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Recent molecular dynamics(MD) simulations of liquid silica, using the “BKS” model[Van Beest, Kramer,
and van Santen, Phys. Rev. Lett.64, 1955(1990)], have demonstrated that the liquid undergoes a dynamical
crossover from super-Arrhenius, or “fragile” behavior, to Arrhenius, or “strong” behavior, as temperatureT is
decreased. From extensive MD simulations, we show that this fragile-to-strong crossover(FSC) can be con-
nected to changes in the properties of the potential energy landscape, or surface(PES), of the liquid. To achieve
this, we use thermodynamic integration to evaluate the absolute free energy of the liquid over a wide range of
density andT. We use this free energy data, along with the concept of “inherent structures” of the PES, to
evaluate the absolute configurational entropySc of the liquid. We find that the temperature dependence of the
diffusion coefficient and ofSc are consistent with the prediction of Adam and Gibbs, including in the region
where we observe the FSC to occur. We find that the FSC is related to a change in the properties of the PES
explored by the liquid, specifically an inflection in theT dependence of the average inherent structure energy.
In addition, we find that the highT behavior ofSc suggests that the liquid entropy might approach zero at finite
T, behavior associated with the so-called Kauzmann paradox. However, we find that the change in the PES that
underlies the FSC is associated with a change in theT dependence ofSc that elucidates how the Kauzmann
paradox is avoided in this system. Finally, we also explore the relation of the observed PES changes to the
recently discussed possibility that BKS silica exhibits a liquid-liquid phase transition, a behavior that has been
proposed to underlie the observed polyamorphism of amorphous solid silica.
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I. INTRODUCTION

Liquid silica is the archetypal “strong liquid,” that is, a
liquid whose viscosityh and other measures of relaxation
follow closely an Arrhenius behavior lnh,1/T [1,2], where
T is the temperature. For most liquids,h increases signifi-
cantly faster than an Arrhenius law asT approaches the glass
transition temperatureTg; these liquids are referred to as
“fragile.”

Strong liquids such as silica are important as glass-
forming systems. In a strong liquid,h varies less rapidly
with T near Tg, compared to a fragile liquid. As a conse-
quence, a strong liquid can be held in a desired range ofh
over a wider range ofT than a fragile liquid. As every glass-
blower knows, this makes silica-based systems easier to ma-
nipulate just aboveTg than any other commonly available
liquid.

The fundamental origins of strong behavior in glass-
forming liquids is also a subject of continuing interest. We
note in particular two recent developments. First, computer
simulation work of Horbach and Kob[3] using the “BKS”
model of silica [4] has demonstrated that at highT, the
model liquid exhibits fragile behavior, and then crosses over
to a regime of strong behavior upon cooling. The work of La
Nave and coworkers, based on instantaneous normal mode
analysis, has shown that such a crossover is connected to a
progressive reduction in the number of diffusive directions in
phase space accessed by the system[5]. Such a “fragile-to-

strong crossover”(FSC) may be a general mechanism under-
lying the emergence of strong behavior, and has since been
studied for a number of systems[6]. We note that a crossover
from a super-Arrhenius to Arrhenius dynamics may be a gen-
eral feature of liquids around the so-called mode-coupling
temperature[7], as is appearing to emerge in recent numeri-
cal studies, thanks to the larger dynamical window made
available by current computational power[8–10]. However,
theT region where equilibrium simulations can be performed
is still limited, and does not allow for a precise statement of
the T dependence below the crossover temperature, as re-
quired to make final contact with models for the glass tran-
sition [11–13].

Second, a growing body of computer simulation research
has established the importance of the potential energy land-
scape or surface(PES) for understanding the dynamics of
liquids nearTg [9,14–25]. The PES refers specifically toU,
the instantaneous potential energy hypersurface of the sys-
tem, expressed as a function of the 3N coordinatesqi that
specify the positions of theN atoms of the system; i.e.,U
=Usq1,q2, . . . ,q3Nd. The properties and topology of the PES
have been carefully studied in the above cited works, pre-
dominantly in the case of fragile liquids, resulting in impor-
tant insights into the equilibrium[26] and out-of-equilibrium
[27,28] thermodynamics of supercooled states, and the con-
nection between thermodynamics and transport properties
[21,29]. However, the relationship of the PES to the dynamic
properties of strong liquids is less well understood. In this
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paper, our focus is to clarify this relationship, and in particu-
lar, to determine if the FSC proposed for liquid silica can be
connected to properties of the PES.

Following previous studies of fragile liquids, our ap-
proach is to apply the “inherent structure” formalism of Still-
inger and Weber[15] to molecular dynamics(MD) computer
simulation data obtained for the BKS model of liquid silica.
In this approach, the PES is partitioned into basins associated
with the local minima ofU [14–16]. Each minimum corre-
sponds to a particular configuration of atoms and is called an
inherent structure(IS). We denote byeIS the average poten-
tial energy of the IS’s associated with the basins sampled by
the equilibrium liquid at a givenT and volumeV. An IS and
its energy can be obtained in computer simulation by carry-
ing out a local minimization ofU starting from an equilib-
rium liquid configuration.

As we will describe in detail below, the evaluation ofeIS,
combined with free energy calculations, allows us to calcu-
late the configurational entropySc of the system
[9,18,20,21,24]. Sc determines the number of distinct con-
figurations explored by the system, in this case the basins of
the PES. In a liquid, diffusion is associated with the explo-
ration by the system of different basins of the PES. The work
of Adam and Gibbs(AG) predicts a relationship(in the low
T limit ) between the characteristic relaxation time of the sys-
tem andSc [30]. The AG relation has been recently derived
in a novel way[12]. Generalizing the AG relation to the
diffusion coefficientD, the AG relation can be written as

D

T
= m0 expS−

A

TSc
D , s1d

wherem0 andA are presumed to be constant with respect to
T. In the context of liquid silica, an interesting test of the
robustness of the AG relation is possible by checking if Eq.
s1d is obeyed throughout the region in which the FSC occurs.
If so, the AG relation then provides a basis for connecting
transport behaviorsquantified byDd to the properties of the
PESsquantified bySc andeISd.

