural relaxation as known for molecUlgs  tionally referred to asx processes, for the two scenarios
The first molecular-dynamics studies of structural relaxatiormentioned.
in an equilibrium liquid were performed for a binary mixture  Glassy dynamics and a liquid-glass transition can also be
of particles interacting by purely repulsive potentipds-6]. observed experimentally in colloidal suspensions. In particu-
A binary Lennard-Jones system has been introdycdd lar, one can prepare glass-forming colloids where the inter-
whose interaction potentials are similar to the ones proposedction potential is a very good approximation to a hard-
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sphere repulsiofil2]. Informative light-scattering studies of as the partial packing fractions,= (7/6)¢,d3. Here o
structural relaxation for such a hard—sphe_re suspension _haveeA andB labels the big and small particles, respectively. In
been reportefi13]. To suppress crystallization, a narrow dis- the present work, the size ratib=dg/d,, the total packing
Frlbutlon pf particle sizes was chosgn. S@rlctly, such a systefraction o= ¢+ ¢, and the relative packing fraction of the
is @ multicomponent mixture. But ignoring the small poly- smaller speciesy=¢g/¢, will be used as convenient con-
dispersity, it can be viewed as a one-component system. Ifjo| parameters to characterize the thermodynamic state.
ersonet al. [14] as an approximation for a binary hard- constructed from the positioné®™ , k=1,...N,, of particles
sphere mixture with a size ratio 0.8 between the two groupg type a:  0,(6)=2, exdig-r@YYN. The partial struc-
of particles and a mixture studied by Williams and van f § S“ L ide the simol
Megen[15] as one with size ratio 0.6. For the first mixture g ture factors ap(d) =(€.(4)" 24(G)) provide the simplest
o ', statistical information on the equilibrium distribution of

dramatic effect of mixing on the nucleation ratio was ob- . . :
Sonvod but no effect ongthe glassy dynamics has been r grt|clgs—|.e., on the structure. Hefte denotes canonical
ported’ For the second mixture. it was shown that the timé veraging. The structure factors depend on the wave vector

: . ' e . only via g=|q|. They can be written a$,5(q)=X,08.s
scale for thex relaxation decreased upon mixing. Our simu- . X .

. . ) +0X,n,5(0)Xs, With h,s(q) denoting the Fourier trans-
lation result 11] suggest that the cited experiments do nOtform of the pair-correlation function. The latter can be ex-
deal with colloid-specific features. Rather, they exemplify ressed in tgrms of the direct corrélation functiang(q)
the two scenarios for mixing effects on structural relaxation.sia the Ormstein-Zerike equationh., o )_?@(q)
Therefore, the present paper provides a detailed list of quan- q pll) = Capld

titative predictions for correlation functions of glassy col- +02,Cay(A)x,N,4(q) [20]. The Sa_,;(q), hep(d), an<_j
C.p(q) are elements of real symmetric two-by-two matrices.

loi hich hoton- lati : . . ; )
oids, which can be measured by photon-correlation SpecThe discussions will be restricted to such stable and meta-

troscopy. ;
The mode-coupling theory for ideal liquid-glass transi- stable states whei®, 5(q) andc,(q) are smooth functions
of q and of the control parametegs &, andx.

tions provides a physical explanation for the evolution of T . it Fint *in thi the d
structural relaxation in simple systems and allows for a first- i € m?"t] qslf;m : 'e‘:‘ 0_ n ergst ln IS pagﬁr are the den-
principles evaluation of the density-correlation functions>'Y correlators®,,5(q,t) =(€4(4,)* (d)). These corre-

[16]. The results of this theory for the hard-sphere systerﬁaﬁon functions provide the simplest statistical characteriza-
have been used for a detailed analysis of the light-scatterin ?n_ of the st(;ucr:uralc dynarr]nlcsl. They aref real even functions
data obtained for hard-sphere colloids with a small polydis-b timet, an tI ey .OrF“It ehe emen;[s ora syrgmetnc tWO'd
persity[17]. The theory has been extended recently to a dis- y-two matrix. In principle, the correlators can be measure
cussion of binary hard-sphere mixtures. In particular, the®> mte_rmedlate_ coherent scattering fu_nct!ons by neutron-
above-mentioned two mixing scenarios had been obtaineﬁcatte”ng experiments for convenyonal liquids or by photon-
[18]. It was possible to describe a major part of the scatterin _orrelatlon spectroscopy for colloidal suspensions. A short-
data for a mixturg15] quantitatively by the theoretical re- M€ 2expan5|on 3 yields .?])_aﬁ(r?’t):.saﬁ(q)f_(llz)l
sults [19]. These findings provide a motivation to use our X(AVa1)"Xa8ap+ O(t") [20]. Within the regime of normal-

simulation results also for a detailed quantitative test of thd!duid states—sayp<0.4—the short-time dynamics varies
mode-coupling theory for the-relaxation process. on a 30% level upon changes of the control parameters.
The paper is organized as follows. In Sec. II, the simula-There are no structural relaxation phenomena apparent in the

tion details are described, representative results for the twiansient dynamics. , _ ,

mixtures considered are exhibited, and the mode-coupling- WO Mmixtures shall be considered in the following. A sys-
theory formulas for thew-relaxation process are listed. Then, €M With 6=0.60 andx=0.20, referred to as thé=0.60

in Sec. Ill, it will be explained how thex-relaxation pro- system, is representative fora mixture with large-size dispar-
cesses are parametrized. The results for the parameters &% In this case, 54% of the particles are of spedsA
compared with the corresponding ones obtained from th&YStem with 6=0.83 andx=0.37, referred to as th&

mode-coupling-theory findings. Section IV presents a com-=0-83 system, contains 50% of small particles. It is repre-
parison of thea-relaxation master functions for the density- sentative for a mixture with small-size d|_spar|ty. These mix-
fluctuation correlation functions of the simulation data with tures have been used before, together with systems of smaller

the corresponding theoretical results. In Sec. V, the finding®@€rcentages, in order to demonstrate the evolution of mix-
are summarized. ing anomalies with variations of [11]. Since we are not

interested in details of the short-time dynamics, the masses
of the particles are chosen equal—i,=vg. The units of
Il. BASIC CONCEPTS AND RESULTS length and time are chosen such tlht=1 andv,=vg
A. Specification of the systems =1. With these units, the natural time scale for the micro-

. ic motion ig ;.= =1.
Let N and ¢ denote the total number of particles and theSCOp ¢ motion istpic=da/va

total number density, respectively, of the binary hard-sphere
mixture (HSM) to be studied. Further numbers specifying the
system are the particle diameteds, the particle masses We perform standard molecular-dynamics simulations for
m, , their thermal velocities ,, the partial number densities binary mixtures ofN=1237 andN=700 hard-sphere par-
¢,., and number concentratiomg=p¢,/0=N_,/N, as well ticles with size ratio$§=0.60 ands= 0.83, respectively. The

B. Results from molecular-dynamic simulations
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algorithm follows the usual event-driven scheme for the 12
simulation of hard-sphere particlg21], where the trajectory

of the system is propagated from one collision to the next

one. To generate dense enough initial configurations without 0.8
particle overlaps, we applied the same procedure as de-
scribed earlief22]:  Starting from a random distribution of
points, particles were separated, growing their diameters in 04
successive steps until the desired size was reached. From th
initial configuration, each simulation proceeds by an equili-
bration run, followed by a production run during which po- o ==
sitions and velocities are saved for subsequent analysis. In al
cases, the equilibration time was larger than the time it takes
for the particles’ average displacement to reach one diamete!
of the large speciegj,. Up to four independent runs per
state point have been performed to reduce statistical errors
Density correlation functions ,4(q,t) and static structure
factorsS,5(q) have been calculated by averaging over the 0.2
independent runs and over 300 different wave vectpif

the same modulug. The longest simulation run requested 0
about 3 weeks; i.e., the largest density studied took about 3
months of CPU time on a fast AMD Athlon processor to be
completed.

