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We report calculations of the ground-state energies and geometries for clusters of different sizes (up to
80 particles), where individual particles interact simultaneously via a short-ranged attractive potential,
modeled with a generalization of the Lennard-Jones potential, and a long-ranged repulsive Yukawa potential.
We show that for specific choices of the parameters of the repulsive potential, the ground-state energy per
particle has a minimum at a finite cluster size. For these values of the parameters in the thermodynamic
limit, at low temperatures and small packing fractions, where clustering is favored and cluster-cluster
interactions can be neglected, thermodynamically stable cluster phases can be formed. The analysis of the
ground-state geometries shows that the spherical shape is marginally stable. In the majority of the studied
cases, we find that above a certain size, ground-state clusters preferentially grow almost in one dimension.

I. Introduction
Understanding the formation of self-assembled struc-

tures at the nano- and mesoscopic levels is one of the
central issues in condensed matter studies,1 particularly
in biological and soft matter fields. More recently,
significant efforts have been made in the direction of
finding connections between features of the interparticle
potential and the resulting stable supraparticle patterns.
In this respect, an interesting class of systems in which
particles self-assemble into large aggregates is generated
by systems of particles interacting simultaneously via an
attractive potential (which can be of van der Waals or
depletion origin) and a repulsive interaction (usually of
screened electrostatic origin). In density and temperature
conditions where the attractive part of the potential would
generate macroscopic phase separations, the presence of
a repulsive part contrasts the phase separation process,
leaving the system, in some cases, in a microphase
separated condition. The competition between attraction
and repulsion generates the formation of equilibrium
phases where stable clusters of particles are formed
(sometimes called cluster or micellar phases) or even of
more complex structures (such as lamellar or columnar
phases). Experimental evidence for such thermodynami-
cally stable cluster phases has been recently presented
for colloidal systems and for solutions of proteins at low
ionic strength.2-6 Cluster phases have also been observed
in aqueous solutions of silver iodide.7 Theoretically, the

formation of phases with different morphology has been
addressed within lattice models and mean field calcula-
tions for unscreened electrostatic interactions8-13 and,
more recently, in colloidal science, explicitly accounting
for ion condensation around particles.14 Numerical evi-
dence of cluster phases has also been recently re-
ported.12,15-17 Interestingly, at low densities, particles
aggregates can act as monomers of a supramolecular
liquid, showing phenomena typical of the liquid state such
as crystallization and glass transition.15

In this work, we study an off-lattice three-dimensional
representative model of particles interacting via a short-
range attraction (which we model with the generalization
to very large R of the Lennard-Jones (LJ) 2R - R potential,
as previously proposed by Vliegenthart et al.18) comple-
mented by a long-range repulsion, which we model by a
screened electrostatic Yukawa potential. Screening is
included in the model, since we are mostly interested in
describing charged colloidal and protein solutions, where
addition of salt in the dispersant medium provides an
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efficient mechanism of reduction of the repulsive interac-
tion range. Modeling the short-range attraction with the
Lennard-Jones 2R - R potential is of course arbitrary,
but at the same time representative (by tuning the
exponent R) of all short-range potentials, arising either
from depletion interactions or from van der Waals forces.
For different choices of the repulsive potential parameters,
we calculate the ground-state energy and structure of
clusters of different size, to evaluate the conditions under
which stable cluster phases are expected at low temper-
atures, where entropic effects can be neglected. We show
that on varying the range of interaction and the intensity
of the long-range repulsive potential, it is possible to obtain
stable cluster structures of different geometries. To locate
the ground-state structures and their energies, we have
used a modified version of the basin-hopping algorithm19

which has been proposed and extensively applied in models
of simple liquids and molecular systems. To extend the
range of studied cluster sizes beyond what is possible with
present numerical resources, we complement the ground-
state calculations by analytic calculations of the cluster
self-energy, under the assumption of spheric cluster shape.

