
Effect of bond lifetime on the dynamics of a short-range attractive colloidal system

I. Saika-Voivod,1 E. Zaccarelli,2 F. Sciortino,1,2 S. V. Buldyrev,3 and P. Tartaglia1,4

1Dipartimento di Fisica and Istituto Nazionale per la Fisica della Materia, Università di Roma La Sapienza, Piazzale Aldo Moro 2,
I-00185, Roma, Italy

2INFM-CRS Soft: Complex Dynamics in Structured Systems, Università di Roma La Sapienza, Piazzale Aldo Moro 2,
I-00185, Roma, Italy

3Yeshiva University, Department of Physics, 500 West 185th Street, New York, New York 10033, USA
4INFM-CRS SMC: Center for Statistical Mechanics and Complexity, Università di Roma La Sapienza, Piazzale Aldo Moro 2,

I-00185, Roma, Italy
(Received 12 March 2004; revised manuscript received 10 June 2004; published 11 October 2004)

We perform molecular dynamics simulations of short-range attractive colloid particles modeled by a narrow
(3% of the hard sphere diameter) square well potential of unit depth. We compare the dynamics of systems
with the same thermodynamics but different bond lifetimes, by adding to the square well potential a thin barrier
at the edge of the attractive well. For permanent bonds, the relaxation timet diverges as the packing fraction
f approaches a threshold related to percolation, while for short-lived bonds, thef dependence oft is more
typical of a glassy system. At intermediate bond lifetimes, thef dependence oft is driven by percolation at
low f, but then crosses over to glassy behavior at higherf. We also study the wave vector dependence of the
percolation dynamics.
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I. INTRODUCTION

Colloidal systems, in which particles are dispersed in a
fluid, have an enormous relevance in industrial applications,
owing to the possibility of chemically or physically tuning
the interaction between the particles and the resulting possi-
bility of designing materials with novel properties[1–3].
From the point of view of basic research, colloidal systems
are playing a very important role in the development of the
physics of liquids, since they open up significantly the range
of values of physically relevant parameters. For example,
novel phenomena arise when the range of particle-particle
interaction becomes significantly smaller than the size of the
particle or when the system is composed of colloidal par-
ticles with significantly different size or mobility.

An interesting phenomenon that is often observed in col-
loidal suspensions, but is absent from atomic or molecular
systems, is particle clustering and gelation. The gel is an
arrested state of matter at small values of the packing frac-
tion, a nonergodic state capable of supporting weak stresses.
The formal description of gel formation in colloidal systems
has been receiving considerable attention recently[4–8]. Re-
cent numerical work has also focused on the gelation prob-
lem [9,10]. Interesting studies have attempted to provide for-
mal connections between the formation of a gel and the
formation of a glass, both being disordered arrested states of
matter. It is not a coincidence that such theoretical studies
focus on colloidal systems, where colloid-colloid interaction
can be finely tuned, allowing for a careful test of theoretical
predictions. Indeed, colloids appear to be ideal systems for
unraveling the physics of gel formation. Understanding the
key features of the interaction potential that stabilize the gel
phase will probably have an impact also on our understand-
ing of the protein crystallization problem[11,12], where the
possibility of generating crystal structures is hampered by
the formation of arrested states.

Sterically stabilized colloidal particles provide an experi-
mental realization of a system in which the particle-particle
interaction can be well modeled by the hard sphere potential
[13]. When this is the case, addition of many small nonad-
sorbing polymers leads, due to depletion mechanisms, to an
effective short-range attraction between the colloidal spheres
[14,15]. Neglecting the effects of the solvent on the dynam-
ics of the colloidal particles, and integrating out the behavior
of the smaller polymers, one has an experimental realization
of a short-range potential, with a tunable short-range attrac-
tion between particles. The size of the small polymers tunes
the range, while their concentration controls the strength of
the attractionu0.