In a recent letter[31], we showed that liquid BKS silica
behaves in a manner that allowsSc to be calculated fromeIS,
and thatD andSc are related as predicted by the AG relation.
We were thereby able to show that the FSC in liquid silica is
associated with a change in theT dependence ofeIS, i.e., a
change in the nature of the PES explored by the system asT
decreases. We also found that this observation in turn has
implications for other behavior observed in BKS silica, in
particular, the possible occurrence of a liquid-liquid transi-
tion, and the behavior of the liquid as related to the so-called
Kauzmann paradox.

To reach such conclusions, extensive MD simulations are
required over a wide range ofV andT, to calculate thermo-
dynamic and transport properties, as well as careful exami-
nation of the IS properties. In addition, the absolute free
energy of the liquid must be evaluated. In the present work,
we provide a detailed description of the methods used to
obtain the results summarized in Ref.[31], and also provide
an expanded analysis and discussion of the results. This work
is organized as follows. In Sec. II we describe our MD simu-

lations, including the interaction potential used. Section III
provides a detailed description of the techniques we use to
evaluateeIS, Sc, and the total free energy of the liquid. Sec-
tion IV presents the results of these calculations and provides
a discussion of their implications.

II. MOLECULAR DYNAMICS SIMULATIONS

We carry out MD simulations at constantV. Most of our
results are for a system of 444 Si atoms and 888 O atoms. A
few simulations are carried out with a reduced number of
particles(333 Si and 666 O atoms) in order to access longer
physical times scales. Our MD simulation program is based
on theMDCSPC2source code[32]. We also reproduce a sub-
set of our results using a code we have written independently
of MDCSPC2. Note that all molar quantities are reported here
in moles of atoms.

Our model of atomic interactions in silica, denoted here as
FBKS, is based on the BKS potential, modified in two ways.
First, the BKS potential energy for both the Si-O and O-O
interactions diverges unphysically to negative infinity at suf-
ficiently small distances, allowing “fusion” events to occur
during simulation of highT systems. To prevent this,FBKS
consists of the standard BKS potential plus a short range
term given by

4emnFSsmn

r ij
D30

− Ssmn

r ij
D6G , s2d

wherer ij is the interatomic separation between an atomi of
speciesm, and an atomj of speciesn. To choose the param-
etersemn and smn ssee Table Id we first identify the value
r ij =r ij

* at which the inflection of the standard BKS potential
occurs, below which the divergence to negative infinity de-

TABLE I. Potential parameters used in this work for bothFBKS

and FLJ. Also required to specifyFBKS are a=2.5 nm−1, Rs

=0.77476 nm,Rc=1 nm, qSi=2.4e, and qO=1.2e, where e is the
charge of an electron.

m-n Si-Si Si-O O-O

standard BKS parameters

Amns10−16Jd 0 28.845422 2.2250768

Bmnsnm−1d 0 48.7318 27.6

Cmns10−23 J nm6d 0 −2.1395327 −2.8038308

FBKS: short range parameters

emns10−22 Jd 0 4.963460 1.6839685

smnsnmd 0 0.1313635 0.1779239

FBKS: switching function parameters

Dmns10−19 J/nm5d −235.3529 122.0161 −53.16278

Emns10−19 J/nm4d −117.7993 61.33742 −26.25876

Fmns10−19 J/nm3d −23.83785 12.33446 −5.415203

FLJ parameters

gmnskJ/mold 23.0 32.0 23.0

smnsnmd 0.33 0.16 0.28
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velops. The parameters are chosen so that the new potential
increases monotonically, and without inflections, asr ij de-
creases forr ij , r ij

* ; and so that the difference between the
new and the old potentials is small forr ij . r ij

* . Similar ap-
proaches have been used in other worksf33,34g.

The second modification to the standard BKS potential
included in FBKS relates to the treatment of longer range
interactions. As is common in implementations of the BKS
potential, we calculate the long range contributions to the
Coulombic potential energy using the Ewald summation
technique, with the dipole surface term set to zero[35]. The
reciprocal space summation is carried out to a radius of six
reciprocal lattice cell widths. In this approach, the real space
contributions to the BKS potential are usually cut off discon-
tinuously at a specified distance, often chosen asL /2, where
L is the length of an edge of the simulation cell. However,
we study systems over a wide range of densityr, and we
desire a potential for which the cutoff is independent ofL.
Also, for accurate determination of inherent structures, we
wish to remove discontinuities in the potential energy arising
from cutoffs, and to remove anyL dependence from long
range corrections associated with the cutoff.

To achieve these goals, instead of discontinuously cutting
off the real space potential contributions, we introduce a
switching function. At a fixed distanceRs=0.77476 nm the
real space terms of the standard BKS potential are replaced
by a fifth degree polynomial that tapers smoothly to zero
over the rangeRs, r ij ,Rc, where Rc=1 nm. The polyno-
mial coefficients and the value ofRs are chosen so that the
potential is continuous up to and including second deriva-
tives at bothr ij =Rs andr ij =Rc; and so that the potential and
its first two derivatives are monotonic forRs, r ij ,Rc, and
go to zero asr ij →Rc. These choices depend on the Ewald
parametera that occurs in both the real and reciprocal space
contributions to the potential energy. For allL, we choose
a=2.5 nm−1 to ensure sufficient convergence of the potential
energy in the reciprocal space summation for the densities
studied. The valueRc=1 nm where the switching function
reaches zero is chosen to include third Si-Si neighbor inter-
actions at most densities studied.

The real space contribution toFBKS, denoted here asf, is
therefore a piecewise defined function of the form

fsr ij ø Rsd =
qmqn

4p«

erfcsar ijd
r ij

+ Amne
−Bmnri j +

Cmn

r ij
6

+ 4emnFSsmn

r ij
D30

− Ssmn

r ij
D6G , s3d

fsRs , r ij , Rcd = Dmnsr ij − Rcd5 + Emnsr ij − Rcd4

+ Fmnsr ij − Rcd3 s4d

fsr ij ù Rcd = 0, s5d

where erfcsxd is the complementary error function and« is
the permittivity constant. The parameters are given in
Table I.

