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We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature
jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different
aging realizations, we calculate distributions of inherent structure energies for different aging times and con-
trast them with equilibrium. We find that the distributions initially become narrower and then widen as the
system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those ob-
served in equilibrium. Simulation results are partially captured by theoretical predictions only when the final
temperature is higher than the mode coupling temperature.
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When a liquid is rapidly brought out of equilibrium, for
example by an abrupt change in temperatureT, it starts to
age. The material properties change with the aging timetw in
the attempt to recover equilibrium at the new bath tempera-
ture Tb. This aging process can be visualized as a path in
configurational space, that starts from a typical equilibrium
configuration before the quench and which, at long times,
should converge to an equilibrium configuration characteris-
tic of Tb. WhenTb is below the glass transition temperature,
the aging dynamics never stops in the experimentally acces-
sible time window, but becomes slower and slower on in-
creasingtw.

In recent years, several studies have revisited the physics
of aging [1–4], attempting to associate the aging dynamics
with a progressive decrease of the fictive(or effective) tem-
peratureTf [5–9]. In these studies, the configuration of the
aging system at timetw is associated with a typical configu-
ration explored by the equilibrium liquid atTf. In this case,
the aging dynamics can be modeled as a progressive thermal-
ization of the system, quantified by the progressive decrease
of Tf.

A convenient framework for analyzing the thermodynam-
ics of supercooled liquids and aging dynamics in numerical
simulations is provided by the inherent structure(IS) formal-
ism [10]. In this framework, each configuration is associated
with its closest local minimum, named IS, on the potential
energy surface(PES) of the liquid. A formal thermodynamic
description of the system can be developed with a proper
modeling of the statistical properties of the PES, i.e., the
distribution of the energy minimaeIS and of their basins of
attraction[10,11]. It has been shown that in equilibrium su-
percooled states, the probability densityPseIS,Td of explor-
ing a minimum of deptheIS is approximately Gaussian, with
a T-independent variance and with an averageēIS which de-
creases monotonically withT [12–14]. In the IS approach,
the aging dynamics can be visualized as the progressive ex-
ploration of deeper and deeper minima, and a connection
between aging and equilibrium configurations can be made
by comparing properties of the explored basins.

Experimental studies of glass forming materials[4,15]
and recent numerical simulations[16] have called attention
to the fact that aging systems, especially for deep quenches,
may not be associated with a singleTf, i.e., cannot be
uniquely associated with a liquid configuration, calling for a
further development of the present theories. In this paper, we
bring the level of comparison between equilibrium and aging
to a much more detailed level, by studying fluctuations
around the average properties. We show that the fluctuations
frozen in the glass depend on the thermal history and are
significantly different from the fluctuations characteristic of
the liquid state.

We perform molecular dynamics(MD) simulations ofN
=1000 particles in a cubic box of lengthL=9.4, for the well
characterized Kob-Andersen binary-mixture Lennard-Jones
(LJ) model[17], for which the mode coupling transition has
been estimated atTx=0.435. We employ the Nosé-Hoover
thermostat with parameters chosen so that the kinetic energy
thermalizes in a time between 300 and 1000 time steps. Time
is reported here in number of MD time steps, each of which
is 0.01t0 [18]. We calculate the probability densityPseIS,twd
of finding the liquid at a given timetw in a basin of energy
eIS, as the system responds to a sudden lowering inT. To this
end, we perform an ensemble of 1500 independent MD runs,
each for 106 steps. The temperature is switched from the
initial equilibrium temperatureTi to the newTb at tw=0. For
each MD run we select configurations at 35 differenttw,
logarithmically spaced. We perform a conjugate-gradient
quench on each configuration to obtain the associated IS.
Diagonalization of the Hessian matrix evaluated at the IS
provides the eigenfrequencieshvij. Thus for each studiedtw
we produce an ensemble of 1500 IS’s. We study five differ-
ent T jumps, with sets of sTi →Tbd, including s0.55
→0.466d, s0.6→0.1d, s0.8→0.25d, s0.8→0.446d, and s0.8
→0.6d.

In Fig. 1 we plotPseIS,twd for the s0.8→0.446d run, as
well as the corresponding equilibrium distributionsPseIS,Td
at Ti and Tb. The figure shows that distributions initially
become narrower(equivalently taller), then broader again on
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approaching equilibrium. Figure 2 shows the averageeag and
the standard deviationsag of the distributions as functions of
tw. In the cases whereTb.Tx, the variance, which by con-
struction attw=0 coincides with the equilibrium variance,
first decreases and then relaxes towards the equilibrium
value. ForTb,Tx, within the studied time window, we only
observe the narrowing. We also evaluate the skewness,
though we cannot discern any trend outside of statistical
noise.