At high packing fractionf<0.6, these colloidal systems
exhibit the usual hard sphere glassy dynamics. When the
range of interaction is smaller than about 10% of the hard-
sphere diameter, the glass transition line can show reentrant
behavior[4,16–24]. That is, in a particular range off, the
liquid can be brought to structural arrest by either increasing
or decreasing the ratioT/u0, where T is the temperature.
Experimentally, dynamical arrest phenomena in short-range
attractive colloids are observed not only at high density, as
discussed above, but also in the low packing fraction region.
In this case, the arrested material is commonly named a gel.
The gel state displays peculiar features like the appearance of
a peak in the static structure factor, for very large length
scales(of the order of several particle diameters), that is
stable in time, as well as a nonergodic behavior in the density
correlation functions and a finite shear modulus[25]. These
solidlike, disordered, arrested features have prompted the ap-
pealing conjecture that these colloidal gels can be viewed as
the low-density expression of the high-density glass line,
with both phenomena being driven by the same underlying
mechanism of arrest[4–6,26]. However, such a connection
between gelation and the attractive glass is nontrivial, as
pointed out in Ref.[27]. The presence of an intense prepeak
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in the static structure factor has also suggested the possibility
that, in colloidal systems, the gel phase is related to a phase
separation process[28–33]. Indeed, hard sphere systems
with short-range attraction added tend to phase separate into
a colloid rich phase(liquid) and a colloid poor(gas) phase.
Whether the interaction between this phase separation and
the reentrant glass line can bring about a gel phase via ar-
rested phase separation[33] is an idea which is also under
current investigation. At very lowT, diffusion limited cluster
aggregation[34–37] may be another way to irreversibly ob-
tain a clustered gel(and a frozen prepeak in the structure
factor).

In the present study, as a step in the process of under-
standing gelation in colloidal systems in the absence of phase
separation, we focus on the dependence of the dynamics on a
purely kinetic factor, the lifetime of the particle-particle
bond. We introduce a Hamiltonian model of a short-range
attractive colloid, for which we can tune the bond lifetime,
without affecting the thermodynamics. We have been in-
spired by the recent work of Del Gado and co-workers[38],
where a lattice model was introduced to study the influence
of bond lifetime on the slow dynamics of gelling systems.
Here, we model a colloidal system as an ensemble of par-
ticles interacting with a short-range square well, a model
sufficiently realistic to properly describe the physics of short-
range systems, but at the same time ideal for studying par-
ticle bonding and percolation since a bond is unambiguously
defined by the limits of the square well. In particular, we
study the interplay between percolation and the glass transi-
tion and find that there is a crossover from a percolation
dominated regime, to one controlled by the glass transition.
Differing from Ref. [38], we find that above the percolation
threshold, changing the lifetime of bonds merely rescales
long time behavior of the system, leaving intact the glassya
relaxation. Furthermore, we explore the long lifetime case
with regards to the dependence of observing percolation on
the wave vector used to probe the system, making contact
with experimental observables. Finally, as a contribution to-
wards clarifying the differences between gels and glasses, we
study the same model in the limit of permanent bonds, where
percolation becomes the relevant arrest process in the sys-
tem.

II. MOLECULAR DYNAMICS SIMULATIONS—
THE MODEL

We perform collision-driven molecular dynamics simula-
tions of a binary mixture of particles interacting through a
narrow square well pair potential. Although colloidal sys-
tems are more properly modeled using Brownian dynamics,
we use molecular dynamics due to its efficiency in the case
of stepwise potentials. While the short-time dynamics is
strongly affected by the choice of the microscopic dynamics,
the long term structural phenomena, in particular close to
dynamical arrest, are rather insensitive to the microscopic
dynamics[39]. We use a 50:50 binary mixture of 700 par-
ticles of massm with diameterssAA=1.2 andsBB=1 (setting
the unit of length). The hard core repulsion for theAB inter-
action occurs at a distancesAB=ssAA+sBBd /2. The depth of

the well u0 is 1, and the widthDi j of the square well attrac-
tion is such thatDi j / ssi j +Di jd=0.03 for all interactions be-
tween particles of typei and j . T is measured in units ofu0,
time t in sBBsm/u0d1/2. This system has been extensively
studied previously[20,33,40,41].