Note that the above modifications have the consequence
that the average potential energyU and pressureP obtained

using FBKS differ from those obtained using the standard
BKS potential. We find that the differences are approxi-
mately independent ofT along isochores. AtT=4000 K and
r=2.3072 g/cm3, we find that FBKS gives a P value
0.25 GPa greater than the standard BKS potential, andU is
2.5 kJ/mol higher. At the sameT andr=3.8995 g/cm3 , the
respective differences are 0.9 GPa and 4.4 kJ/mol higher.
These are not large differences on the scale of our measure-
ments, and the qualitative behavior of the system is, as
shown below, consistent with that found in other studies
based on the BKS model.

For the free energy calculation to be described below, we
also perform MD simulations using a binary Lennard-Jones
(LJ) potential, in which two atomic species(also labeled “Si”
and “O”) occur in the same 1:2 proportion as in SiO2. The
LJ pair potential is of the form

FLJ = 4gmnFSsmn

r ij
D12

− Ssmn

r ij
D6G − Fmn

shift. s6d

The pair potential is cut off atr ij =2.5smn andFmn
shift is deter-

mined so thatFLJsr ij =2.5smnd=0. These potential param-
eters are given in Table I.

In order to obtain equilibrium properties we use the fol-
lowing procedure. We equilibrate the liquid using velocity
rescaling for a timet long enough to allow Si atoms to
diffuse an average of 0.2 nm, after significant relaxation ofP
andU have disappeared from the system history. The interval
of velocity rescaling varies from 10 to 1000 time steps de-
pending onT. The time step for all runs is 1 fs, except for
T=7000 K, where the time step is 0.5 fs. Velocity scaling is
then turned off and the system is evolved in a constant
sN,V,Ed ensemble for at least 10t. (E is the total energy.)
Using this approach, there is no appreciable drift inE during
the constantsN,V,Ed phase, over which we calculate equi-
librium quantities.

For the lowestT where relaxation is slowest we modify
this procedure to improve our sampling of phase space: we
conduct up to five independent runs, with the constant
sN,V,Ed phase of each run lasting at least 2t. The reported
properties(includingT) are averages over both time and over
the independent runs. Thus averages for lowT state points
are also calculated over a total of 10t, while at the same time
the danger of an undetected trapping in an out-of-equilibrium
state is reduced through comparison of the independent runs.

The densities of the isochores simulated are given in
Table II, while the state points studied are shown in Fig. 1.
Note that we have studied the isochore at density
2.3566 g/cm3 in order to compare with previously published
work [3]. The simulations along this isochore are those that
involve only 999 atoms; all others model 1332 atoms.

III. CONFIGURATIONAL ENTROPY CALCULATION

In this section we calculateSc from knowledge ofeIS and
the vibrational properties of the basins of the PES. Similar
calculations have been carried out for water[20], binary LJ
mixtures[21], and orthoterphenyl[9].

We begin by writing the Helmholtz free energyF of the
liquid along an isochore as[18]
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F = eISsTd − TSc„eISsTd… + fvib„T,eISsTd…. s7d

This expression separatesF into two contributions: one
stemming from the fact that the liquid samples different ba-
sins of the PES, and one arising from the properties of the
basins themselves.Sc is the entropy contribution resulting
from basin degeneracy, i.e., it counts the number of basins
associated with an inherent structure energyeIS f18,21g. The
vibrational part of the free energyfvib arises from the free
energy of the basins. We note that the basin properties
may change witheIS, e.g., the vibrational density of states
of a basin associated with loweIS may differ from that of
one with high eIS. In equilibrium, F is minimized with
respect toeIS and we obtain

] F

] eIS
= 0 = 1 −T

] Sc

] eIS
+

] fvib

] eIS
. s8d

We will provide evidence below that the vibrational proper-
ties of the basins do not change substantially from one IS to
another. In this case]fvib/]eIS=0, and we may write

ScsTd = ScsT0d +E
T0

T 1

T8

] eIS

] T8
dT8. s9d

ScsT0d is the configurational entropy at a referenceT=T0.
Equation (9) shows that the behavior ofScsTd is con-

trolled byeISsTd. The work of Sastry[21] and others[18,24]
has shown that for fragile liquids,eIS decreases, and is nega-
tively curved, asT decreases. In accordance with Eq.(9), Sc
for fragile liquids also decreases, and is negatively curved, as
T decreases. If liquid silica is fragile at highT, and then
crosses over to strong behavior at lowerT, we expect that on
cooling, botheIS and Sc will initially behave as in a fragile
liquid. However, from Eq.(1), strong behavior implies that
Sc (and henceeIS) is constant with respect toT. Therefore, if
the liquid passes from fragile to strong behavior asT de-
creases, the implication is thateISsTd will decrease withT at
high T, and then pass through a point of inflection, consistent
with the approach to a constant at lowT.

To obtainScsT0d we write

ScsT0d = SsT0d − SvibsT0d, s10d

where SsT0d is the total liquid entropy andSvibsT0d is the
entropy contribution arising from the vibrational proper-
ties of basins in the PES. The vibrational part has both a
harmonic and an anharmonic contribution, which we cal-
culate separately

SvibsTd = SharmsTd + SanhsTd, s11d

wheref36g

Sharm=
R

N
o
i=1

3N−3 S1 − ln
"vi

kT
D , s12d

and

Sanh=E
0

T 1

T8

] Eanh

] T8
dT8. s13d

HereSharm is the entropy in the harmonic approximation of
the IS’s obtained at a givenT. The sethvij describes the
vibrational density of states of the IS’ssdetails belowd, "
is Planck’s constant over 2p, R is the gas constant, andk
is Boltzmann’s constant.Eanh is given by

EanhsTd = EsTd − EharmsTd − eISsTd, s14d

where Eharm is the harmonic contribution to the energy,
given by Eharm=3RTsN−1d /N.