The paper is organized as follows. Section II contains
a study of the cluster ground states for the 2R - R attractive
potential for two values of R, typical of short-range
attractive interactions. A comparison of ground-state
energies and cluster shapes between the short-range
attractive potential and both the standard R ) 6 case (from
ref 19) and the hard sphere (HS) case (from ref 20) is also
reported. In section III, we present cluster energies and
geometries resulting from the addition of a repulsive
Yukawa potential, for different values of the potential
parameters. Section IV is devoted to the analytic calcula-
tion of the cluster self-energy under the assumption of
spherical shape. Finally, section V contains a discussion
of the results and conclusions.

II. Cluster Ground States for the Attractive
Short-Range 2r - r Potential

Short-range attractive interactions arise in colloidal
systems either from van der Waals interactions (integrated
over the volume of the interacting particles) or via a
depletion mechanism, that is, when particles of interme-
diate dimension between the suspended colloids and the
solvent molecules are added to the solution.21 Here we
model the short-range attractive potential in a numerically
convenient way with the generalization of the Lennard-
Jones potential, namely, the 2R - R potential, previously
proposed by Vliegenthart et al.,18

where the value of R, which in the standard LJ case is
fixed to 6, is varied to control the range of interactions.
In what follows, we have chosen ε and σ as the units of
energy and length, respectively. We focus our attention
on three values of the parameter R that are relevant for
our discussion. First, R ) 100, which corresponds to an
attractive range of the order of a few percent of σ, typical
of very narrow-ranged depletion interactions. Next, we
consider the case R ) 18, which corresponds to the case
for which the value of the potential energy at the distance
of the second neighbor shell becomes negligible. Finally,

for comparison, we also report results from ref 19, for the
Lennard-Jones case R ) 6. The three potentials (R ) 100,
18, and 6) are illustrated in the inset of Figure 1.

The problem of locating the most stable state (ground
state) on a complicated potential energy surface (PES) is
a hard one. Indeed, theoretical general arguments ensure
that there is no algorithm that is certain to solve such a
problem within a reasonable time scale. Moreover, in the
case one should be able to find the ground state, there
exists no way to prove that it is unique. Therefore, the
best one can do is to find a bona fide, putative ground
state.

Among many other techniques, that is, genetic algo-
rithms or hypersurface deformation methods, the basin-
hopping global optimization technique,19 introduced by
Wales and Doye, has been found to be particularly efficient
in localizing the putative ground state for clusters (both
atomic and molecular) of up to a few hundred particles,
interacting by means of several interaction potentials.
Such an algorithm consists of a constant-temperature
Monte Carlo simulation where the actual potential energy
surface is transformed into a stairlike surface by replacing
the potential energy function with the values of the
potential energy of the closest local minimum, named the
inherent structure.22 The acceptance criterion is thus
based upon the change in the inherent structure energy.

The efficiency of this method lies in the fact that it
removes the transitional state regions. This procedure
does not affect the energy of the minima but allows the
system to explore the relevant minima on the original
PES in a much faster way. Indeed, on the original PES,
among all trajectories approaching the boundaries be-
tween two basins of attraction, only the one following a
transition state is likely to hop from one minimum to the
other. At variance, on the transformed PES the system
is allowed to hop at any point along the basin boundary.
This very fact reduces dramatically the time scale for
interbasin motion and therefore for relaxation to the lowest
energy state.

We also note that the qualitative and quantitative
conclusions of this study do not depend on identification
of the absolute ground-state configuration in the large-N
limit.(19) Wales, D. J.; Doye, J. P. K. J. Phys. Chem. A 1997, 101, 5111.