The phase diagram of this system is reproduced from Ref.
[33] in Fig. 1. For this model, both the dynamical arrest
curves and the spinodal curve have been calculated. The
glass line(determined by extrapolating the diffusion coeffi-
cient calculated in simulation to zero according to a power
law [41]) shows both a repulsive and an attractive glass
branch[20]. The numerical glass lines are well described by
the predictions of mode-coupling theory(MCT) [42], after
an appropriate mapping is performed[41,43]. Figure 1 also
reports the static percolation line(defined as the locus of
points insf ,Td such that 50% of the configurations possess a
spanning, or percolating, cluster of bonded particles) and the
estimated location of the liquid-gas spinodal(the locus ofT
below which spinodal decomposition occurs in simulation).

It is important to note that in this model the attractive
glass line ends on the spinodal line on the largef branch,
proving that arrested states at lowf in this model can arise
only as a result of interrupted phase separation[33]. It also
confirms that, if the MCT predictions for the location of the
attractive glass are not properly rescaled in thef−T plane,
an incorrect location of the glass line with respect to the
spinodal line is predicted.

In order to study the effect of bond lifetime on the dy-
namics, we add to the edge of the square well an infinitesi-
mal barrier of tunable heighth (see Fig. 2), thereby stabiliz-
ing bonds formed when particles become trapped in the
attractive square well of the pair potential[44]. As the barrier
is infinitesimal, the portion of phase space occupied is neg-
ligible, and hence the thermodynamics of the system is un-
affected. For numerical reasons, in the code we have imple-
mented a barrier width of 3310−4sBB checking that the
static structure of the system is not affected by this tiny but
nonzero width.

FIG. 1. Phase diagram of the square well binary mixture(repro-
duced from Ref.[33]), showing the percolation line(squares), ap-
proximate location of the spinodal(dashed line), and repulsive and
attractive glass transition lines(solid line). State points studied here
are shown as filled circles. The highlighted state points(T=0.5, f
=0.52 andT=1.5,f=0.595) refer to those presented in Figs. 6 and
7, respectively.
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To the extent that the thermodynamics are unaffected by
the barrier, configurations drawn from equilibrium simula-
tions of theh=0 case are also representative configurations
of the system whenhÞ0. Thus, results for differenth.0 are
obtained using 30 or more independent initial configurations
obtained by equilibrating the system forh=0. This technique
alleviates the computational burden when working with large
values ofh.

In this article we focus on the time dependence of the
(collective) density-density correlation function(dynamic
structure factor). The dynamic structure factor, the correla-
tion function typically accessed in scattering experiments, is
given by Fqstd;krqstdr−qs0dl /Ssqd, where rqstd
=s1/ÎNdoi=1

N exps−iqW ·rWid, Ssqd=kurqs0du2l is the static struc-
ture factor,k¯l denotes an ensemble average,rWi is the posi-
tion vector of a particle,qW is a wave vector, andi labels the
N particles of the system. We also make use of the correla-
tion function for typeA particles only, defined similarly as
Fq

Astd;krq
Astdr−q

A s0dl /SAsqd, where rq
Astd=s1/ÎNdoi=1

NAexp
s−iqW ·rWid, SAsqd=kurq

As0du2l is the partial static structure factor
for type A particles, and the summations are over theNA
particles of typeA. The qualitative behavior ofFqstd and
Fq

Astd is the same for this system.

III. THE INFINITE BOND LIFETIME CASE

We start discussing the case of bonds of infinite lifetime,
i.e., the case whereh→`. In this limit, a well defined model
for continuum percolation is generated. The spatial distribu-
tion of the particles is fully determined by the equilibrium
properties of the square well potential(and hence static cor-
relations are known and precisely defined) while the dynam-
ics is the dynamics of a system constrained by irreversible
bonds. The possibility of generating equilibrium structures
with h=0 to be used as starting configurations for the case
hÞ0 allows us to completely decouple issues arising from
the bond lifetime from issues associated with nonequilibrium
properties and aging also when the packing fraction is larger
than the percolation value. The averaging over different start-
ing configurations allows us to properly sample configuration
space. To study theh→` case we perform simulations at
T/u0=0.5, for about 30 different values of packing fraction,

as indicated in Fig. 1. Numerically, we achieve the infinite
limit by setting h=1000, a value high enough so that we
never observe bond breaking.