To obtaineIS we select 100 equilibrated liquid configura-
tions over the course of the MD run, perform a conjugate
gradient minimization[37] of U, and then average the re-
sults. As a stopping criterion for the conjugate gradient mini-
mizations, we specify a relative tolerance of 10−8 along line
minimizations and a relative tolerance of 10−15 between line
minimizations. In the case of isochore H our runs are the
longest, and so we average over 1000 configurations.

In order to evaluateSc andSanh [using Eqs.(9) and (13),
respectively] we first fit average values ofeIS and Eanh to
polynomials inT, and then evaluate the required integrals

TABLE II. Isochore volumes, densities, and simulation box
sizes studied in this work. All runs model 1332 particles, except for
isochore H, where we model 999 particles. The reference volume
V0 corresponds to isochore I.

Label Vscm3/mold V scm3/gd r sg/cm3d L (nm)

A 5.1359 0.256443 3.8995 2.2479818

B 5.6423 0.281722 3.5496 2.3195561

C 6.1486 0.307012 3.2572 2.3869665

D 6.6550 0.332292 3.0094 2.4507704

E 7.1614 0.357577 2.7966 2.5114146

F 7.6677 0.382863 2.6119 2.5692635

G 8.1741 0.408147 2.4501 2.6246184

H 8.4984 0.424340 2.3566 2.4157510

I 8.6804 0.433426 2.3072 2.6777320

FIG. 1. State points simulated in the(a) V-D and(b) V-T planes.
All points give results for equilibrated liquids.
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analytically. TheEanh fit is constrained so that atT=0, the
value ofEanh and its first derivative are zero. This is consis-
tent withEanh being a correction to the harmonic approxima-
tion.

It is important to recognize that the expression forSanh in
Eq. (13), and hence the estimation ofSc via Eqs.(9)–(14), is
valid only under the assumption that the basin anharmonicity
does not change from basin to basin. To understand this,
consider the expression forEanh in Eq. (14), from whichSanh
is calculated. The terms contributing toEanh are evaluated
from equilibrium liquid properties. Yet, an implication of Eq.
(14) is that an IS obtained from a liquid at(e.g.) 4000 K,
when heated itself to 4000 K, will give a value ofEanh equal
to that obtained from equilibrium configurations at 4000 K.
However, an IS obtained from a liquid at 3000 K, when
heated to 4000 K will not necessarily yield the value ofEanh
found from equilibrium configurations at 4000 K, because
IS’s obtained from differentT may be in basins of different
shape, and hence different anharmonicity. If the basin shape
does change witheIS, thenSc in Eq. (9) will be influenced by
an additional contribution. Moreover, Eq.(14) would be in-
valid andEanh would have to be obtained in a different way,
possibly by a careful heating of individual basins obtained
from the equilibrium liquid at differentT. Such heating ex-
periments must be performed with care, as the system must
not diffuse out of the basin if accurate results are to be ob-
tained.

To test if basins associated with differentT have different
shapes, we carry out runs in which IS’s from differentT and
V are rapidly heated. We find thatEanh is the same for all
basins belonging to the same isochore up to highT (Fig. 2).

Based on the relations justified above, we can evaluate
EanhsTd andSanhsTd from a knowledge ofeISsTd. We can also

evaluateScsTd, up to a constant, fromeISsTd. To complete an
evaluation ofScsTd, we need to estimate bothSharmsTd and
SsT0d for each isochore to be studied, as described in the
following two subsections.

A. Harmonic entropy of inherent structures

We defineSharm of the liquid as the average harmonic
entropy of IS’s sampled from the liquid. When a liquid con-
figuration is quenched to its corresponding IS, it becomes a
mechanically stable solid, and is to a first approximation,
harmonic. To calculate the entropy of an IS in the harmonic
approximation, we require its vibrational density of states.
As each IS is an atomic configuration at a local minimum of
the PES, we expand the expression forU about the local
minimum:

U = eIS + o
i=1

3N

o
j=1

3N

qiU ]2U
] qi ] qj

U
q=q0

qj . s15d

Here, the sethqij specifies the 3N atomic coordinates, and
the notation “q=q0” denotes that the second derivatives are
evaluated at the minimum energy configuration. We then
define a Hessian matrix

Hij =
1

Îmimj

U ]2U
] qi ] qj

U
q=q0

, s16d

wheremi is the mass of the atom associated with coordinate
qi. Since the system is at a minimum,Hij has eigenvalues
hhij all greater than zero, except for three zero eigenvalues
which account for the three independent translations of the
entire system. These three eigenvalues are excluded in cal-
culating the harmonic entropy. Thewi appearing in Eq.s12d
are defined aswi =Îhi. We note that a particular Hessian
matrix corresponds to an IS obtained from a liquid con-
figuration at a certainT. It is this T that we use in Eq.
s12d.

We find, perhaps surprisingly, that the spectrum ofwi does
not change appreciably withT along isochores. We plot in
Fig. 3 the quantity

VsTd =K 1

3N − 3 o
i=1

3N−3

ln wiL s17d

to show that the contribution toSc from changes inV asT,
and henceeIS, is varied is negligible. This quantity is part
of the expression forSharmsTd. It captures the average qua-
dratic shape of a basin and hence determines any depen-
dence ofSharm on eIS. The plot showsV not to vary appre-
ciably with T, and we conclude that there is no
contribution toSc from fvib, at least not from the harmonic
portion.

To confirm this approximation, we show in Fig. 4 the
variation ofV with eIS. We find that the change inV can be
as large asDV.0.006 for variations ofeIS as small as
DeIS.5 kJ. This gives a contribution to]fvib/]eIS, the last
term in Eq.(8), of at mostRTDV /DeIS.0.04. This supports
our assumption that]fvib/]eIS=0.