We checked that no crystallization occurred during the
production runs by monitoring the time evolution of the pres- 0
sure of the system and by visual inspection of the configu-
rations. We also evaluated the wave-vector-resolved structure , -
factor without angular averaging to make sure that no crys-
talline peaks have developed. Other mixture compositions
than the ones presented below have been tried$f00.83 04, 10 20 30
andx=0.276 as well as fo6=0.60 andx=0.10, it was also qu
possible to study the glassy dynamics in the liquid phase
[11], despite a stronger tendency to crystallization. A system FIG. 1. Partial structure factoss, 4(q), «,8=A,B, of a binary
with 6=0.60 andx=0.05 did not stay in the homogeneous hard-sphere mixture for diameter ratio of the partickesdg/d,

liquid phase long enough for a study of structural relaxation~ 0-60. & relative packing ratiof the smaller species of 20%, and

Figures 1 and 2 exhibit a typical set of structure factors©t@! Packing fractionp=0.60. Circles are the molecular-dynamics
imulation results, while solid lines are the results calculated within

and the corresponding pair distribution functions. The result . : N .
refer to thes=0.60 system, and the lines are calculated us- ercus-Yevick theory. Here and in the following figures, the diam-

ing the Percus-Yevick theory for the HSK23,24. Obvi- eter of the larger spheres is chosen as the unit of lemh,1.

ously, this approximation theory accounts for the data rather

well, even though the packing fractian=0.60 considered is For the radial distribution functions, these trends correspond
rather large. But there are small systematic deviations of th&éo a reduction of the contact values and a decrease of the
kind known from the discussion of hard-sphere mixtures agveraged radius of the first neighbor shell with decreasing
smaller packing fractiong25]. For example, the theory over- Moreover, at larger-size disparities, a splitting of the first-
estimates the height of the first and second peak3,gfq) neighbor-shell peak into a double peak is observed, as is
by about 10%. The contact values for the radial distributionevident in Fig. 2.

function are 11.6, 6.87, and 8.76 for tiAe\, BB, and AB Figures 3 and 4 exhibit representative examples for the
functions, respectively, while the Percus-Yevick theoryevolution of the glassy dynamics upon compressing éhe
yields 8.88, 6.32, and 7.28, respectively. It will be discussed=0.60 mixture. The wave vectogrl,=5 andqd,= 10 have
below that these discrepancies have to be acknowledged lifeen chosen since they exhibit the characteristic differences
one intends to consider the results of the mode-couplingn mixing effects for small and large wave vectors that have
theory (MCT) quantitatively. Even though the results of been discussed befofé1,18. Note that the values of the
Percus-Yevick theory are well known, a side remark on itspartial correlation functions can be quite different; in particu-
qualitative features might be in order. Increasing the sizdar, the small values of thé\B correlator atqd,=10 are
disparity—i.e., decreasing below unity—the height of the responsible for the worse signal-to-noise ratio observed
first diffraction peak inSya(q) decreases. Simultaneously, there.

the wing of the peak ajd,~9 increases. Within MCT, the The correlators foro=0.40 are close to exponentials
first trend stabilizes the liquid state, while the second trendvhose characteristic decay time is near the natural time scale
stabilizes the glass. The first trend dominates at the glags,.=1 for the microscopic dynamics. They are typical for
transition for smalls, the second one that for largér[18]. normal-liquid behavior which can be described on a 30%
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FIG. 2. Pair distribution functiong,(r) corresponding to the FIG. 3. Molecular-dynamics-simulation results for the density
results shown in Fig. 1. correlatorsdb ,5(q,t), «,8=A,B, for the §=0.60 mixture for wave

vectorqd,=5. The dotted and dashed lines refer to packing ratios

accuracy level by Enskod’s theory for dense f ¢=0.40 and 0.45, respectively. The solid lines are correlators for
y y 9 y ga28 ¢=0.530, 0.550, 0.570, 0.580, 0.590, 0.595, 0.600, and Q6O

the packing fraction increases 40=0.45, the time scale for Ietft to right). Here and in the following figures, the unit of time is

the decay of the comelators increases by about 40%, so th"(;:‘hosen such that the thermal velocity of the particles is unit
for t=5 all correlators have decayed to below the 5% level y P 4

of their initial values. Increasing above 0.45, a new relax-

ation pattern evolves for the dynamics outside the transiereéndence on the wave vecirlt is the goal of this paper to
regime—say, fot>5. The ® ,4(q,t)-vs-logt diagrams ex- ~characterize ther process, in particular its dependence,
hibit a two-step relaxation scenario that has repeatedly beeguantitatively.

observed before in simulation studies and experiments. First,

the correlators decrease towards some plateau. The curves C. Some mode-coupling-theory equations

become flatter and the plateau lengths increageritreases.

Then, the correlators decrease from the plateau to zero. The Within MCT, the concept of a plateau and of an
dynamics fort=t,,;. is called structural relaxation. Our simu- ¢€laxation process can be defined precisely in the sense of

lations document this process, which is characteristic foSymptotic laws describing the dynamics near an idealized
glass-forming liquids, for a time interval extending over Iqu|d—t0-gIa§s transition. These Iaws.prowde a motivation
nearly five orders of magnitude. for parametrization of the data. In addition, our data shall be
The second step of the structural relaxation—i.e., the deused to test quantitatively the results of the theory. In this
cay below the mentioned plateau—is conventionally referregection, the required formulas are compiled.
to as thea process. The figures demonstrate that the time Let us introduce an obvious matrix notation to get the
scale for thew process increases the faster with increasing following equations in a transparent forr8(q), ®(q,t),
the larger the packing fraction. The decay cannot be deetc., shall denote two-by-two matrices with elements
scribed by an exponential function: rather, it is stretched oveB,4(q), ®,4(q,t), etc. The Zwanzig-Mori formalisnj20]
wider time intervals. Obviously, the whole structural relax-can be used to derive the exact equation of motion for the
ation pattern, in particular the process, shows a subtle de- density correlators,
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fa [(I)](Q):j E 2 Vaa’a” q!k!p))
B 2q XQXB&’B’&”B” |z

X @a/ﬁ/(k)q)auﬁu( p)vﬁ,B’,B"(q)’ ,p) .
(10

In the sum, the abbreviatioﬁzﬁ—lz is used. The vertices
V.arer(G,k,B) are expressed in terms of the direct correla-
tion functions c,z(k) and a triple average
(Qa(q)*gﬁ(ﬁ)gy(ﬁ)y Simplifying the latter by the convo-
lution approximation, one gets

Vot (G, K,0) = (G- KIG)C gt (K) S

+(q'ﬁ/q)caa”(p)5aa’ . (1d)
Note that the mode-coupling functional is determined by the
equilibrium structure alone. Specifying the structure factors
and a model forM™¥q,t), the preceding equations are
closed. To proceed towards a numerical solution, one intro-
duces a grid of equally spaced wave numbers extending up
to a cutoffg*. In this paper, we use 140 wave numbers and
qdx =56.8 for calculations based on the simulated structure
factors. Some results based on the Percus-Yevick approxima-
tion shall also be shown, and for those we used 200 wave
numbers up togdx =79.8. We refer to Ref[18] and the
papers quoted therein for further details.