The f dependence ofPsfd, the fraction of particles be-
longing to the spanning cluster, provides a way of detecting
the location of the percolation point. In all percolated con-
figurations, we observe the presence of only one spanning
cluster. When finite size effects are negligible,P,uf−fpub
whereb is a critical exponent[45,46]. Figure 3 showsPsfd.
The arrow in the figure indicatesfp=0.23, which we identify
as the value of the packing fraction at which a spanning
cluster is found in 50% of the configurations[47]. To esti-
mate the effect of bonding on the dynamics, we show in Fig.
4 the packing fraction and wave vector dependence ofFqstd.

For f,fp [Fig. 4(a)], correlation functions decay to
zero, independently of the value ofq, as expected for a sys-
tem where only diffusive clusters of finite size are present.
For f.fp [Fig. 4(b)], an “infinite” spanning cluster is
present. On increasingf the size(mass) of the spanning
cluster increases progressively, incorporating 90% of the par-
ticles in the system already whenf=0.32 (see Fig. 3). For
f.fp, wave vectors are characterized by correlation func-
tions which do not decay to zero any longer, reflecting the
presence of a nonrelaxing component of the density fluctua-
tions.

Close to percolation, only for very small wave vectors
doesFqstd go to a nonzero plateau of heightfq, also called
the nonergodicity factor. On increasing packing fraction, the
amplitude of the plateau increases significantly, as shown in
Fig. 4(c). Simultaneously, correlation functions at larger and
larger wave vectors show a finite nonzero long time limit.
The wave vector andf dependence offq is shown in Fig. 5.

The appearance of a nonzerofq, whose amplitude and
width grow on increasingf is consistent with the onset of a
percolation transition and the loss of ergodicity of the par-
ticles in the infinite spanning cluster. The inverse of the half-
width of fq provides an estimate of the associated localiza-
tion length. On increasingf beyond percolation, such a
length decreases from infinity(or from the simulation box
length in a finite size system) down to the dimension of the
particles, in analogy with the progressive decrease of the
connectness length of the spanning cluster[46,48]. Owing to
the large localization length close to percolation and to the
tenuous structure of the percolating cluster, close to percola-

FIG. 2. Schematic of the pair potential. Here shown are the hard
sphere core diameters, narrow square well of depthu0=1, and
width D, with D / sD+sd=0.03. The heighth of the barrier controls
the bond lifetime, and hence the microscopic dynamics of the
system.

FIG. 3. P as a function off. The arrow indicates thefp=0.23 at
which 50% of the sampled configurations contain a percolating
cluster.
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tion a nonzerofq value can be clearly detected only at very
small wave vectors. On increasingf, the increase in the
number of particles in the infinite cluster and the associated
decrease of the length generate an increase in the amplitude

and width of fq, making possible the numerical observation
of a nonzerofq even at largeq.

It is interesting to compare the behavior of the nonergod-
icity factor observed in the case of percolation with the case
of the glass. The most striking difference is in the change of
fq across the glass and percolation transitions. In the case of
glasses,fq shows a discontinuous jump, while in the case of
percolation it increases from zero continuously. In the lan-
guage of MCT[49], the percolation transition is analogous to
what is called a “type A” transition while the ordinary glass
transition is of “type B.”

Another important aspect is the fact that the width inq
space offq [e.g., theq value at which a curve in Fig. 5(a)
reaches half its height] is of the order of the inverse of the
nearest neighbor distance in the case of glasses(or even
larger in the case of attractive glasses) while it is extremely
small close to percolation. Only when most of the particles
are part of the spanning cluster, does the width offq become
compatible with one of the glasses. This change in the width
of fq reflects the significant difference in localization length
of the particles(the length scale on which particles are
trapped in chiefly vibrational motion) at the glass transition

FIG. 4. Dependence ofFqstd on f andq for h=`. (a) Fqstd at
f=0.225 (just below the percolation threshold of 0.23). Here,
qsBB=nq0 for various n shown in the legend, withq0=p /L
=0.2408(L is the length of the simulation box). At n=2, it is more
difficult to reduce noise in the data because of the small number of
q vectors available for averaging.(b) Fqstd at f=0.38 (well above
percolation), with q0=0.2867.(c) Fqstd at qsBB<2p for variousf.
From such curves we determine the plateau heightfq.