FIG. 2. Test ofT dependence of basin shape. IS’s from threeT,
and for three isochores, are rapidly heated in order to confine the
sampling to a single basin. Using velocity scaling,T is increased
from 0 to 7000 K over 100 fs. Each curve is an average over 10
runs. The curves for the same isochore are approximately the same,
indicating that the anharmonic contributions to the vibrational en-
ergy can be assumed, for the present purposes, to be the same for
each basin.
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B. Liquid entropy

To exploit the AG relation, we require the absolute value
of Sc, not just changes inSc from one state point to another.
To evaluateScsT0d in Eq. (10) requiresSsT0d, the absolute
entropy of the BKS liquid, which we calculate via thermo-
dynamic integration starting from a system for which the
entropy is known exactly.

As our starting point we use the analytic result for the
entropy of an ideal gas composed of two species of particles,
each with its own mass[36]

SIG = NSikHlnF V

NSi
S2pmSikT

h2 D3/2G +
5

2
J

+ NOkHlnF V

NO
S2pmOkT

h2 D3/2G +
5

2
J

− k lns2pÎNSiNOd. s18d

For simplicity, we continue to label the two species as “Si”
and “O.” Note thath is Planck’s constant, and that the
Stirling approximation has been employed in the derivation
of this result, i.e., lnN! <N ln N−N+lns2pNd1/2.

For the purpose of thermodynamic integration, we ap-
proximate this ideal gas with a dilute binary LJ system in
which the stoichiometry of the species is the same as that of
Si and O in our silica simulations, i.e.,NSi=444 andNO
=888.

We equilibrate the LJ system at a referenceT=T0
=4000 K over a range ofV from a referenceV=V0
=8.6804 cm3/mol to V=173610 cm3/mol. Denoting the ref-
erence state point atsT0,V0d as “C,” the entropy of the LJ
liquid SLJ at C can be written

SLJsCd = SIGsCd +
ULJsCd

T
−

1

T
E

V0

`

PLJ
exdV. s19d

SIGsCd=117.236 J/mol K is calculated from Eq. s18d.
From simulations we obtainULJsCd=−134099±50 J/mol,
the potential energy of the LJ system atC. PLJ

ex=PLJ
−NkT/V is the excess pressure of the LJ system, which we
evaluate for manyV at T0 sFig. 5d.

FIG. 3. V as a function ofT for (a) isochore A,(b) isochore D,
and (c) isochore I.(See Table II for the definition of the isochore
labels.) Also shown is the standard deviation about the mean value
based on 100 samples. We note that a difference inV of 0.01 yields
a change in entropy of 0.24 J/mol K. For the purpose of this work,
we therefore considerV to be constant along isochores.(d) VsT
=4000 Kd as a function ofV; this is the value ofV used in our
calculations.

FIG. 4. V as a function ofeIS for (a) isochore A,(b) isochore D,
and (c) isochore I. The error bars represent the standard deviation
about the mean value based on 100 samples.

FIG. 5. Isotherm ofuPLJ
exu for the LJ fluid atT=4000 K. The

solid line is the fit to Eq.(23) with M =8. The dashed line is the
curve given by Eq.(20). The data are shown on a log-log plot to
simplify the comparison of the data to Eq.(20) at largeV. The cusp
nearV=10 cm3/mol is due to the fact thatPLJ

ex changes sign.

SAIKA-VOIVOD, SCIORTINO, AND POOLE PHYSICAL REVIEW E69, 041503(2004)

041503-6



In order to evaluate the integral in Eq.(19), we seek a
function to fit to ourPLJ

ex data that we can integrate analyti-
cally. A natural choice is the virial expansion forPLJ

ex, a
power series in 1/V. At sufficiently largeV, the V depen-
dence ofPLJ

ex will be well approximated by the leading term
in the virial expansion

PLJ
ex .

b2kTN2

V2 , s20d

where for our binary system,

b2 =
1

9
b2

SiSi +
4

9
b2

SiO +
4

9
b2

OO, s21d

and the coefficientsb2
mn are defined by

b2
mn = − 4pE

0

`

r2se−FLJsm,n,rd/kT − 1ddr. s22d

We calculateb2 numerically for the LJ system and findb2
=−0.0337 nm3. As shown in Fig. 5, we have simulated the
LJ fluid to large enoughV so that PLJ

ex conforms to Eq.
s20d. To integratePLJ

ex over sV0,`d, we fit the data to

PLJ
ex =

b2kTN2

V2 + o
n=3

M
an

Vn , s23d

and use this form to evaluate the integral in Eq.s19d. We
evaluate the integral using three different fits withM =6, 7,
and 8 in order to obtain an error estimate for the integral. We
estimate the value of the integral to be −1268±700 J/mol,
and thus findSLJsCd=84.028±0.175 J/mol K.

To obtain SsCd from SLJsCd we perform a generalized
thermodynamic integration[38], in which a parameterl is
used to create a continuous path between the LJ system atC
and the BKS system atC. To this end, we conduct MD
simulations of a system of particles interacting via a pair
potentialF such that

Fsld = lFBKS + s1 − ldFLJ. s24d

Whenl=0, the system corresponds to the LJ fluid, and when
l=1, the system corresponds to the BKS potential. For arbi-
trary l, the instantaneous potential energy is given by

Ul = lUBKS + s1 − ldULJ, s25d

whereUBKS sULJd is the instantaneous potential energy of
the system evaluated using only theFBKS sFLJd pair po-
tential. The Helmholtz free energy differenceDF=FBKS
−FLJ between the BKS and LJ systems atC is given by

DFsCd =E
0

1K ] Ul

] l
L

l

dl =E
0

1

kUBKS − ULJldl. s26d

We evaluate the above integral by simulating the system
governed by Eq.s24d at several values ofl and using a cubic
spline to interpolate between points. The integrand is shown
in Fig. 6, from which we obtainDFsCd=−1635990±50 J via
numerical integration.

From our BKS simulations we find UsCd
=−1802257±100 J/mol, from which we evaluateDUsCd
=UsCd−ULJsCd. Using SsCd=SLJsCd+fDUsCd−DFsCdg /T,
we find for the BKS liquid SsCd=SsT0,V0d
=75.986±0.177 J/mol K.