The MCT equations exhibit bifurcations for the long-time
limits of the solutions. For packing fractions below some
critical value o®= ¢°(5,x), one getgP(q,t—)=0. In this

FIG. 4. Analogous results as shown in Fig. 3, but for waveparameter regime, the solutions describe ergodic liquid dy-

numberqd,= 10.
1(q)92®(q,t)+S (q)®(q,t)

+f;M(q,t—t’)aVCD(q,t’)dt’=O. (13

Here 1(q) is a matrix of inertia parameters|,z(q)
=1/(q2vixa)5aﬁ. The kernelsM ,4(q,t) are fluctuating-

namics. Fore= ¢°, the long-time limits are nondegenerate
symmetric positive-definite matrica®(q,t—)=F(q). For
these states, the solutions describe amorphous solids—i.e.,
ideal glasses. The long-time limits obey the implicit equa-
tions

F(a)=S(q)—~[S(q) "+ FAFI(@)] @

These equations are defined by the equilibrium structure

force correlation functions, and they reflect the complicatedalone; neither the inertia matriXq) nor the regular memory
many-body interaction effects. The equation of motion has tdkernelM™Yq,t) enters. The above equation fi6(q) can be

be solved with the initial condition®(q,t=0)=5(qg) and

3 ®(q,t=0)=0. The essential step in the theory is the ap-

solved by a standard iteration proced{2&].
Let F°(q) denote the nondegenerate positive-definite ma-

plication of Kawasaki’s factorization approximation in order trix of long-time limits at the transition poinp= ¢°. For

to identify the kernel contributioM™<T(q,t), which ex-

reasons of continuityPp(g,t) has to be close t&°(q) for a

presses the coupling of the forces to the density fluctuationdarge time interval if ¢ — ¢°| is small. The correlators are the

The remainder of the kerneM™9q,t), is assumed to de-

closer toF°(q) the smallefo— ¢°|, and the time interval of

scribe the normal-liquid-state dynamics. It is anticipated tathis close approach extends simultaneously. Thereby the evo-
vary regularly in the control parameters and to decay on théution of the plateaus, which were discussed above in con-

scale t,,. for the transient motion. One getM(q,t)

=M"9q,t)+MMCT(q,t), where the mode-coupling kernel

is given by the mode-coupling function,
MMCT(q,t)=FLD(t)](q), (1b)

which reads

nection with Figs. 3 and 4, is explained by MCT, and the
F°(q) are the MCT expressions for the plateaus.

The decay of the correlators from the plateaus to zero for
small negativep— ¢° shall be characterized by some time
scaler(¢). Obviously, lim,_, ,c7(¢)=. Let us consider the
dynamics of the relaxation from the plateau on the time scale

7 by writing t=1t7 with t fixed but positive. There holds

011505-5



FOFFl et al. PHYSICAL REVIEW E 69, 011505 (2004

lim ®(q,1 T)=llf(q,t_), (3) determi_ned from_ ther-relaxation times _of the density auto-
o correlation functlon_$see Sec. Il Eyielding values of 0.606
and 0.586, respectively. The errors of 10% and 7%, respec-
whereWw(q,t) obeys the equatiof28] tively, exhibited by the values noted in Eq3.a and (7b),
indicate the uncertainty one should expect for MCT results.
W(q,t_)=S(q)h7I(q,T)S(q) It is worth stressing that if one bases MCT on the Percus-

Yevick approximation for the structure factors, one gets, as

d ([~ - - o critical values for the two mixtures, 0.520 and 0.515, respec-

—S(q)—Nf M(qg,t—t")W(q,t")dt’, (4a tively. Hence the use of a correct instead of approximated

dt -0 structure factor input to the theory improves the results for

_ the critical points. It is remarkable that the modest errors of

to be solved with the initial conditioW(q,t=0)=F°(q). the Percus-Yevick theory, which are exhibited in Fig. 1, lead

HereM(q,1) is determined by the mode-coupling functional to noteworthy changes in the MCT results for the critical
for the critical point: points.

M(q,t)=F[w)](q). (4b) Ill. PARAMETRIZATION OF THE  a-RELAXATION
5 PROCESSES
The numerical solution of the equation fdr(q,t) is done
similar to that for the full equations of motion.
Equation (3) implies the following conclusion. Given The evolution of thex-relaxation scaling law is examined

A. Evolution of the « process

Someﬁfi and some error margin’ in F|g 5. The upper panel iS a typ|Ca| examp|e fOf the ma-
jority of correlators obtained in our simulations. For every
d(q,t)=w(q,t/7) (5) packing fractionp, some time scale= 7(¢) can be defined

_ _ so that the long-time parts of the correlators coincide if these
is valid within the margin fot=t/7>t_, providede—¢°  are considered as functions oft/r. This coinciding part
is small enough. This is the superposition principle for theprovides the master functionEaB(q,T) for the & process of

MCT « process. It describes the correlators in terms of ath . . . . ~

) , — . e fluctuation considered. Upon increasipgthet interval
¢-independent master functioW(q,t) and attributes the \yhere Eq.(3) holds expands to lower values of the rescaled
strong ¢ dependenc_e to t~hat of _the scaz}eFlresentlng the time t. Thus the observed scenario confirms the MCT pre-
correlators as functions df, the interval fort where they  giction. However, our data also exhibit violations of the
coincide expands to lower values biif [¢— ¢°| decreases. above-described scenario, which cannot be understood in the
The master functionaP(q,t) depend only on the equilib- framework of MCT. These occur only for the BB correlators
rium structure. Neither the inertia parameters(ig) nor the of the §=0.60 mixture for wave vectors around the
regular kernelM™Yq,t) have any influence onb(q,t).  Structure-factor peak positiond,~7, and this only for the
These quantities enter the time scalenly. two largest packing fractions examinegk 0.600 apd 0.605.

There are complicated but straightforward formulas to!N€ lower panel of Fig. 5 shows a representative example.
evaluate from7* the so-called von Schweidler expondnt The following analysis of¥(q,t) shall therefore be based
0<b<1, a critical amplitudeH®)(q), which is a positive on those data sets that do not exhibit the described
definite matrix, and a correction amplitudé(®(q) [29].  phenomenon—i.e., fop<0.60.
These quantities determine the von Schweidler expansion of The stretched exponential

the master functions, K —
Bo(a,t)=A,(q)exp{ —[t/7,(q) PP} (8)

is an often used empirical function for the descriptionaof
73® have been dropped. Thereby an processes. It was introduced by Kohlrausch for the descrip-
tion of dielectric relaxation data. The description of the
-process master function by an amplitude—also called the
lateau value-A,(Q), a time scalé&,(q), and a Kohlrausch
exponentB,(q) shall be used here as well. The dashed lines
in Fig. 6 exhibit representative examples for an analysis of
the normalized autocorrelation functions¢a(q,t)
=D p(q,t)/Saa(q). The figures contain rescaled data for
05cr=0.548, b=0.44 (6=0.60, x=0.20, (7a) ¢=0.595 and 0.590, in order to identify a major part for the

interval of rescaled times, for which the superposition prin-
<P§/|CT:O-5451 b=0.43 (6=0.83, x=0.37). (7b) ciple is valid. Similarly, Fig. 7 exhibits examples for a fit of
the stretched exponentials to the numerical solutions of the
From the simulation data, the critical packing fractiaefs ~MCT equations. The vectors are as close to the ones of Fig.
for the liquid-glass transitions of the two mixtures have beerb as permitted by the use of discrete wave-vector grids. Note

W(q,1)=F%q)—HY(q)t°+H?(q)1?. (6)

Here terms of orde
equation is obtained for the beginning of therocess.