FIG. 5. (a) Plateau heightfq as a function ofq for variousf, for
infinite h (irreversible permanent bonds). Legend givesf values.
(b) Connection to percolation:fq as a function off for variousq.
The legend indicates values ofqsBB for fq curves corresponding to
filled symbols. The curve labeled with open circles showsP, the
average fraction of particles participating in a percolating cluster
(taken from Fig. 3).
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(of the order of the nearest neighbor or of the bond distance)
as opposed to the very large localization length at the perco-
lation transition where a tenuous(almost massless in the
thermodynamic limit) spanning cluster appears.

It is important to note that in the case of glasses, the glass
transition is marked by the arrest of density fluctuations on
every length larger than the nearest neighbor distance, while
in the case of percolation, the observation of a nonergodic
transition is strongly dependent on the observation length. To
clarify this point, Fig. 5(b) shows thef dependence offq at
severalq values[i.e., a cut of the data shown in Fig. 5(a) at
fixed q]. We note that the steep increase offq from zero
occurs at larger and largerf values on increasingq. This
suggests that experiments—capable of measuring a nonzero
fq with a finite precision—restricted to a fixedq value will
notice a loss of ergodicity in the sample, as reflected by a
nonzero long time limit of the correlation function, only at a
f value which may be significantly larger than the percola-
tion packing fraction.

In analogy to the connection betweenfp and the vanish-
ing of Psfd [also shown in Fig. 5(b)], one may define an
apparentfcsqd based on the packing fraction at which thefq

curves shown in Fig. 5(b) cross a fixed value, controlled by
the precision of the experimental technique in detecting a
nonzerofq value. Thisfcsqd could be considered an indica-
tor of the percolation transition as observed at a particularq
vector.

IV. FINITE BOND LIFETIME: EFFECT OF
BARRIER HEIGHT ON Fq„t…

When h has a finite value, the lifetime of the bond is
finite. Hence, a new time scale enters into the description of
dynamics in the model. In particular, we are interested in the
modification of the density correlation functions introduced
by the finite bond lifetime, and in the competition between
the bond time scale and the caging time scale close to the
glass transition. In Fig. 6(a) we plot Fq

Astd at f=0.52 andT
=0.5 forqsBB<2p, for several increasing values ofh. When
h=0, the decay of the correlation function does not show
signatures of two-step relaxation, owing to the location of
the state point in the reentrant liquid portion of the phase
diagram(state point is highlighted in Fig. 1) [20]. As h in-
creases, two new features appear:(i) a slowing down of the
correlation function and(ii ) the emergence of a two step-
relaxation process. Correlation functions decay to a rather
high plateau before decaying to zero at long times. Whenh
=`, the correlation function does not decay to zero any
longer. In Fig. 6(b), despite the emergence of a plateau, the
long time behavior is merely rescaled with respect to theh
=0 case. The shape of the correlation functions does not
change significantly in the long time regime and indeed
curves for different(finite) h values can be superimposed on
the h=0 curve, as shown in Fig. 6(b). As a suitable scaling
time we choose the time at which the correlation functions
reach 20% of their initial value. More precisely, the density
correlation functions are plotted as a function of a rescaled
time t / th, whereth=t20shd /t20s0d, andFq

Aft20shdg=0.20.