To obtain values ofS at T0 for V different from V0, we
carry out a thermodynamic integration ofP along an iso-
therm of the BKS liquid, using,

SsV,T0d = SsCd +
1

T
fUsV,T0d − UsCdg +

1

T
E

V0

V

PsV8ddV8.

s27d

To evaluate the above integral, we findP for variousV at T0
and fit the data with a cubic spline. This spline fit is then
used to generate data for a numerical evaluation of the inte-
gral. We thus haveSsV,T0d, the absolute entropy of the BKS
liquid at all V studied, atT0=4000 K sFig. 7d.

C. Crystalline ground states

As discussed in the next section, we also find it useful to
calculate theT=0 crystalline ground state energyUs0d of the
BKS system, for comparison with the IS energies obtained
from the quenched liquid configurations. To this end, we
study three crystalline structures of silica important in theV
range under consideration, namely, quartz, coesite, and
stishovite[39–41]. We evaluate theT=0 energy curves for
these crystals as modeled by theFBKS pair potential. Starting
from the previously determined crystal structures, we opti-
mize Us0d of the model system through an iterative proce-
dure where we alternately minimizeUs0d as a function of the
particle coordinates in a simulation cell of fixed geometry,
using a conjugate-gradient procedure; and then optimize the
cell geometry with a simplex method[37]. During the cell
geometry optimization, we constrainV to be fixed, but oth-
erwise allow the shape to change. This is done to remove
anisotropic stress within the crystal while preservingV. Once
the crystal structure has been optimized for a particularV, we

FIG. 6. Plot of the integrandI =kUBKS−ULJl, in Eq. (26). The
solid line is a cubic spline fit to the data.
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incrementally changeV and repeat the optimization. The re-
sults for the three crystals are shown in Fig. 8. At fixedV, the
thermodynamic ground state may be a single crystal phase,
or a coexisting mixture of two crystalline phases. To obtain
the ground state energy in the case of a mixture, we employ
the “common tangent construction,” as shown in Fig. 8.

IV. RESULTS AND DISCUSSION

The calculations described above yield a complete ther-
modynamic description of the BKS model of liquid silica,
including the absolute free energy of the model, and the ab-
solute configurational entropy, over a wide range ofV-T con-

ditions. Combined with dynamical data, in the form of the
diffusion coefficientD, a number of conclusions may be
drawn, as described below. Note in the following that byD
we mean the diffusion coefficient of the Si atoms, evaluated
from the particle mean squared displacement in equilibrium.
For comparison we also show some results for the diffusion
coefficient of the O atomsDO. In general, the qualitative
results are independent of the choice of atomic species.

A. Signature of fragile-to-strong crossover in
the potential energy landscape

Our results forD are shown in Figs. 9(a) and 10(a). These
plots take the form of Arrhenius plots ofD andD /T, respec-
tively, the latter quantity being preferred in some works as a
measure of particle mobility in liquids. As first observed in
Ref. [3], the FSC of the BKS model can be seen in our
simulations at lowr, which correspond to the value ofr for

FIG. 7. Thermodynamic properties of liquid BKS silica along
the T0=4000 K isotherm:(a) S, (b) P, and(c) U.

FIG. 8. UsV,T=0d for quartz, coesite, and stishovite. Solid lines
are common tangent constructions used to find the system ground
state energy for specific values ofV (as indicated by dotted lines).

FIG. 9. (a) Isochores ofD, the diffusion coefficient of Si atoms.
(b) Test of the AG relation along isochores ofD; the legend indi-
catesr in g/cm3. If the data fall on a straight line, the AG relation
is satisfied. For comparison, the inset showsDO, the diffusion co-
efficient of O atoms, along ther=3.01 (triangles) r=2.31 g/cm3

isochores(stars).
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real silica at ambientP; isochores are curved on an Arrhenius
plot at high T, but become straighter at the lowestT. The
statistical errors inD can be inferred from the scatter of the
data points.

We compare the behavior ofD andDO in Fig. 11. We find
that the ratio ofDO/D varies between 1 and 3, but that theT
dependence ofDO is qualitatively the same as that ofD.

Our results foreIS andSc are shown in Figs. 12–14. Note
that our estimates forSc have changed somewhat, compared
to the values published in Ref.[31], due to improved aver-
aging using more data, as well as refinements in our analysis.
However, the qualitative results of Ref.[31] remain in agree-
ment with those presented here.

Consistent with the predictions made in Sec. III, we find
that for the lowr isochores, where a FSC is observed, we
also observe a point of inflection in theT dependence of both
eIS and Sc. This inflection is what one would expect if the
emergence of strong liquid behavior with decreasingT is
associated with the approach ofeIS and Sc to a constant at
low T.

Reference[21] showed that for a binary Lennard-Jones
mixture at lowT, eISsTd,−1/T. This T dependence ofeIS,
consistent with a Gaussian distribution of IS energies, has
been observed in other models[9,24]. Furthermore, the bi-
nary LJ system is a relatively fragile liquid, and in this re-
gard, our results for silica at highr are similar to those for
binary LJ(inset, Fig. 12). This is consistent with the fact that

FIG. 10. (a) Isochores ofD /T. (b) Test of the AG relation along
isochores ofD /T; the legend indicatesr in g/cm3. For comparison,
the inset showsDO along ther=3.01 (triangles) r=2.31 g/cm3

isochores(stars). The lines in the main panel are fits of a straight
line to the data, used to obtained the values ofA andm0 shown in
Fig. 15.

FIG. 11. (a) Arrhenius plot ofDO (open symbols) andD (filled
symbols) along ther=3.01(circles) andr=2.31 g/cm3 (diamonds)
isochores.(b) RatioDO/D as a function of 1/T along the isochores
shown in(a).