Next we attempt to compare the fluctuations observed in
aging with theoretical predictions. In equilibrium, the Helm-

holtz free energy per particle of the liquid can be written as
[10,12]

F = eIS − TScseISd + fvibseIS,Td, s1d

wherefvibseIS,Td is the free energy of a basin, averaged over
all basins of deptheIS, and ScseISd=N−1kB ln VseISd is the
configurational entropy.VseISd counts the number of basins
of energy eIS. In the Gaussian-harmonic approximation
(GHA) [19], one assumes thatSc and fvib are quadratic ineIS.
In the GHA,PseIS,Td is Gaussian with aT-independent vari-
ance, i.e.,

PseIS,Td =
1

Î2psP
2
expF−

„eIS − ēISsTd…2

2sP
2 G , s2d

where theT dependence ofēIS and the variancesP
2 are ex-

pressed in terms of the statistical properties of the PES[the
variancesc

2 and the average energyE0 of VseISd] and of the
parameters connecting depth and shape of the basins(b and
c) [20,21]. More precisely, ēISsTd=sE0−bsc

2d / s1+2csc
2d

−T−1 sc
2/ s1+2csc

2d, and sP
2=N−1sc

2/ s1+2csc
2d. Below T

=0.6, the GHA provides a good description of the numerical
data[12,14], enabling us to estimatesc

2, E0, b, andc.
In the nonequilibrium case, recent theoretical approaches

suggest that the free energy can be written as

F = eIS − TfScseISd + fvibseIS,Tbd, s3d

whereSc is weighted byTf [6,8,22,23]. The introduction of
Tf modifies Eq.(2) to yield a nonequilibrium probability den-
sity, in the GHA,

P„eIS,Tfstwd,Tb… =
1

Î2psag
2

expF−
seIS − eagd2

2sag
2 G , s4d

whereeag andsag are given by

eag=
E0Tf − sc

2 − sc
2Tbb

2csc
2Tb + Tf

, s5d

and

sag
2 = N−1S2c +

1

sc
2

Tf

Tb
D−1

. s6d

Note that the theory predicts a gradual increase of the vari-
ance on increasingtw, i.e., on approaching equilibrium(de-
creasingTf).

The theoretical predictions for the relation betweeneag
andsag, parametric inTf, are shown in Fig. 3(a). In Fig. 3(b)
we show the evolution of the same quantities as calculated
from the aging runs. In the simulation data, at shorttw, the
system possesses by construction a distribution of IS ener-
gies identical to that of the startingT, and hence it is not
surprising that the numerical results initially differ from the
value predicted by Eq.(6). For longer times, i.e., for lower
eIS values, a region where the variance increases is indeed
observed, but only for quenches aboveTx. The magnitude of
change in the variance predicted by the theory is significantly
smaller than the one observed in simulation. Even in the case
s0.55→0.466d, where the startingT is such that the GHA
should hold the best, the observed narrowing falls outside the

FIG. 1. Distributions ofeIS during aging. Histograms(of unit
area) showingPseIS,twd (filled diamonds) for an ensemble of aging
systems withTi =0.8 and Tb=0.446 with tw=542, 3405, 7482,
21372, 46954, 174338, and 841500 from right to left. Also shown
are equilibrium distributionsPseIS,Td (open circles) for T=0.8,
0.55, and 0.446 from right to left.

FIG. 2. Time evolution of the averageeag (a) and of the standard
deviation sag (b) of the inherent structure energy distribution
PseIS,twd. Legend indicates the correspondingTi andTb values.
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uncertainty arising from modeling the equilibrium distribu-
tions, as well as from numerical errors.

An implicit assumption in the theory is that, during aging,
the liquid explores configurations typical of equilibrium[24]
and hence that the landscape parameters derived from the
equilibrium study can be used to calculate the out-of-
equilibrium distributions. Previous work has shown that this
is not necessarily so[25]. Here we analyze our extremely
large database of inherent structures in equilibrium and in
aging to address the question of whether the basin curvature
during aging differs from the equilibrium case. The quantity
M ;N−1oi=1

