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This review focuses on recent developments in the theoretical, numerical and
experimental study of slow dynamics in colloidal systems, with a particular
emphasis on the glass transition phenomenon. Colloidal systems appear to be
particularly suited for tackling the general problem of dynamic arrest, since they
show a larger flexibility compared to atomic and molecular glasses because of
their size and the possibility of manipulating the physical and chemical properties
of the samples. Indeed, a wealth of new effects, not easily observable in molecular
liquids, have been predicted and measured in colloidal systems. The slow dynamic
behavior of three classes of colloidal suspension is reviewed – hard colloids,
short-range attractive colloids and soft colloidal systems – selecting the model
systems among the most prominent candidates for grasping the essential features
of dynamic arrest. Emphasis is on the possibility of performing a detailed
comparison between experimental data and theoretical predictions based on
the mode coupling theory of the glass transition. Finally, the importance of
understanding the system’s kinetic arrest phase diagram, i.e. the regions in
phase space where disordered arrested states can be expected, is stressed. When
and how these states are kinetically stabilized with respect to the ordered lowest
free energy phases is then examined in order to provide a framework for
interpreting and developing new ideas in the study of new materials.
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1. Introduction

Dynamically disordered arrested states are commonly found in soft condensed
matter. Examples of this category of phenomena are the liquid–glass transition
and the sol–gel and percolation transitions. As compared to molecular and atomic
systems, in which dynamic arrest is associated commonly to a glass transition phe-
nomenon, colloidal systems show a much wider range of possibilities, brought in by
the wider variety of interparticle potentials, by the presence of supra molecular
ordering, by the possibility of acting on the system with external fields and by
their intrinsically longer time scales. In most of these cases, dynamic arrest is fore-
seen by a progressive slowing down of the dynamic processes, both for the tagged
particle motion and for the collective rearrangements. Small changes in the external
parameters bring in changes in the characteristic times, which span several orders of
magnitude. Dynamics can become so slow that during the experimental observation
time the system evolution is frozen in a structure which depends on the sample
previous history. Despite the diversity of the arrested state, the slowing down of
the dynamics which precedes dynamic arrest share common features, suggesting the
idea of an underlying common explanation, or even universality, to the different
manifestations of the arrest of the particles dynamics. Similarities between the slow
dynamics observed in thermoreversible physical gels [1, 2], associating polymers at
low concentration [3], micellar systems [4], star polymer mixtures [5], colloidal gels
[6, 7], block copolymers [8] do call for a common interpretation paradigm. Recent
reviews of various aspects of structural arrest in soft condensed matter systems are
due, starting from the most recent one, to Cipelletti and Ramos [9], Trappe and
Sandkühler [10], Dawson [11] and Poon [12].

Notwithstanding many efforts, at present there is still no comprehensive theore-
tical treatment of these phenomena, but only specific approaches to the various
forms of structural arrest. However, the study of slow dynamics in colloidal systems
appears to be particularly suited for tackling the general problem of arrest. This is
due to a strong interaction between experiments, theory and simulation work and to
the possibility to select common model systems, made possible by today’s ability in
manipulating the physical and chemical properties of the samples. The large number
of applications of this joint effort to diverse colloidal systems will hopefully bring
research in this field closer to a comprehensive explanation of dynamic arrest.

The present review aims at presenting recent developments and discoveries
in the slow dynamics of colloidal systems. We limit ourselves to discussing the slow
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dynamics of some model systems and some physical observables that we consider to
be the most prominent candidates for grasping the essential features of dynamic
arrest, and which allow for a detailed comparison between the experimental data
and theoretical predictions. We focus mostly on the dynamics in equilibrium close
to the glass line, touching only marginally all the issues involved in the aging
dynamics of the out-of-equilibrium arrested states, for which a satisfactory theo-
retical understanding is still lacking. For the same general reasons, we focus more
on the dynamics close to a glass transition than on the slowing down observed close
to gel states.