FIG. 12. eISsTd along isochores. The lines are fits to each isoch-
ore of a fifth order polynomial inT with no linear term(i.e., zero
slope atT=0); these are the polynomial curves we use to estimate
the integral term in Eq.(9). The legend indicatesr in g/cm3. The
inset showseIS versus 1/T for three isochores spanning the density
range. The low density isochore shows a marked departure from the
relation eIS,1/T at low T. The symbols used in the inset corre-
spond to the samer as in the main panel.
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at high r the network structure of liquid silica is disrupted,
giving behavior more like that of simpler liquids, such as the
binary LJ system. We also find that theT dependence ofSc
becomes more like that of a simple, fragile liquid(Fig. 14) as
r increases.

Note that the fragile-to-strong crossover observed in the
present model is different from the crossover from normal
dynamics to slow dynamics. In the latter case, the change in
dynamics is associated with the onset of the caging effect
and to the development of a two-step relaxation in the decay
of correlation functions. The fragile-to-strong crossover in
BKS silica takes place when caging is already well devel-
oped.

B. Implications for the Kauzmann paradox

In Fig. 13, we compare the behavior ofeIS to the T=0
energy of the crystalline state of the system, as found from
the data in Fig. 8. It is interesting to note how closelyeIS
approaches the crystal energy at lowr, compared to the be-
havior at higherr. We do not expecteIS, the energy of a
disordered configuration obtained from the liquid atT, to
ever be less than that of theT=0 crystalline state of the
system. TheT dependence ofeIS at low r is consistent with
behavior that would respect this constraint asT→0. At
higherr, eIS does not approach the crystal energy as closely
as it does at lowerr. The conditions that might induce an
inflection in eIS are therefore not realized in theT range of
our simulations.

The inflection ineIS is associated with an inflection in the
T dependence ofSc, also found at lowr (Fig. 14). For real
systems, the third law of thermodynamics requires that the
lower bound forSc be zero. Although our system is purely
classical, the same constraint applies, because the configura-
tional entropy we calculate counts the number of basins ex-
plored by the liquid, which is necessarily one or greater. As
pointed out by Kauzmann in 1948[42], the entropy asT
decreases of many supercooled liquids initially decreases at a

sufficiently high rate so as to suggest that the entropy might
reach zero at finiteT (the so-called “entropy catastrophe”).
That this purely thermodynamic event seems to be pre-
empted by the occurrence of a kinetic event, the glass tran-
sition, is the so-called “Kauzmann paradox.” At lowr and
high T, we find thatSc behaves in similar fashion, decreasing
rapidly asT decreases. An extrapolation of the observed high
T behavior raises the possibility thatSc might reach zero at
finite T. However, the inflection observed in the lower part of
our observedT range establishes behavior that allows Kauz-
mann’s “entropy catastrophe” to be avoided through a purely
thermodynamic phenomenon.

It is therefore tempting to speculate that our observations
may be transferable to other systems to which the Kauzmann
paradox seems to apply. HowSc.0 is maintained in deeply
supercooled liquids can perhaps be understood in terms of
the PES changes observed here. Moreover, the PES change
we find in BKS silica is correlated to the fragile-to-strong
dynamical crossover. Hence it is possible that the FSC and

FIG. 13. Detail of isochoriceIS behavior for threer spanning
the range of our calculations. The thick horizontal lines show the
value of theT=0 crystal energies obtained from Fig. 8.

FIG. 14. (a)–(i) Sc along isochores; each panel is labeled by the
density in g/cm3. Each curve is obtained using Eq.(9), by integrat-
ing the fitted curves foreIS shown in Fig. 12. Dotted curves are fits
to a two-state model[43,44]. (j) 1/Sc as a function ofT.
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(the avoidance of) the Kauzmann paradox are fundamentally
interrelated phenomena.

However, if the above speculations are confirmed, it is
important to note the differences between silica and other
supercooled liquids. The picture developed above implies
that theT range of the phenomenon by which silica avoids
the Kauzmann paradox is above, and widely separated from,
Tg in silica. In other supercooled liquids, the glass transition
may occur atT above, and thus obscure, the PES changes
found here. More work on these possibilities is clearly re-
quired.

We also attempt to fitScsTd to predictions for a two-state
model, whereScsTd is characterized by entropy and energy
differences between the two states as well as the number of
degrees of freedom per molecular unit[43]. Here we find
good agreement with the two-state model at highr, i.e., frag-
ile densities, shown in Figs. 14(a) and 14(d), and fairly good
agreement at lower densities[Fig. 14(g)], where we have not
probed the FSC. The description breaks down at lowerr
where we have probed the inflection ineIS [Fig. 14(h)] [44].
Hence, avoidance of the Kauzmann paradox via the PES
changes associated with the FSC appears to be a distinct
mechanism from that presented in the two-state model.

C. Test of the Adam-Gibbs relation

In order to draw the conclusions given above, we must
also test that the liquid satisfies the AG relation. IfSc does
not control the behavior ofD, then we will lack the basis
required for making a connection between the behavior of
the PES and the liquid dynamics.

We perform this test by plotting lnsDd [Fig. 9(b)] and
lnsD /Td [Fig. 10(b)] against 1/TSc. The AG relation is
obeyed by data that follows a straight line on such a plot. We
find that the isochores ofD /T provide the best agreement
with the AG relation. Note also that both high and lowr
isochores, regardless of whetherSc exhibits an inflection,
obey the AG relation. Thus we see that regardless of dynami-
cal regime(fragile or strong), and regardless of inflections in
the T dependence ofSc or eIS, the liquid behaves so as to
satisfy the AG relation. This observation reinforces the posi-
tive tests of the AG prediction that have been documented in
other work(see, e.g., Refs.[9,20,21,45]).

We note that Arrhenius behavior can also be recovered via
Eq. (1) if 1 / Sc<const+bT. To explore this possibility, we
plot in Fig. 14(j) 1/Sc as a function ofT. From the figure we
conclude that we are not in a regime where 1/Sc is linear in
T.

In Fig. 15 we present estimates of the constantsA andm0
that appear in Eq.(1). These are obtained by fitting straight
lines to the isochores in Fig. 10(b), omitting the three data
points at the highestT, where deviations from the AG rela-
tion are expected.