The MCT equations have been studied before for a binar
HSM using the Percus-Yevick approximation for the struc-
ture factors[18]. In the present paper, results will be pre-
sented using the structure factdBéq) obtained from the
simulation work. For the two mixtures we have calculated
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FIG. 5. Density autocorrelation function®aa(q,t) and

Pgg(q,t) of the 5=dg/da=0.60 system for wave numberd, FIG. 6. Normalized large-particle-density autocorrelation func-
=7.5, presented as functions of the rescaled timé/ 7. The upper  tions ¢a(q,t) =D a(d,t)/Saa(q) obtained from the simulations for
panel exhibits simulation results for packing fractiops-0.605, three wave numberg and packing fractionp=0.595 (left solid
0.60, 0.595, 0.59, 0.58, 0.57, and 0.53, the lower panel¢for line) for the §=0.60 mixture. The right solid lines are the simula-
=0.605, 0.60, 0.595, 0.59, and 0.§8m left to righ). For eachp, tion results foro =0.590, rescaled on the first curve for large times
the scaling timer is chosen such that the curves coincide for larget. The dashed and dash-dotted lines are fits toatipeocess by the
times. Kohlrausch function, Eq(8), and the von Schweidler expansion,
Eq. (6), with b=0.44, respectively. The fit interval for the latter is

that the choice of the overall time scale is irrelevant for thejndicated by the horizontal dotted arrow.
discussion of the master functiods(q,t).

Figures 6 and 7 confirm an observation often made earlitainties. The dotted lines in Fig. 6 exhibit representative ex-
er: the fits by Eq(8) provide a good description of a major amples for such fits. Fits could be achieved with von Sch-
part of the @ process. However, there are also systematiaveidler exponentsb chosen between 0.40 and 0.50.

deviations between the fit function(g,t) and the master Therefore, the predicted exponents, K@), are confirmed

functionsW ,(q,). This holds in a similar manner for the within an uncertainty of=0.05. All the results shown are

fits to the data and to the MCT results. The fit contains un_obtalned with the cited theoretical exponents. The remaining

. . ' fit parameters shall be discussed below.
avoidable systematic errors, because the fit parameters dé Note that these results can depend somewhat on the time

pgnd 'somewhat on th? time |r.1terval chosen for the f'EOptl_window chosen for the fit, which is 3s5t<<200 for the fits
mization. In our analysis, the fit was done so that the large- jiscssed here. Similarly, the dotted lines in Fig. 7 exhibit
part is described best. Thereby the errors of the fit appegfe results of Eq(6) for the MCT results. But here the func-
solely for the smalk part of the master functions. tions F°(q), H®(q), andH®@(q), as well as the scale are
Equation(6) suggests another fit formula, which is valid calculated from the MCT equations. In this sense, the dotted
for the smalit part of the master functions. But the small- lines are not fit results. The discrepancies between the dotted
part can be identified only to the limited extent to which theand solid lines represent the ones between the full solution of
scaling interval can be established. Consequently, also the fihe MCT equations of motion and the specified second-order
using the von Schweidler series contains unavoidable unceasymptotic description of the solution. It is reassuring that
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10 10° 10* 10° 108 10’ 108 10° FIG. 8. Circles and squares represent the Kohlrausch amplitudes

t A(q) determined by fitting Eq(8) to the simulation data and MCT
o _ solutions, respectively, for the normalized autocorrelation functions
FIG. 7. Analogous set of curves as in Fig. 6, but now obtainedp  (q,t)/S,,(q) of the big particlesa=A (top pane), and the

for the numerical solutions of the MCT equations. The packingsma| particles=B (bottom panel of the 5=0.60 mixture. The
fractions for the full curves are=0.548 and 0.545. The additional sp|id and dashed lines show the MCT plateau valtigs(q)

dash-dotted lines are the asymptotes given by the first two terms in. FC.(Q)/Sw(q) calculated with the simulation results for the

Eq. (6). structure factor and the Percus-Yevick approximation for the
S.p(0), respectively.

the discrepancies between the solid and dotted lines in Fig. 6 .

exhibit similar trends as the ones shown in Fig. 7. A quantiPosition qd=7.5 of the structure-factor peak, while the

tative account of the differences between the results showR-correlator plateau values exhibit a pronounced minimum

in the two figures is included in the discussions of the fol-there. For the5=0.60 mixture,Ax(q) exhibits a minimum
lowing sections. nearqd,=11, which is accompanied by a maximum near

qda=12. Instead, thed=0.83 system has a shoulder for

Ax(q) for 9<g<12. All these details are reproduced semi-

quantitatively by the results obtained from the MCT values,
The circles in Figs. 8 and 9 exhibit the plateau values ofwhich are shown as squares in the figures. There are only a

the two-step relaxation proces&,(q), obtained by fitting few cases where the plateau values deduced from the data

Eq. (8) to the simulation data for the normalized autocorre-differ by up to 10% from the ones deduced from the MCT

lation functions¢,(q,t). For qd <6, the A,(q) are very results: theB plateaus for thed=0.60 system forqd,

large; they almost reach their upper limit unity fptending  ~16 or theA plateaus for theS=0.83 system fogd,~17,

to zero. This is a typical mixing phenomenon. For one-for example.

component systemsA(q)~0.4 is expected for smalf The symbols in Figs. 10 and 11 show the results for the

[28,30. The widthq,, of the A,(q)-vs-q curves, defined by plateau valued ,z(q) obtained from fitting Eq.(6) to the

A.(012) =1/2, is about 7% larger for=A in Fig. 8 than in  simulation data, normalized b$ ,;(q,t)/VS,.(d)Sss(q)-

Fig. 9. This means that the large particles are better localize@he fit results obtained for theé=0.60 mixture for ¢

in the mixture with the larger-size disparity. For the smaller=0.590 and those fop=0.595 differ by about 5%. This

B particles, the opposite trend is observed. Similarly, the pladifference thus appears as an inherent uncertainty of the data

teaus for theA correlators exhibit some small peak near theanalysis. No such difference could be identified for the

B. Plateau values
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FIG. 10. Circles exhibit the plateau valuégg(q) for the &
FIG. 9. Analogous results as in Fig. 8, but for the mixture with = 0.60 mixture, obtained by fitting the simulation data for the nor-

size ratios=0.83. malized correlatore , 5(q)/VS,.(d) Sgs(a) to the von Schweidler
expansion, Eq(6); see text.a=A refers to the big particlesy

_ . o . . . =B to the small ones. The fit was optimized to the data ¢or
=0.83 mixture. The solid lines in the figures exhibit the _g 59, The solid lines are the MCT results for the normalized