We next discuss the case in which, in the absence of a
barrier, the liquid is close to a repulsive glass transition,
marked by the presence of a two-step relaxation inFq

Astd. We
show in Fig. 7(a) the correlation functions for different bar-
rier heights for the state pointT=1.5, f=0.595(highlighted
in Fig. 1). At this higherT, theh=0 system behaves as a hard
sphere binary mixture. The slow dynamics is thus character-
istic of repulsive glass dynamics and shows a well defined
plateau. On increasingh, one observes a progressive modi-
fication of the correlation function at short times, and the
emergence of the “gel” plateau(highlighted in the inset).
When time becomes comparable to the bond lifetime, the
correlation function leaves the “gel” plateau and approaches
the caging plateau, following the same dynamics as in the
h=0 case, as clearly indicated by the superposition of curves
for different h values on a rescaling of the time[Fig. 7(b)].
This superposition indicates that the lifetime of the bond
indeed acts to renormalize the “microscopic time.” An in-
crease inh increases the time required for breaking the
particle-particle bonds which in turn increases the time scale
of the breaking and reforming of cages.

The fact that the slow relaxational processes are unaf-
fected by the bond lifetime(apart from a trivial scaling factor
depending onh) is particularly reassuring for theories of the
glass transition which connect static properties to dynamic

FIG. 6. (a) The dynamic structure factor atqsBB=6.37 for the
state pointf=0.52, T=0.5 (see Fig. 1) for various values of the
barrier heighth. The attractive plateau persists longer ash in-
creases, i.e., as the bond lifetime is increased. Panel(b) shows that
the functions collapse onto a common curve at long times, whent is
rescaled(see text).
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properties, such as MCT. The peculiarity of this model is
indeed the fact that static properties are independent ofh.
Hence, according to MCT all dynamical properties associ-
ated with caging should be independent ofh. The scaling
observed in Figs. 6(b) and 7(b) supports such a hypothesis.
We also note that the results reported here differ from those
reported in Ref.[38], where clustering induced by the bonds
was considered to be significantly connected to the glass
transition phenomenon. One possible explanation of such a
difference may lie in the fact that in the study of Ref.[38], at
odds with the present model, the bond lifetime is strongly
coupled to the structure of the system.

V. CROSSOVER FROM PERCOLATION
TO GLASSY DYNAMICS

We now focus on thef dependence of the characteristic
time for different values ofh. To quantify the characteristic
time, we uset20, the time at whichFq

Astd decays to a value of
0.2. In Fig. 8 we show the dependence oft20 on h andf for
wave vector modulusq=2p /sBB.

We see from Fig. 8(and from Fig. 1) that t20 for the h
=0 system appears to diverge nearf*0.6. For the case of
permanent bondsh=`, t20 instead shows an apparent diver-
gence atfc<0.43. As discussed in the previous sections, this

divergence is a manifestation of the percolation transition
which has taken place atfp=0.23 [see Fig. 5(b), near f
<0.43 for qsBB=2p]. At intermediate values ofh, the f
dependence oft20 is highly nontrivial. A crossover from the
percolation behaviorsh=`d to the glass behaviorsh=0d
takes place at a typical time controlled by the value ofh.
This is most clearly seen forh=3 andh=4 in Fig. 8. Indeed,
deviations from theh=` case are expected when the lifetime
of the bond becomes shorter thant20sh=`d. In another way,
on time scales shorter than the bond lifetime, the bonds ap-
pear to be permanent and the system behaves similar to the
h=` case.

To estimate the role ofh in slowing down the dynamics
we reportt20 as a function ofh for various isochores in Fig.
9. We find that abovefc, t20 approaches an Arrhenius be-
havior with respect toh as h increases, i.e.,t20sf ,hd
<gsfdexpsh/Td, wheregsfd is a function only of the state
point chosen. This factorization of time allows us to clarify
that the main effect of bonding is to redefine the microscopic

FIG. 7. (a) The dynamic structure factor atqsBB=6.67 for the
state pointf=0.595,T=1.5 (see Fig. 1) for various values of the
barrier heighth. (b) We again see the stabilization of the attractive
plateau(highlighted in the inset). Simple time rescaling at long
times.

FIG. 8. The dependence oft20 on h andf, obtained fromFq
Astd

at qsBB=2p. The curves are forh=0 (circles), h=1 (squares), h
=2 (diamonds), h=3 (up triangles), h=4 (left triangles), and perma-
nent bonds(down triangles). For permanent bonds,t20 diverges
nearf=0.43. For smaller values ofh, t20 at smallerf tracks the
divergence atf=0.43, but then crosses over to glassy dynamics
with a divergence at higherf.