(20) Sloane, N. J. A.; Hardin, R. H.; Duff, T. S.; Conway, J. H. Disc.
Comp. Geom. 1995, 14, 237.
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Academic Press: London, 1992.
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V2R-R(r) ) 4ε[(σr)2R
- (σr)R] (1)

Figure 1. Ground-state energy per particle as a function of
1/N1/3 (N on the top x-axis) for the 2R - R potential at the
indicated values of R. The values of the energy per particle for
the fcc crystal structure are indicated by arrows. Inset: Radial
dependence of interaction potential V2R-R for the three studied
values of R.
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Here, to calculate the ground-state energy of clusters
of different size N and their geometry, we have used a
modified version of the basin-hopping algorithm.19 To
further favor barrier crossing, every 100 Monte Carlo
steps, the less bounded atom is removed and reinserted
in thepositionwith the lowest insertionenergy.The largest
cluster size studied is of the order of 80 particles.

Figure 1 shows the ground-state energy per particle
E/N as a function of N-1/3, for all three values of R. Data
are reported as a function of N-1/3 since, for large clusters,
one expects to observe the functional form E/N ) c0 +
c1/N1/3. Indeed, the cluster energy can be expressed as the
sum of a bulk term, c0N, and a surface term, c1N2/3. We
find that for R ) 100, when clusters are larger than ≈13-
15 particles, the ground-state energy per particle is well
represented by the fit E/N ) -5.937 + 7.435/N1/3, providing
an estimate for the bulk energy compatible with a close-
packed face-centered cubic (fcc) or hexagonal close-packed
(hcp) crystalline ordering value (-6). The R ) 18 data are
practically indistinguishable from the R ) 100 case,
suggesting that cluster ground-state energies and geom-
etries are the same for all potentials with R g 18.

Figure 1 also reports the ground-state energy per
particle for the standard Lennard-Jones case R ) 6, from
ref 19. As compared to the shorter range case, the ground-
state energy of the LJ is lower, due to the attractive
contributions arising from second and further neighbors.
The asymptotic behavior (with N-1/3) is approached at
much larger sizes (order of≈30-40 particles) and suggests
an extrapolation to the bulk value, consistent with the
estimate for the LJ fcc or hcp values of -8.61.23

The sign of the surface term, that is, the sign of c1,
provides information on the thermodynamic behavior of
a macroscopic system at low temperatures. Indeed, when
T is low, the ground-state energy becomes the relevant
thermodynamic potential. The condition c1 > 0 ensures
that the system ground state in the thermodynamic limit
is composed by a single macroscopic bulk cluster. In the
cluster-based thermodynamic description pioneered by
Hill,24 c1 > 0 indicates that at low temperatures the system
will phase separate in a dense bulk liquid in equilibrium
with a gas phase.

Next, we discuss the geometry of the ground-state
clusters. Figure 2 contrasts the cluster geometries for the
short-range case with the LJ case. For very small N, the
structure of the clusters is independent of the range of the
potential. For N < 10, the structure of the clusters does
not change with R. For larger N values, the geometry
changes significantly, since the constraint induced by the
short range of the potential (R g 18) facilitates a
progressive layering. For example, for the case N ) 13,
the icosahedron structure, which is particularly stable in
the LJ case,19 is not observed in the short-range case.

It is instructive to compare these results also with hard
sphere cluster geometries, calculated theoretically mini-
mizing the second moment of the mass distribution M20,25

and recently measured with a new experimental technique
introduced to produce compact clusters of controlled
numbers of small colloidal particles.26 For N < 11, these
clusters have been found to be identical to those calculated

in ref 20. The third row of Figure 2 reports the HS clusters
from ref 20. As for the comparison with the LJ case, for
N e 7 all clusters have the same structure, while for N
> 7 differences in the potential start to be significant.

III. The Competition between Attraction and
Repulsion Terms

In this section, we report calculations of the cluster
ground-state energy for a potential composed by a short-
range attractive part (modeled only with R ) 100, since
we have shown previously that R ) 18 cannot be
distinguished from the R ) 100 case) complemented by a
screened electrostatic repulsive interaction modeled by a
Yukawa potential,

The resulting total potential is thus V(r) ) V2R-R + VY. In
the following, A is given in units of ε and ê in units of σ.
Figure 3 shows the shape of the total potential for different
ê and A values. The resulting potential is conceptually
similar to the well-known Derjaguin-Landau-Verwey-
Overbeek (DLVO) potential,27 even if it differs for the
absence of the weak secondary minima and the finite value
of the attractive interaction energy.