MCT plateau ValUGgZB(Q):FZB(Q)/\/SW(Q)S,BB(Q)- For plateausf; 5(q) =F 5(0)/VS,(q) Sgs(q). For a= B, they agree
the diagonal functiongrB8=AA and «3=BB, these lines with the lines shown in Fig. 8. The squares are fit results optimized
are identical to the solid lines shown in Figs. 8 and 9. Thosdor the data foro=0.595.

lines should help to compare the plateau resaljéq) with

the corresponding fit results for the,,(q). Obviously, all 72b - . .
qualitative features of the plateau fits based on the Kohl—o(t ) contributions. In such a case, the fit range may shrink

. . ~2b . . .
rausch function agree with the ones based on the von SchPOn inclusion of theO(t™) terms [32]. This accident is
weidler series, both for the fits to the simulation data and fodémenstrated by Fig. 7 fayd,=10.2. Such a phenomenon

those to the MCT results. The MCT results fr,(q) of the cannot be foreseen in an unbiased data analysis, which then,

6=0.83 mixture are in perfect agreement with the simulationnecessar"y' must lead to errors in the fit amplitudes. This

data, whilefgg(q) is underestimated systematically by MCT. _explains why the sign_of the_ correction amplitude ider_1tified
But the diff(Ba?ence is only about 5%, except fgds~14, " the lower panel of Fig. 6 differs from the one shown in the
I AT ) R
where the discrepancy reaches about 10%. The deviations fbc?w:r: giciiluc;f SFCI)?JI’(:?e of errors in the MCT results is due to
fag(q) are of similar size. For the system with larger-size . . L . . .
disparity, the discrepancies between the data and MCT re>n9 Incorrect equ_lllbrlum-structure !nformatlon n the
' mode-coupling functional. It was mentioned in connection

_SUIts is somewha_\t larger, but_ it is not seriously larger than th%vith Eq. (7) that replacing the structure factors by their
inherent uncertainty of the fits.

Figure 7 exhibits also the leading term of the von SCh_Percus-Yewck approximations increases remarkably the dif-

. : : ference between the MCT results for the critical packing
weidler expansion. In general, accounting for the next tofractions and the results derived from the simulation data.

leading term oo (1) increases the range of validity of the The gashed lines in Figs. 8 and 9 exemplify the same phe-
von Schweidler expansion dramatical8]. Indeed, a data omenon for the plateau values. These are the MCT results
analysis with ay-independent exponehtis possible only if o the t¢ () based on the use of the Percus-Yevick struc-

the O(t?") term is included31]. However, if¢ is not close  ture factors. This approximation for the equilibrium structure
enough toe®, it may happen that th®(t3") terms cancel leads to underestimations of the plateau values by more than
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FIG. 12. MCT plateau value$®(q) for the one-component
hard-sphere system, calculated with the simulated structure factor
(solid ling), with the Percus-Yevick approximatiomashed ling
and with the Verlet-Weis expression f&(q) (dash-dotted ling
The values fogd<<5 based on the simulated structure factor are
unreliable and have been cut off in the figure.

solid line as the plateau values. It is remarkable that the
differences betweerf®(q) and f{,,(q) for qd,>10 are
larger than those betwedf},,(q) andfi(q). Note that we
find, using the simulation results for the structure factors,
©°(6=0.83)< ¢},5s< ¢°(6=0.60); i.e., the system with
small-size disparity shows a changegff upon mixing that
is qualitatively different from the one seen for large-size dis-
FIG. 11. Analog of Fig. 10, but for thé=0.83 system. The fits parity. This MCT result is qualitatively the same as predicted
are based on the data for~0.582. originally on the basis of the Percus-Yevick approximation

[18] and is confirmed by our simulatiofn&1].
10%. Figures 8 and 9 demonstrate that MCT is so sensitive

to the small dev_iations bet_wgeﬁaﬁ(q)_ and the Percus- C. von Schweidler expansion amplitudes
Yevick results which are exhibited in Fig. 1 that they lead to ) )y - ]
serious flaws in the quantitative predictions for the dynamics. 1he amplitudesi, ;(q) in Eq. (6) are the most important
The difference between the MCT results for fff@;(Q) parameters quantifying the dyn.amlcs in a time interval where
based on the Percus-Yevick approximation and those usinﬁ.e correlat9r§ are close to their platgaus. The upper panel of
S.5(Q) as obtained from numerical simulations is of similar lg. 13 e.Xh'b'tS(% set of representa’_tlve results. It compares
size for both the5=0.60 and the5=0.83 system. It is not a the aml)htudesha (a) of the normalized master functions
specialty of mixtures, as is demonstrated by Fig. 12. Therd «e(9:1)/S..(q) obtained from the analysis of the simula-
the comparison is repeated for the one-component hardion data for the6=0.60 mixture with the corresponding
sphere systenHSS. The MCT result for the critical point quantities calculated within MCT. For the quantitative com-
based on the Percus-Yevick structure factorfs,=0.516 parison, a scale fact@has to be adjusted since the arbitrari-

. ness of the time scaleimplies an arbitrariness in the pref-

3nd the c_orrespondmg pIate:_;tu vallj_é_$(q)_ are shown as a actorr® of hM(q)=H®(q)/S,.(q). Theh®-vs curves
ashed line. The Verlet-Weis modification of the Percus-"~ " « aa ) @ :

Yevick structure factof33] is an empirical improvement of ©€Xhibit a subtle structure. While,”(q) has a maximum for
S(q), in particular for the contact values. Using this as inputdda=5.7 followed by a minimum foqu~7.4—|.e._,_for1a
for the MCT, one gets as the critical poiaf,,=0.525. The ~Wave vector near the structure-factor peak positin--
corresponding$,,(q), which are shown as the dash-dotted *(9) inereases monotonically to a maximum fpd,~7.4.
line, are systematically larger than the ones based on th@hile hi)(q) increases forgd,>7.4 monotonically to a
Percus-Yevick results fa(q). We could obtain simulation maximum forgda~11, h§”(q) exhibits a sharp minimum
data for the structure factor of the metastable HSS for packfor g slightly above 7.4 before it also reaches a maximum for
ing fractions up top=0.54. Beyond this packing fraction, qd,~11. For qd,>11, h(Bl)(q) decreases monotonically,
crystallization was always taking place before particles couldvhile h{Y(q) has a minimum fogd,~12.7 and then exhib-
diffuse one nearest-neighbor distance, making it impossibléts a broad maximum. These features are reproduced by the
to generate data meeting our equilibration criteria. ExtrapoMCT results. The MCT results agree with the data on a 10%
lating the smoothlye-dependentS(q) up to ¢=0.55, we level, except for theB amplitudes forqd, near 10, where
calculated as the critical poirtf,ss=0.546 and obtained the there are 20% discrepancies.
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FIG. 13. Amplitudesh?(q)=H'%2(q)/S,.(q) for the von FIG. 14. Stretching exponent8,(q) obtained by fitting the
Schweidler law expansion of the normalized density autocorrelatiorKohlrausch function, Eq(8), to the a-relaxation master functions
functions¥,,(q,1)/S,.(q) for the 5=0.60 mixture. The dots and for the density autocorrelation functions of the two mixtures with
circles are the results of fitting E@6) to the simulation data for size ratioss of the particles, 0.60 and 0.83. The arrows in the two
a=A (large anda=B (small particles, respectively. The solid and panels mark the von Schweidler exponent&qs.(7). The dots and
dashed lines are the corresponding results calculated from the MCaircles are obtained by fits to the simulation data for the big par-
equations. Scale facto&=15 andS? are used for the comparisons ticles,a=A, and the small oneg;=B, respectively. The solid and
of theh®(q) andh®(q), respectively, to account for the different dashed lines are the corresponding results obtained by fits to the
time scalesr used in the analysis of the simulation data and of thesolutions of the MCT equations.

calculations. ) - ] ] ] ] o )
0.2. The identified discrepancies signalize the limitations in

) @) ) i ) the determination of a correction amplitude for an
The amplitudesh;”(q), which describe corrections asymptotic law from data which cannot be chosen suffi-

to von Schweidler's law ¥ ,.(q,1)/S..(q)=f%,(q) ciently close to the singularity.