FIG. 9. The dependence oft20 on h for various packing frac-
tions, atqsBB=2p. Above fc, the characteristic time tends to an
Arrhenius behavior withh, i.e., t20<expsh/Td.
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time scale of the dynamics. The bond lifetime does not affect
the properties of the(a-relaxation) slow dynamics on ap-
proaching the glass transition.

It is interesting to state the connection of the present find-
ings with an earlier work[40], where the barrier was used to
extend the high-plateau to time scales associated with
a-relaxation of the native system, in the packing fraction
region where a glass-glass transition was expected. The
present data clearly show that the barrier does not affect
(except for a rescaling of the microscopic time) the true
a-relaxation dynamics. On the other hand, large barrier val-
ues bring into the window of experimental observation the
intrawell dynamics and move to inaccessible regions the
a-relaxation. Under these conditions, the decay of the corre-
lation function in the experimentally accessible window is
limited to the high-plateaufq value, which coincides with the
attractive glass.

This suggests the possibility of simultaneously studying
gelation and glassy dynamics within the same system, by
focusing on different time scales. For example, in a system
with transient bonds, observation on time scales much
shorter than the bond lifetime would reflect the percolation
dynamics, and hence gelation, while observation on time
scales much longer than the bond lifetime would yield results
driven by glassy dynamics.

VI. CONCLUSIONS

In this paper we have introduced a simple model for
studying continuum percolation in a system with well de-
fined spatial correlations between the particles. In this model,
bonding ambiguities are suppressed by the square well shape
of the potential. While studying this model with permanent
bonds, we have focused on the behavior of the density-
density correlation function across the percolation transition,
defined as the packing fraction at which a spanning cluster
appears. We have found that the behavior of the density fluc-
tuations is significantly different from the one characteristic
of supercooled liquids and glasses. In the percolation prob-
lem, the nonergodicity parameter increases continuously
from zero and the localization length is extremely large and
becomes comparable to the one observed in glasses(of the
order of about 0.1 of the nearest neighbor or less) only well
inside percolation. In this respect, percolation(with infinite
lifetime bonds) and the glass transition are two distinct phe-

nomena with distinct experimentally detectable signatures.
We have also shown that in the case of percolation, since the
range of wave vectors where nonergodic behavior is ob-
served grows withq on increasingf (for f.fp), experi-
ments at fixed wave vector(due to their intrinsic finite reso-
lution) detect a nonergodic transition at a packing fraction
larger thanfp. In the case of glasses, the observation of an
ergodic to nonergodic behavior is essentially identical at allq
values(except at very largeq, describing self-intracage mo-
tion [50]).

The model also allows us to study the effect of the finite
bond lifetime while altering neither the structure nor the ther-
modynamics of the system. A comparison at different bond
lifetimes is thus performed on configurations which are char-
acterized by the same particle-particle correlation. This study
confirms the results recently reported by Del Gado and co-
workers[38] for a lattice model concerning the existence of
a crossover in the dynamical properties from a percolation
controlled dynamics to a glassy dynamics on increasingf,
when the lifetime of the bond is longer than the microscopic
particle dynamics in the absence of a barrier. However, our
results differ from Ref.[38] in that we find that the bond
lifetime acts essentially as a redefinition of the microscopic
time and does not alter any feature of the slow dynamics and
of the scaling laws approaching the glass transition. Still, the
dynamics at times shorter than thea-relaxation time is
strongly affected by the finite lifetime of the bond. The ad-
dition of the barrier, which increases the bond lifetime, ex-
tends the duration of the plateau characteristic of short-range
attractive glasses[Fig. 7(a), inset]. Since here we are in the
liquid regime, the duration of the high-plateau is controlled
by the (tunable) bond lifetime. For times longer than
expsh/Td the correlation function leaves this plateau and ap-
proaches the(lower) plateau associated with caging dynam-
ics [Fig. 7(a)], and then finally relaxes to zero — leaving the
intrinsic slow long time dynamics of the system intact.
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