Figure 4 shows the ground-state energy per particle
E/N for different A and ê values. The same minimization
procedure as described in the previous section has been
implemented, with the additional condition that, in the
search procedure, moves creating disconnected clusters
are rejected. For appropriate values ofA and ê (for example
A ) 0.2 and ê ) 2.0), the cluster ground-state energy shows
a minimum at a finite size N*, indicating that clusters of
size larger than N* are energetically disfavored. A simple

(23) Stillinger, F. H. J. Chem. Phys. 2001, 115, 5208.
(24) Hill, T. L. An Introduction to Statistical Thermodynamics;

Dover: New York, 1987.
(25) The physical processes underlying the observations of ref 26

have been studied in: Lauga, E.; Brenner, M. P. Preprint cond-mat/
0404236. Here the authors clarify the reasons for which the final
packings are unique and why they minimize a purely geometrical
quantity like the second moment.

(26) Manoharan, V. N.; Elsesser, M. T.; Pine, D. J. Science 2003,
301, 483.

(27) Derjaguin, B. V.; Landau, L. V. Acta Physicochim. USSR 1941,
14, 633. Verwey, E. J. W.; Overbeek, J. T. Theory of Stability of Lyophobic
Colloids; Elsevier: Amsterdam, 1948.

Figure 2. Cluster structures for 4 e N e 13 for the R ) 100,
18 potential, Lennard Jones (ref 19), and hard spheres (ref 20).
“Same” indicates when the structure is identical to the R ) 100,
18 case.

VY(r) ) A e-r/ê

r/ê
(2)
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physical explanation of the existence of an optimal size
can be given as follows. At large enough N, the addition
of an extra layer of particles will contribute to the energy
with a negative term due to the attractive nearest neighbor
interactions (which involves only interactions with par-
ticles in the surface layer due to the short range of the
potential) plus a positive contribution arising from the
Yukawa repulsion which, due to its longer range, involves
instead a large fraction of particles in the cluster. The
balance between these two terms provides a condition for
N*. Of course, the larger the amplitude or the longer the
range of the repulsion, the smaller the N*. The fact that
an optimal finite cluster size is observed suggests that a
macroscopic system at low temperature will not form a
single aggregate but will prefer to partition the particles
into clusters of size N*. In this respect, liquid condensation
is inhibited and the structure of the system at low
temperature and low packing fractions will be constituted
by a cluster phase. At finite temperatures, entropic

contributions to the free energy will become important
and will always favor the stability of clusters of size smaller
than N*. Hence, N* plays the role of an upper limit for
the cluster size.28 In other cases, a minimum is not found,
but the energy per particle becomes essentially flat. In
these conditions, the ground state of a macroscopic system
will be composed by a highly polydisperse cluster phase.

In Figure 5, we compare the ground-state cluster
geometries for N ) 38 calculated for different choices of
the Yukawa parameters. At fixed cluster size, by changing
thepotentialparameters thecluster structurecanbe tuned
from almost spherical to almost one-dimensional. A similar
crossover has been found in Dzugutov potentials.29 The
studied parameters encompass situations occurring in
uncharged colloids (A ) 0) and those typical of charged
colloids (A > 0) in apolar solvents or weakly screened
polar solvents. Indeed, A is proportional to the effective
charge of the colloidal particle, while the screening length
ê is controlled by the ionic strength. In the absence of salt,
ê depends only on colloid concentration, and a small
screening is produced by the counterions in the sol-
vent.27,30,31

Figure 6 shows the N-dependence of the cluster geom-
etry, for the case A ) 0.05 and ê ) 2, to highlight the
changes in the preferential geometry with cluster size. It
appears that the geometry of the clusters is strongly size
dependent. To convey this point, we show in Figure 7 the