D. Entropy and diffusion

In the case of simulated water[20], it was found that
maxima ofSc isotherms occur, within error, at the sameV as
the maxima in isotherms ofD. We show our results for theV

dependence ofD, Sc, andS in Fig. 16. At lowerT, isotherms
of Sc and D pass through a maximum at approximately the
sameV. However, asT increases, the correlation of these
maxima fades. This may be due in part because at higherT,
our estimates ofSc worsen, due to the larger role played by
the anharmonic corrections. At the highestT, the trend is for
isochores ofD, Sc, andS to become monotonic functions of
V. An observation that theV dependence of entropy follows
that of D would be consistent with recent work examining
the relationship between structural disorder and diffusivity in
BKS silica [46]. A difference in the locations of the maximal
points ofD andSc may, however, arise from hitherto uncon-
sidered physical arguments.

FIG. 15. Estimates of the parameters(a) m0 and(b) A, that occur
in Eq. (1). These estimates are based on the straight-line fits to the
data shown in Fig. 10(b).

FIG. 16. Isotherms of theV dependence ofD (filled circles), Sc

(squares), and S (triangles) at variousT. For plotting purposes,S
has been shifted down so thatSsV0d=ScsV0d. The shifts inS for the
various panels are(a) −66.6042 J/mol K,(b) −70.6031 J/mol K,
(c) −77.8919 J/mol K, and(d) −84.3673 J/mol K.
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E. Specific heat

In terms of the various contributions toE=eIS+Eanh
+3RTsN−1d /N, we can write the constant volume specific
heatCV as

CV = S ] E

] T
D

V

= U ]

] T
U

V
SeIS + Eanh+

3RTsN − 1d
N

D . s28d

So written, we can separately evaluate the contributions to
CV from eIS and Eanh, which we denoteCV

IS and CV
anh, re-

spectivelysFig. 17d. At all r, CV
anh exhibits a maximum; at

the lowest r the inflection in theT dependence ofeIS
means thatCV

IS also passes through a maximum. Together,
at low r, the strength of these two contributions becomes
large enough to give a peak in the total value ofCV. This
peak is therefore a thermal signature approximately de-
marcating the crossover from fragile to strong dynamical
behavior. It would be interesting to explore if such signa-
tures could be observed in highT experiments on silica, or
related systemsf47g.

F. Relation to polyamorphism

Real amorphous solid silica displays “polyamorphism,”
the conversion under pressure of a low density form to a high
density form, that occurs in some ways as though it were a
first-order phase transition. Computer simulations of BKS
silica have provided evidence that this polyamorphic transi-
tion may correspond to a sub-Tg remnant of a liquid-liquid
phase transition occurring in the equilibrium liquid[48].

Having found that the same model, BKS silica, exhibits a
thermodynamic anomaly, in the form of aCV peak associated
with a FSC, it is natural to ask if this phenomenon is related

in some way to polyamorphism. It is difficult at present to
answer this question decisively, since the region of the pro-
posed liquid-liquid instability in BKS silica has only been
approximately located, and seems to lie in aT range below
that at which we can evaluate equilibrium liquid properties
with current computational resources. However, several
trends suggest a connection.

First, we find that theT at which the peak ofCV occurs
decreases with increasingr, and passes outside of our range
of observation at the approximater where liquid-liquid
phase separation is proposed(Fig. 18). This behavior is con-
sistent with the observedCV peaks being a line(in the V-T
plane) of high-T, nonsingular thermodynamic anomalies that
becomes singular as the critical region of the liquid-liquid
transition is approached.

Second, the observed line ofCV peaks naturally defines a
“crossover zone” in the behavior of the liquid between a
high-T, high-r region(region I in Fig. 18), within which the
liquid is more fragile, the IS energies are relatively high, the
tetrahedral network is disrupted, and the properties are in
general more similar to simpler liquids; and a low-T, low-r
region (region II in Fig. 18) within which the liquid is be-
coming strong, the IS energies are dropping(perhaps toward
a lower limit), the tetrahedral network is becoming promi-
nent, and complex thermodynamic behavior(e.g., negative
expansivity) emerges. It is possible that these two regions of
behavior, asT decreases, become progressively more sharply
separated, perhaps ultimately by a first-order phase transi-
tion.

More research, both through experiments and simulations,
is required to confirm or refute such a picture. However, our
current understanding of the BKS system suggests that three
distinct phenomena may in fact be interrelated:(i) the FSC,
(ii ) polyamorphism, and(iii ) the landscape behavior that al-

FIG. 17. Comparison ofU and the contributions toCV. The top
panels(a)–(c) show isochores ofU spanning the studied density
range; also shown are estimates forU of the crystalline state of the
system in the harmonic approximation, derived from theT=0 esti-
mate ofU in Fig. 8 and extended to higherT using a straight line of
slope 3R/2. The bottom panels(d)–(f) show the contributions to
CV. The solid line isCV−s3R/2dsN−1d /N; the dot-dashed line is
CV

anh; and the dashed line isCV
IS. Each curve is obtained by differ-

entiating the function fitted to the data for the corresponding energy.

FIG. 18. Location of the line ofCV maxima (asterisks) in the
V-T plane. Also shown are points on the “temperature of maximum
density” (TMD) line (triangles), at which the isobaric expansivity
changes sign; and the location of maxima in the contribution ofeIS

to CV (squares). The diamond indicates where evidence for liquid-
liquid phase separation was found in Ref.[48]. The regions labeled
I and II are referred to in the text.
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lows the Kauzmann paradox to be avoided. In this regard,
Sasai has recently studied the interrelationship of the FSC
and a liquid-liquid phase transition in a random energy
model [49]. Also, it is worth considering the behavior of
other systems(e.g., BeF2 [47]) that display one or more of
the above three phenomena, to test if the others also appear.
In particular, for any system that becomes strong at lowT via
a FSC, it may be that polyamorphism can be observed under
nearby thermodynamic conditions. This may be a useful clue
for identifying polyamorphic materials.
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