—hM(q)tP, exhibit a zero at some wave vecigf . Forq

<q* the amplitudes are negative, and fpr-q* they are D. Stretching exponents

positive. These features and also the vajfje-6 are repro- The exponeniB in Eqg. (8) provides a convenient overall
duced by the MCT results. Notably, the MCT results for measure for thex-relaxation stretching. It quantifies in an
qda=12 still share some qualitative features with the resultsaveraged manner deviations of thaelaxation process from
obtained from the fit to the simulation data—e.g., the sharg, Debye law,¢(t)xexp(—1/7). The latter is the universal
peak followed by a sharp minimum h?(q) atqda~7 and  result for the dynamics of a variable coupled to a white-noise
the peak inh{?)(q) atqd,~11. Otherwise, one notices seri- field. Figure 14 shows that for2q<6, the exponent de-
ous discrepancies between the data and MCT results. Fefeases considerably with increasiggThere is no differ-
example, MCT predicts a particularly large range of validity ence between the fluctuations for large and small particles in
of von Schweidler’s law for density fluctuations of large par- this wave-vector interval, and the stretching is larger for the
ticles for a wave vectond,~15. But the data analysis is system with smaller-size disparity. For the wave vectors near
done best for this case by using a correction amplitude neahe structure-factor-peak positiogd,~7, the stretching of
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the B fluctuations of theS=0.60 mixture is much bigger than 2000
the one of théA fluctuations:8g~0.5 vs B5~0.75. There is
an indication of the same phenomenon for #e0.83 mix- Tq i
ture. For larger wave vectorg, is somewhat larger thafz
for the mixture with large-size disparity. For th#=0.83
mixture, B, equalsBg for qd,y>8 within the noise of the s
data.
For qd,<6, the MCT results overestimatg,(q) by 1000 —
about 10%. Theyd,~7 anomaly and also the larggvaria-
tion for the 5= 0.60 mixture are described well by the theory.
For the system with small-size disparity, MCT overestimates
the gday~7 anomaly, and there is a slight trend to underes-
timate B8,(q) for largeq. R
For large wave vectors, the MCad-process master func-
tions approach the Kohlrausch law. In this asymptotic re- ¢
gime, B,(q)=b [34]. Figure 14 illustrates that this theoret- 4x10° |-
ical result is consistent with the simulation data. T

T T I T
$=0.60 |
s=2.2x10" |

500 -

g I
E. a-relaxation time scale ax10°

The fit of Eq.(8) to the long-time parts of the correlators
yields the time scale$,(q) for the a processes up to an
overall scaler. The results for the fits allow for a comparison 10’
of the scales for the fluctuations of the large particles with
those for the small ones. They also allow us to discusgjthe
dependence of the relaxation times. In order to compare the
scales from the data with those calculated from MCT, onelx10’ [~
has to fit an overall scale facter

Figure 15 exhibits the results for the two mixtures. For
gda=<6, 7A(q)=7g(q), and both scales decrease with in- 0
creasing wave vectog. These features are reproduced by 0
MCT, but the theory overestimates the time scales seriously
For wave vectors near the structure-factor-peak positign,
exhibits a pronounced maximum afig has a sharp mini- FIG. 15. a-relaxation time scales,(q) obtained by fitting Eq.
mum. The ratios of the scales are about 5 and 3 for thé8) to the datasymbolg and MCT resultslines). The coding is the
systems with large- and small-size disparities, respectivelyg@me as used in Figs. 13 and 14. A multiplication fastisrapplied
This feature is reproduced well by MCT. For tiée=0.60 to th_e MCT results in order to account for the different time scales
mixture, 75(q) exhibits a maximum forqds~13, while  relative to that used for the data.
7Ts(q) has a shoulder there. Fard,=15, the relaxation
times decrease with increasirgy The time scales for the relator ¢aa(q,t) of the §=0.60 system forqd,=10 and
large particles are somewhat larger than those for the smadjd,=5, respectively. Ife increases up to about 0.05,/ 7,
particles. These features are reproduced qualitatively bylecreases linearly withby about 4%. The simulation results
MCT, but the theory underestimates the time scales by &ehave similarly, as shown in the upper panel of Fig. 16. If
factor of 2—3 for wave vectors above the structure-factorthe packing fraction increases from 0.50 to 0.605, the
peak position. For th&=0.83 mixture, the scal@,(q) ex-  a-relaxation time scales of the density-fluctuation correlators
hibits a shoulder for 1€q<13 in accordance with MCT. increase by more than three orders of magnitude. Still, the
The time7g(q) exhibits a minimum forqd,~12, while three representative ratios shown for the scales vary by less
MCT shows a kink there. Again, MCT underestimates thethan a factor of 2. Hence the scale-coupling predictions is
7.(q) for qd,=10. verified on a 10% level for the three ratios shown in the

Let us consider the variation of the-relaxation time upper panel of Fig. 16 by the open symbols. These examples
scales as functions of the packing fractipnTo this end, we are representative for density-fluctuation scales with interme-
have determined a time scaté(q,¢) for this process by diate and large wave numbers. If one of the wave numbers
arbitrarily choosinge,.(q,t=7%(q,9))=0.1, for those val- decreases to small values, the violation of the scale coupling
ues ofg where the plateau values are still appreciably largebecomes larger, as is demonstrated by the solid symbols in
than 0.1. Equatior{3) formulates the scale coupling of the Fig. 16. The diffusivityD is proportional to the inverse of the
MCT results. While the time scales of twoprocesses—say, «a-relaxation scalerp of the mean-squared displacement.
71 and r,—diverge for vanishing distance parameter Hence, a (X D)-vs-¢ diagram demonstrates the coupling of
=(°— @)/ ¢° the ratior, /7, is a smooth function of. For  the scales for the processes describedriand that for the
example, letr; and 7, refer to thea processes of the cor- diffusivity. The lower panel of Fig. 16 shows the results for
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FIG. 17. 7 Y7 with y=3 as a function of the packing fraction
¢. The 7 are thea-relaxation times for the large-particle density-
fluctuation correlatorspaa(q,t) calculated from the MCT equa-
tions, defined bygaa(q,7)=0.1. The wave numberg are 10.2
(diamond$, 7.4 (squarep and 5.0(circles. The dotted lines are the
the 5=0.60 system. Here refers to the scale for the density @symptotic lawsr *7(¢°~¢) with ¢%(5=0.60)=0.548 and
fluctuations of theA particles and thé are the simulation ¢°(6=0.83)=0.545.
data for theA-particle diffusivities[11]. The scale coupling
holds fore=0.05. However, approaching the transition pointsimulation data are shown in Fig. 18. Linear extrapolations
more closely, contrary to the MCT results, the scale for theof the data to largep for three wave numberg yield esti-
diffusivity decouples from that for the density fluctuations. mates for the critical packing fractions®(5=0.60)
The diffusivity does not decrease with decreasifigas  =0.606+0.001 ande®(6=0.83)=0.585+0.001. The recti-
strongly as 1+ The results of our simulations for thé fication curves for the diffusivity relaxation times for both
=0.83 system behave similarly. The described decoupling isypes of particles are included in the figure BS”-vs-
in qualitative agreement with the behavior found earlier forplots. The data seem to follow the power-law predictions, but
the simulation results of a binary Lennard-Jones sygtém lead to slightly different estimates @f°, also depending on
and for a model for wat€[35]. the speciesx=A,B. For the =0.60 system, we gepp,,