(28) The results reported in Figure 4 are thermodynamic results and
do not imply a specific growth mechanism. In general, clusters can
grow both by cluster-cluster aggregation or by cluster-monomer
aggregation. Also, the lifetime of each cluster, between distinct
coalescence and growth events, may not be sufficient for the establish-
ment of a thermodynamic equilibrium configuration. In this respect,
the size dependence of the ground-state energy does not describe the
process of cluster growth. Still, the calculated size dependence of the
ground-state energy allows us to estimate if, under specific choices of
the parameters, aggregation will proceed indefinitely or if the driving
force for aggregation will vanish beyond a critical size, in which case,
even in a diffusion-controlled growth regime, aggregation will stop.

(29) Doye, J. P. K.; Wales, D. J.; Simdyankin, S. I. Faraday Discuss.
2001, 118, 159. Doye, J. P. K.; Wales, D. J.; Zetterling, F. H. M.; Dzugutov,
M. J. Chem. Phys. 2003, 118, 2792.

(30) Likos, C. N. Phys. Rep. 2002, 348, 267.
(31) Denton, A. R. J. Phys.: Condens. Matter 1999, 11, 10061.

Figure 3. Short-range attractive 2R - R potential (dashed line), long-range Yukawa repulsive potential (dotted-dashed line), and
total potential (solid line) for A ) 0.05 and ê ) 2.0. Inset: V2R-R + VY at the indicated values of A and ê.

Figure 4. Ground-state energies per particle for five different
choices of the potential parameters. The energies have been
calculated by basin-hopping Monte Carlo optimization (ref 19),
as discussed in the text.
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size dependence of the gyration radiusRG, defined in terms
of a particle’s coordinates ri and center of mass coordinates
RCM as

For spherical clusters, RG ∼ N1/3; for planar structures,
RG ∼ N1/2; and for linear structures, RG ∼ N. Figure 7
shows that while in the pure short-range attractive case
clusters retain their spherical shape for any size, in the
case of addition of a repulsive potential only clusters of
small enough size are spherical. On increasing N, the
ground-state cluster structure becomes more and more
linear. The sharp crossover size between spherical and
linear cluster shape decreases on increasing A or ê.
Similarly, the linear cluster becomes thinner and thinner
when repulsive effects become more and more relevant,
as evidenced by the amplitude of the linear N-dependence
of RG. Once the linear cluster shape is established, the
cluster energy increases linearly with the cluster size,
resulting in the essentially flat N-dependence of the energy
per particle (see Figure 4).

Three possible scenarios appear to take place in the
cluster structure of the studied potential: (i) The first
takes place for very small A values, where the repulsive
energy is not sufficient to overcome the attractive con-
tribution. Under these conditions, clusters are spherical
and the standard behavior (infinite optimal size, liquid
phase) is recovered. (ii) The second is an intermediate
case, where a minimum in the cluster energy per particle
is observed at an optimal size N*, with a spherical cluster
structure (for example, the case A ) 0.2, ê ) 2). Linear
clusters can be built but with an energy slightly higher
than that of the optimal cluster size. (iii) The third is a
monotonically decreasing cluster energy per particle,
ending in a flat curve, signaling equivalent stability for
linear clusters of very different size (for example, the
extreme case A ) 7.93, ê ) 0.5).

It is tempting to speculate that when parameters are
chosen in such a way that linear growth is preferential,

Figure 5. Ground-state clusters for N ) 38 for the indicated
potentials. On changing the values of the parameters, it is
possible to interpolate from a close-packed to an almost
unidimensional ground-state structure.

Figure 6. Ground-state clusters for N ) 4, 8, 16, 32, and 64
for A ) 0.05 and ê ) 2.0.

Figure 7. Size dependence of the gyration radius RG(N) (in units of σ) for all the considered potentials. The expected behaviors
for spherical, planar, and unidimensional clusters, discussed in the text, are shown as solid lines.