3N−3 lns"vi /eAAd constitutes a good indicator of
the curvature of a single basin in the harmonic approxima-
tion [24,25]. In Fig. 4(a) we plot average valueskMleqseISd
and kMlagseISd for equilibrium and aging runs. This plot
shows that for all aging experiments withTb.Tx, the eIS
dependence ofM is the same in equilibrium and in aging,
and hence that the aging liquid explores basins the shape of
which is the same as the one explored in equilibrium. In
contrast, forTb,Tx, the aging system explores basins of
different shape. In thes0.8→0.25d case, the system begins to
explore basins of higherM relative to equilibrium values
neareIS<−7.6. In the deep quenchs0.6→0.1d case, the sys-
tem stays in basins of roughly constantfvib. It is as though
the system explores basins of lower energy, but not of corre-
spondingly lowerfvib. To discern the origins of the differ-
ences in basin sampling in aging and equilibrium, we calcu-

late the distribution ofM, PsMd, for four different cases[Fig.
4(b)]. More specifically, we want to assess if differences in
kMl, at the same averageeIS value, arise from differences in
the distributions of sampledeIS or if they arise from intrinsic
differences in sampled basin shapes. For this reason we
show, together with the equilibrium case forT=0.55 (for
which ēIS=−7.6228), the PsMd for basins of deptheIS

=−7.6228±0.002, explored in the shallows0.8→0.446d and
deeps0.8→0.25d quenches(independent fromtw) and basins
explored in equilibrium(independent fromT). Data in Fig.
4(b) show that the equilibriumPsMd coincides with the dis-
tribution evaluated from all sampled basins with depth equal
to eIS=−7.6228. It also coincides with the distributions
evaluated during aging in theTb.Tx runs. But it does not
coincide with the distributions evaluated during aging in the
Tb,Tx case. Hence, differences between equilibrium and ag-
ing cannot be ascribed to the nonlinear dependence ofM on
eIS. We conclude that in aging runs withTb,Tx the system
explores narrower basins(higherM) as compared to equilib-
rium.

The results reported in this paper provide high quality
data for the evolution of the energy distribution in aging, for
several different aging scenarios, and hence provide an im-

FIG. 3. Relationship betweensag and eag during aging. The
legend indicatesTi andTb. Panel(a) shows the theoretical predic-
tions based on the GHA, using the landscape parameters calculated
fitting equilibrium data [21]. Panel (b) shows MD data. Filled
circles indicate equilibrium values.

FIG. 4. Vibrational properties of basins as a function ofeIS.
Panel(a) showskMleqseISd (filled circles, bars indicating standard
deviations) and aging ensemble averageskMlagseISd. For the dot-
dash line we use a binning procedure to determineMseISd from all
basins regardless oftw during aging for thes0.8→0.25d run. Panel
(b) shows the equilibriumPsMd for T=0.55(solid line), and for the
case where all basins with energyēISsT=0.55d±0.002 are used
(short dash); and for the aging runss0.8→0.446d (long dash) and
s0.8→0.25d (dot dash), also binning the energy.
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portant starting point for a detailed master equation descrip-
tion [26–29] of the dynamics in configuration space. In our
simulations, whenTb.Tx, we find that the distribution ini-
tially narrows during aging, broadening again as the system
reequilibrates. We also find that the system samples configu-
rations which are typically explored in equilibrium. In thisT
range, a description of the aging dynamics via a master equa-
tion is feasible, provided equilibrium properties are fully
characterized. By contrast, whenTb,Tx, we only observe
the narrowing of the distribution. Furthermore, the vibra-
tional states explored during aging differ from the equilib-
rium ones. Hence, while the PES approach retains its validity
in the thermodynamic description of equilibrium properties
of supercooled liquids, a thermodynamic extension of this
approach to aging is not straightforward.

We note that the present out-of-equilibrium theory, which
is built on the hypothesis that states explored in aging are the
same as those explored in equilibrium, predicts only broad-
ening associated with the approach to equilibrium. One could
question the role of the GHA in the discrepancy between
theory and simulation. In this respect we note that the case
s0.55→0.466d should be only weakly affected by the GHA
approximation. Indeed,T is sufficiently low to minimize an-
harmonic effects, and high enough to avoid effects due to
non-Gaussianity of the density of states. Moreover, the vi-

brational states explored during aging are the same in this
case. Hence, the GHA is not the dominant origin of the ob-
served deviations.

In summary, a theory based on a singleTf may only apply
to the Tb.Tx case. We also stress that the results reported
suggest that fluctuations in arrested states(which on the time
scale of simulation correspond toTb,Tx) depend on the
previous thermal history[26,28]. Glasses with the same av-
erage values may strongly differ in their frozen fluctuations.
For deep quenches, the fluctuations frozen in the glass are
significantly different from the fluctuations experienced in
the liquid state, a feature which could explain the crossover
effect [4,16,28] and the failure of the theories based on one
Tf. Finally, we note that the decrease of the variance at short
times (as shown in Fig. 2), suggests that the initial aging
dynamics—which may well be the only one accessible on
the observation time scale for deep quenches—acts in the
direction of increasing the differences between the equilib-
rium liquid and glass distributions.
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