MCT predicts a power-law divergence in the asymptotic~0 609 and <PEB*0-6197 while for the §=0.83 system,

limit of vanishing e for the common scale in Eq. (3): 7 c ) o
x&~ 7. The exponent is determined by the von Schweidler ¢p,~0.588 andpp ~0.590. The decoupling of the diffusiv-

exponent [16]. The valueb~0.44 used throughout the pre- ity scales from the ones for the density fluctuations men-
ceding discussions implieg~3.0. Figure 17 demonstrates tioned above yields this overestimation of the critical pack-
this property for the MCT results fora(q) for three repre- ing fractions. Let us emphasize that the described estimations
sentative wave numbersin the form of a rectification dia- 0f ¢° have been done with the bias of a given expongnt
gram. In agreement with typical results for the simple HSS=3.0. An unbiased three-parameter fit of the scale as a func-
[32], the asymptotic description holds well ferup to about  tion of ¢ by the formular=C(¢°—¢) " suffers from cor-
0.05, and there appear deviationsdfdiffers from ¢® by  relations between the fit parametes$ and y. Indeed, such
more than 5%. Analogous rectification diagrams for thefits to the diffusivities of the two species lead to differing

FIG. 16. Ratio ofa-relaxation timer“(q) (upper panel and
product of a-relaxation times with the large-particle diffusiviy
=D, (lower panel for the §=0.60 system as functions of the pack-
ing fraction ¢ (see text The lines are guides to the eye.
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smalle asymptote have a different sign for the simulation
results than for the MCT solutions?

IV. a-PROCESS SHAPE FUNCTIONS

The preceding parametrization of the correlation functions
shows that there is no universal master function for the
a-relaxation processes. For example, the stretching of the
density-fluctuation autocorrelation functions for the large
particles generally differs from the one for the small par-
ticles, and it depends on the wave vector of the fluctuations.
It is a challenge for a microscopic theory to describe the
a-process shape functions for different probing variables.
Figures 19 and 20 present our simulation results for the two
mixtures under consideration for four representative wave
vectors in comparison with the MCT curves. All results are
rescaled by the plateau values and by the time scales dis-
cussed in Sec. lll. The data are shown for two packing frac-
tions in order to document the asymptotic regime of validity
of the superposition principle. The MCT master function is
complemented by a curve for some smgll- ¢, in order to
indicate the effect of preasymptotic corrections to the
a-process asymptote.

Figure 19 shows that, typically, the decay of the correla-
tors of thes=0.60 system from 90% to 5% of their respec-
tive plateau values is stretched on a time interval of about
three decades. With two exceptions, this decay is described
well by the MCT master functions for theprocess. The first
exception is theAA correlator forqd,=7.5 for rescaled
times t~4x 10°. Here the data decay less rapidly as the
exponential long-time tail obtained by MCT. The second ex-

the a-relaxation times for the large-particle correlation functions atCeption concerns th&B correlator forqd,=10 andqda

wave numberqd,=10 (diamond$, 7 (squares and 5 (circles,
defined bygaa(q,7)=0.1. The upper and lower triangles dpé’”

=12.5. Here the data fall on the master functions only for
such long times, where the correlator is below 70% of the

(right scale for the diffusivities of the small and big particles, re- plateau value. But the MCT results fore & ¢°) /@~
spectively. The dashed lines are linear interpolations of the data for- 0.015, which are added in rescaled presentation as solid

large ¢.

lines in Fig. 19, exhibit the same phenomenon. The reason
for this is the large size of the critical amplituti§”(q) for

exponentsy[11], in disagreement with MCT. A similar result these wave vectors; cf. Fig. 13. They cause particularly large
has also been found in a simulation of a binary LennardPreasymptotic corrections to thescaling law near the pla-
Jones mixturg7]. Figure 18, however, shows that on the t€au. Thus the specified exceptions are not a defect of MCT,

basis of our simulation data, one can, given the restrict
range of validity of the asymptotic law, not distinguish be-
tween these differeny values. Note that the largest discrep-
ancy, either iny or in ¢¢, emerges for th® particles in the

6=0.60 system. Unbiased fits lead to larger uncertainties for
since a decrease of the fit paramegércan partly be
compensated by a decrease of the fit paramgt@ne could

get the crossing points of tr[él’y'—vs—gp curves closer to that

c

(20

egut a confirmation of a subtlety of that theory.

The test of thea-process shape functions f@é=0.83,
Fig. 20, exhibits a series of problems. Deviations of the data
from exponential decay for the very long rescaled timhes
~5X 10 occur forqd,=5 andqd,=7.5 for all three corr-
elators. TheAB correlator forgd,=12.5 shows more stretch-
ing than the MCT solutions. Furthermore, tBB correlators
for gda=10 andqd,=12.5 miss the plateau. However, the
latter is an obvious mistake of the data analysis, which could

of the 7~ -vs-¢ curves in Fig. 18 if one were to use some be eliminated by correcting the plateau value. We did not
v' <. Such formulation of the decoupling phenomenon iscarry out this correction in order to emphasize that 5% errors

suggested by Fig. 16, since the increas®ix 7 for ¢ in-
creasing above 0.58 can be fitted by°E @)%, x=79"—1y

<O0.

in the determination of the plateau values are almost un-
avoidable in an unbiased data analysis. The reduction of the
scaling regime for th&B correlator forqd,=10 and 12.5

A comparison of Figs. 17 and 18 leads to two questionspccurs for thes=0.83 system as discussed above for éhe
which we cannot answer. Why is the range of the distances =0.60 system, and it can be explained in the same manner.