RG )
1

N1/2 [ ∑
i)1

N

(ri - RCM)2]1/2

(3)
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at finite but small temperature (i.e., when structures
different from the ground-state structure are also probed)
clusters made of arms branching out from regions of locally
higher energy can be generated. These structures, if
macroscopic in size, would generate a gel-like structure,
since no driving force for macroscopic aggregation is
present (due to its inhibition caused by the repulsive
term).

IV. The Spherical Case: The Crossover from
Infinite to Finite Optimal Size

The numerical results presented in the previous sections
confirm the possibility of creating stable clusters of optimal
size, playing with the competition between the short-range
attractionandthe long-rangerepulsion.Wehavediscussed
the fact that in the limit of low temperatures and small
packing fractions, that is, in the conditions where entropic
contributions as well as cluster-cluster interactions can
be neglected, the cluster ground-state energy E plays the
role of relevant thermodynamic potential and, therefore,
the minimum in E/N versus N provides an estimate of the
stable cluster size N*. Under these conditions, the system
will partition into clusters of size N* and no thermody-
namic (macroscopic) coagulation will take place. Hence,
the condition N* ) ∞ acts as critical condition for the
existence of a macroscopic phase separation as opposed
to a phase made of clusters of finite size N*.

To estimate the critical line separating the liquid phase
(N* ) ∞) from a cluster phase (N* finite) in the (A, ê)
parameter space, it is necessary to calculate the ground-
state energy for clusters of large size, which prevents the
use of the “exact” numerical minimization which has been
presented previously. An estimate of the critical line in
the (A, ê) space can be calculated analytically, under the
hypothesis that clusters have a spherical shape and a
homogeneous density of particles. The assumption of a
spherical shape is expected to be valid in the region of
parameter space where N* ) ∞, that is, where A or ê is
small and attraction is still dominant, as shown in the
previous section. The numerical study of the N-dependence

of the ground state of the 2R - R potential reported above
shows that the N-dependence of the attractive part of the
potential can be written as V2R-R(N)/N ) c0 + c1N-1/3 with
c0 ≈ -6 and c1 ≈ 7.4. Since the value of the bulk energy
(c0) reflects the energy of a very compact state (in which
each particle is surrounded by 12 neighbors), the local
density can be approximated with the local density of the
fcc structure, providing a mean to convert the cluster
radius R to the cluster size using N ) ηfcc(2R/σ)3, with ηfcc
= 0.74.

To estimate the repulsive energy of a cluster of radius
R . σ, we assume for simplicity a particle-particle radial
distribution function g(r) ) Θ(r - σ) where Θ is the
Heaviside step function. This choice ensures that un-
physical interactions, which would arise by pairs of points
in the sphere closer than σ, are eliminated. A more precise
calculation could be performed numerically by imple-
menting a more detailed expression for g(r) (which, for
example, could be calculated with the Verlet-Weiss g(r)
for HS or with the known g(r) of the fcc structure). The
simpler stepwise approximation used here is sufficient to
predict the shape of the critical line. For large cluster
sizes, the resulting expression for the cluster repulsive
energy per particle is (see Appendix A)

Figure 8 shows the 1/R dependence of the cluster energy
per particle, that is, the sum of the attractive and the
repulsive part, for ê ) 1 and several values of A. On
increasing A, a progressive bending up of the curves takes
place for large cluster radii, until for a critical value Ac
(≈0.17 for ê ) 1), the slope of E(R) becomes flat at R )

Figure 8. Energy per particle in the spherical approximation for ê ) 1.0, at the indicated values of A. A minimum starts to develop
for values of A larger than a critical value Ac(ê).

EY(R)
N

)
3Aηfcc

2σ3
ê2[-24ê2(R + ê)2

e2R/êR3
+

16(σ + ê)

eσ/ê
-

12(σ2 + 2σê + 2ê2)

eσ/êR
+

σ4 + 4σ3ê + 12σ2ê2 + 24σê3 + 24ê4

eσ/êR3 ] (4)
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∞, signaling that the lowest ground state does not require
that all particles belong to the same cluster. For A > Ac,
a minimum of E(R) arises at finite R value. To estimate
the critical value of A(ê), the expression eq 4 for EY/N can
be expanded in powers of 1/R. At first order in 1/R, we
find

which provides, by adding the attractive part (also linear
in 1/R) and setting the resulting coefficient of the 1/R part
to zero, Ac as a function of ê,

The critical line Ac(ê), shown in Figure 9 in the (A, ê)
plane, locates the region where, at low temperature, a
phase of clusters of finite size is expected. For ê . σ, Ac
≈ ê-4.

Finally, to provide an estimate of the region where even
at T ) 0 monomers are the stable state, we show in Figure
9 the line corresponding to the condition of the energy of
a dimer Ed being zero; that is, along this line the pair
potential repulsive energy at distance σ is equal to the
short-range attractive energy (i.e., Ae-σ/ê/(σ/ê) ) 1). Cross-
ing the Ed ) 0 line from below, the dimer ground-state
energy goes from negative to positive values. The inter-
section of this line with the Ac(ê) line suggests that for ê
j 0.2, there is no possibility of a cluster phase, with clusters
larger than monomers. Therefore, for such small values
of ê, the ground state is given by an infinite cluster when
the dimer energy is negative, crossing sharply to a solution
of monomers when the dimer energy becomes slightly
repulsive. Physical realization of cluster phases should
then be searched in systems where the screening length
is comparable to the particle size, that is, in weakly polar
solvents or for small colloidal particles.

In concluding this section, it is worth recalling that, as
seen in the previous section, for sizes comparable to or
larger than N*, the shape of the cluster becomes essentially
linear and the spherical cluster calculations progressively

lose their meaning. Hence, the spherical calculations
reported here should be limited to the case N* ) ∞, that
is, below the critical Ac(ê) line. Close to the critical line
and above, more refined calculations accounting for almost
linear cluster shapes should be performed.

V. Conclusions

In this paper, we have studied, for a model where short-
range attraction and long-range repulsion are simulta-
neously present, the structure and the energy of the ground
state for clusters of different sizes. In these systems,
microphase separated states, in the form of spherical
(micellar) or columnar phases, arise spontaneously, due
to the introduction of a new characteristic length provided
by the balance between attractive and repulsive energies.
Under the hypothesis of spherical clusters, an analytic
evaluation of the cluster energy has been performed,
providing a criterion for the existence of a cluster phase.

By varying the two parameters of the repulsive Yukawa
potential, controlling respectively the amplitude of the
repulsion and the screening length, clusters of different
morphology, from almost spherical (for small A and ê
values) to almost one-dimensional (for larger A and ê
values), can be generated. The evaluation of the ground-
state energy as a function of the cluster size gives evidence
of a progressive tendency toward one-dimensional growth
for all cases leading to cluster phases. This preferential
one-dimensional growth is expected to enhance the
stability of collective ordering into columnar or lamellar
phases when cluster-cluster interactions are taken into
account, both energetically and entropically,32 in full
agreement with the predictions for unscreened repulsive
interactions.8-13

It is tempting to connect the one-dimensional growth
followed by a dynamical arrest phenomenon, which is
observed in several protein solution systems,33-36 to the
results discussed in the present article. Indeed, for these
protein solutions, a change in temperature or in the solvent
properties can trigger an aggregation process of proteins
into cylindric clusters. Under appropriate concentration
conditions, these one-dimensional clusters further as-
sociate to form a macroscopic gel. The mechanisms
discussed in this paper account for both the formation of
cylindrical clusters and the insurgence of an effective
vanishing surface tension, a condition necessary to sta-
bilize a gel phase with respect to phase separation.37

Finally, we want to stress that in this study we have
focused on isolated cluster properties and attempted to
connect the cluster properties to the formation of a cluster
phase, as opposed to a condensation of a dense liquid. In
doing so, we have neglected the cluster-cluster interac-
tions, which will play a very relevant role also at low
temperatures, for packing fractions at which the cluster-
cluster distance becomes comparable with the screening
length. This will bring into play not only thermodynamic
considerations but also, due to the low temperature, kinetic

(32) Onsager, L. Phys. Rev. 1942, 62, 558; Ann. N.Y. Acad. Sci. 1949,
51, 627.