where the power-law asymptote describes thecales, so

The most severe problem exhibited by Fig. 20 is the fol-

much larger for the simulation results than for the MCT so-lowing. Even fore ~0.02, in the simulation, several correla-

lutions? Why do the deviations af Y7 for largere from the

tors stay within a 5% interval around the plateau for time

011505-14
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) . . . . and ¢=~0.575(triangles. The solid lines are the theoretical master
ones. The circles and triangles represent the simulation data foEurve and a curve wite~ —0.01.
¢=0.595 and 0.59, respectively, scaled as in Fig. 5. The solid lines
are MCT results for the master functiohaﬁ(q,t)/FZB(q) and a
solution for a distance = (¢ — ¢°)/@°~—0.015 from the critical the other of the one where mixing stabilizes the glds.
point. Time has been rescaled for all curves in order to matclathe The data demonstrate the evolution of a two-step relaxation
time scale of the simulation data @t,=5, a=AA. The results  scenario with increasing packing fractian Figs. 3 and 4,
refer to wave vectorgid,=5, 7.5, 10, and 12.%from top to bot-  \yhjch is similar to the one detected previously for other sys-
tom), where the curves fpr different have been shifted vertically {ams. In this paper, a comprehensive analysis of the second
by 0.3 for enhanced clanty. relaxation step, usually referred to as theprocess, is pre-
sented. It deals with the decay of the correlators from some
intervals as large as 2.5 decades or more. This holds, e.qg., fptateau to zero. The process was identified as that part of the
the AA correlator forqd,=7.5, for the BB correlator for  correlators exhibiting the superposition principle predicted
qd,=5, and for theAB correlator forqd,=7.5 and 10. The originally by mode-coupling theory, Fig. 5. This pattern is
solid lines show that this feature cannot be explained byexhibited by all our simulation data except for the correlators
MCT. Even if the distance parameter=(¢°—¢)/¢° is as  for the small particles of thé=0.60 system for wave num-
small as 102, the calculated correlators cross their plateaussers near the structure-factor-peak position and this for the
much steeper than exhibited by the simulation data. two largest densitieg =0.600 and 0.605, Fig. 5. This viola-
tion of the superposition principle might indicate that MCT
ignores relaxation processes which become important close
V. CONCLUSIONS to the liquid-glass transition point in this mixture. A possi-
bility that we cannot exclude, however, is precursors of crys-
Molecular-dynamics simulations have been presented forallization or phase separation.
two dense binary mixtures of hard spheres. One mixture The simulation data for the process have been fitted by
deals with a size rati@=0.60 for the two-particle species Kohlrausch functions and by the von Schweidler expansion,
and the other with=0.83. The first system is representative Egs. (8) and (6), respectively. These fits provide two esti-
of the situation where mixing stabilizes the liquid state andmates of the plateau values. Usually, these estimates agree on
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a 5% accuracy level, Fig. 6. Analyzing the MCT results withonly by 3.0. The ratior(q)/mp> 7(q)D is practically con-
Kohlrausch functions, one gets plateaus which agree with thstant if ¢ increases from 0.51 to 0.58; i.e., there is perfect
correct values within 5%, Fig. 7. This means that both menscale coupling within this density interval. But increasipg
tioned fit procedures yield reliable estimations for the pla-further, the ratio increases by up to a factor of 4, Fig. 16.
teaus, within the indicated uncertainty level. These plateaWICT overestimates the trend to particle localization near the
values exhibit a remarkable structure as functions of thegjlass transition point. This overestimationf seems to be
wave numberq. There are qualitative differences in the the reason why the calculated relaxation tim¢g) exceed
structure of the plateau functions referring to th@articles  the data for smalby, as is demonstrated in Fig. 15 foud,
and theB particles. And there are quantitative differences<5. The longest time scale for— 0 is that for the collective
between the results for the two mixtures. All these results argiffusion process: 7°'(q)=1[g?D"(q)]. The coupling
described quantitatively by the MCT results except for somef this mode to the density fluctuations causes the divergence
rare cases, where data and theory differ by up to 10%, Figsf r(q) for g— 0. One should expect that an underestimation
8-11. of the tagged-particle diffusivit{p implies the same mistake
MCT requires the structure factors as input for the equafor the collective diffusivity D", This explains why the
tions of motion. The MCT results reported in this paper aredecoupling of(q) and 7(q’) increases ifg’ decreases to
based on the simulation results for the studied systems, Figmall values, as shown by the solid symbols in Fig. 16.
1. Replacing these structure factors by their Percus-Yevick The increase of the time scaleq) with increasing pack-
approximation results, MCT still reproduces all qualitative ing fraction is described well by the asymptotic power law
features of the mentioned plateau functions. However, ongyr the MCT results, Fig. 18. However, the mentioned scale
systematically underestimates the data. The error of the MCHecoupling implies that extrapolation to zero of the
results caused by the specified erroneous structure informai/7.)17-ys-¢ graphs leads to an estimation of the critical
tion can be as large as 20%, Figs. 8 and 9. These findings dghcking fractione®, which exceeds the value obtained from
not deal with mixture-specific effects. They apply also forthe[ 1/7(q) ]Y7-vs-¢ extrapolation by 0.6%11].
the simple hard-sphere system, Fig. 12. . Finally, a feature of our simulation data should be empha-
The stretching of ther processes is parametrized by the sized which concerns the time regime where the correlators
Kohlrausch exponentg,(q), and the relative time scales cross their plateaus. It deals with times larger than the ones
are quantified by the scales,(q). These quantities vary describing the short-time transient, but preceding the regime
with wave vector and they depend on the indexor the  of validity of the a-relaxation scaling law. Within MCT, this
species,a=A,B. MCT reproduces thes,(q) reasonably, regime is described for large densities by tBeelaxation
but there occur discrepancies up to 20%. The trends for thecaling laws. In this respect, the MCT results for the hard-
7,(q) are reproduced by the theory, but there occur largephere mixtures behave as the ones for the simple hard-
quantitative errors, Figs. 14 and 15. sphere systerfil8]. Figure 20 shows, however, that the cor-
Writing the von Schweidler expansion, E(f), for the  relators for thes=0.83 system are close to the plateaus for
diagonal correlators in the form¥,,(q,t)=F¢,(q){1 time intervals exceeding the ones for corresponding MCT
—[hB(q)/FS () T2+ [hP(q)/FS (q)[t%}, one notices results by more than an order of magnitude. Hence, the
that iq) - defines a relatve time scale, (@) e e that espect our simtia
=rpM c —1b ; (2) . . -
=[h (@)/Fe ()] while h;(q) specifies the shape. tion data for the hard-sphere mixture are also qualitatively

i (1)
The amplitudes1,”(q) are reproduced reasonably by MCT, e rent from the ones measured for quasibidisperse hard-
but there occur errors up to 20%. MCT describes the trend o here colloidg15] and from the simulation data for the

the g and species dependence of the correction amplitud nary Lennard-Jones mixtufe].
hff)(q), but there are large discrepancies between data and
theory, Fig. 13.

The contradicting conclusions concerning the description
of the a-process parameters arrived at in the preceding two
paragraphs indicate that the described problems are ones of W.G. and Th.V. thank their colleagues from the University
the fitting procedures. Indeed, Figs. 19 and 20 show thadf Rome for their kind hospitality during the time this work
MCT describes ther-process master functions well. was performed. Our collaboration was supported in part by
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data concern the ratio of the time scale§q) for the  Contract No. HPRN-CT-2002-00307, DYGLAGEMEM, and
a-relaxation processes for the density fluctuations of interthe Deutsche Forschungsgemeinschaft through Grant No. Go
mediate wave numbeigand the time scalep determining  154/12-2. G.F., F.S., and P.T. acknowledge support from
the strong variation of the particle diffusivity, Doc1/7p . If MIUR Prin and Firb and INFM Pra-Genfdt. We thank S.
the packing fraction of theS=0.60 system increases from Buldyrev for providing us the simulation code for the hard-
0.51 to 0.605, log(q) increases by 3.5, but log, increases sphere mixtures.
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