(33) Le Bon, C.; Nicolai, T.; Durand, D. Int. J. Food Sci. Technol.
1999, 34, 451.

(34) Pouzot, M.; Nicolai, T.; Durand, D.; Benyahia, L.Macromolecules
2004, 37, 614.

(35) Renard, D.; Axelos, M. A. V.; Bouè, F.; Lefebvre, J. Biopolymers
1995, 39, 149.

(36) Manno, M.; San Biagio, P. L.; Palma, M. U. Proteins: Struct.,
Funct., Bioinformatics 2004, 55, 169 and references therein.

(37) Zaccarelli, E.; Sciortino, F.; Buldyrev, S. V.; Tartaglia, P. In
Unifying Concepts in Granular Media and Glasses; Coniglio, A., Fierro,
A., Herrmann, H. J., Nicodemi, M., Eds.; Elsevier B. V.: Amsterdam,
2004.

Figure 9. Critical line Ac(ê) separating the N* ) ∞ (liquid)
from the cluster phase on the (A, ê) parameter plane, together
with the line of zero dimer energy Ed, separating clusters (either
of finite or infinite size) from a phase of stable monomers.
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considerations. Preliminary work in this direction indeed
suggests that slow-dynamics phenomena, related to the
cluster-cluster repulsive interactions, may play a relevant
role in arresting the equilibration of systems of particles
interacting with the type of potential studied in this
work.15
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Appendix: Calculation of the Yukawa Cluster
Energy

To evaluate the cluster energy, under the hypothesis of
a homogeneous spherical cluster of number density F, we
proceed in two steps: First we evaluate the potential
energy of a particle located at distance x from the center
of the sphere of radius R, by integrating all contribu-
tions from points located at the same distance r from the
selected particle. Second, we evaluate the cluster energy
by summing over all particles located at distance x,
integrating x from 0 to R. The energy of a particle located
at x inside a sphere of radius R, W(R, x), can be written
as

where S(r; R, x) is the surface generated by the intersection
of two spheres of radius r and R, whose centers are located
at distance x apart. From standard geometry,

The condition g(r) ) Θ(r - σ) acts in the integration limits
providing two solutions, one for the case R - x < σ and
one for the case R - x > σ,

The total potential energy of the cluster EY(R) is thus
calculated as

For the case of the Yukawa potential, standard integration
provides the result for EY(R) reported in eq 4. Indeed,
after converting to energy per particle and using (π/6)σ3F
) ηfcc, one finds

LA048554T

W(R, x) ) F[4π ∫0

R-x
drr2VY(r)g(r) +

∫R-x

R+x
drS(r; R, x)VY(r)g(r)] (A.1)

S(r; R, x) ) 2πr[x2 - r2 + R2

2x
- (x - r)] (A.2)

W(R, x) )

{F ∫σ

R+x
drS (r; R, x)VY(r) x > R - σ

F[4π ∫σ

R-x
drr2VY(r) + x < R - σ

∫R-x

R+x
drS(r; R, x)VY(r)]

(A.3)

EY(R) ) 4πF ∫0

R
dxW(R, x) (A.4)

EY(R)
N

)
3Aηfcc

2σ3
ê2[-24ê2(R + ê)2

e2R/êR3
+

16(σ + ê)

eσ/ê
-

12(σ2 + 2σê + 2ê2)

eσ/êR
+

σ4 + 4σ3ê + 12σ2ê2 + 24σê3 + 24ê4
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