More specifically, the review is organized as follows. The starting point is an
extended summary of the ideal mode coupling theory (MCT), a theory which offers
detailed predictions for both self and collective dynamics and for the shape of
the dynamic arrest line in the phase diagram. Recent applications of the theory to
particles of (simple) non-spherical shape significantly enhance the possibility of
quantitatively comparing theoretical predictions with numerical and experimental
works. We then discuss recent developments in some model systems, distinguishing
various types of colloids according to the interparticle interactions, starting from
colloids where only a hard repulsive interaction is present. We then introduce
colloids in which a short-range attractive potential is added, since they give rise to
a new type of glass characterized by a rich phenomenology. The short-range attrac-
tive model systems have the potentialities to help us connect the slow dynamics in
colloidal systems with the similar phenomenon observed in atomic and molecular
glasses. Finally, we discuss soft colloids where long-range repulsive interactions,
due e.g. to electric charges on the particles, play an important role and generate
cluster phases and transition to gels. In all cases, we attempt to provide also infor-
mation on the ordered crystal phases and on the possible second-order transitions,
to provide a picture of the arrest process in the system phase diagram. We conclude
with the perspectives and the new directions of this rich field of research.

2. Theoretical background

2.1. Mode coupling theory

The most successful approach to the glass transition in colloidal systems is the mode
coupling theory, which dates back to the mid-1980s [13] and has been developed
since then mainly by Götze and coworkers [14–16]. MCT has been shown to be
capable to interpret in a quantitative way, to a 20% level of accuracy, experimental
data close to a supercooled liquid–glass transition. The name ‘mode coupling’ was
borrowed by the successful theories of dynamical critical phenomena, since in
analogy with the latter the relevant variable is identified in the local density, and
a non-linear (quadratic) coupling among density modes is explicitly considered
in the kinetic evolution equations. In the MCT the input static quantity is the
wave vector k-dependent static structure factor Sk, but contrary to critical phenom-
ena, close to the glass transition there is no static singularity leading to a diverging
correlation length and to the Ornstein–Zernike anomaly of the structure factor. The
added difficulty of the theory, compared to the critical phenomena, is related to the
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fact that all length scales are equally important and have to be taken into
account simultaneously. MCT predicts only a kinetic singularity in the evolution
equations, which leads to an ergodic to non-ergodic transition characterized by the
non-vanishing of the long time limit of the density correlation functions.

The original derivation of MCT makes use of the projection operators technique
of statistical mechanics [14], but other procedures have been used in order to derive
the equations [17–20]. Consider N particles of mass m, in the cubic volume V, that
have coordinates frNg ¼ fr1, r2, . . . , rNg. The local density is defined as

�ðrÞ ¼
XN
j¼1

�ðr� rjÞ

and gives the number density n ¼ h�ðrÞi. Its spatial Fourier transform with
wavevector k is

�k ¼

ð
V

dreik�r�ðrÞ ¼
XN
j¼1

eik�rj :

MCT derives equations for the normalized time-dependent density correlators of the
Fourier components of the particle density deviations ��kðtÞ

�kðtÞ �
��kðtÞ���kð0Þ
� �
j��kj

2
� �

starting only from the number density n and the structure factor Sk ¼ hj��kj
2
i=N.

For Newtonian dynamics, the evolution equations read

@2

@t2
�kðtÞ ¼ �!

2
k �kðtÞ �

ðt
0

dt0 Mkðt� t0Þ
@

@t0
�kðt

0
Þ

with initial conditions �kð0Þ ¼ 1 and @�kð0Þ=@t ¼ 0. Here !2
k � k2=ðm�SkÞ are char-

acteristic frequencies, with � ¼ 1=ðkBT Þ, where T is the temperature and kB the
Boltzmann constant. The kernels Mk(t) are expressed in terms of correlators of
the fluctuating forces, which in colloids include the effect of the interactions with
the solvent particles. The characteristic time scale of these interactions is much
shorter than the time scale of the colloidal particles dynamics, therefore they can
be approximated as a friction force of the form �k@�kðtÞ=@t, with �k microscopic
damping coefficients. Moreover, in the case of colloidal systems the propagation of
the density fluctuations is controlled by the Smoluchovski equation. In this case
the friction term is large compared to the inertia term @2�kðtÞ=@t

2, which can be
neglected and implies Brownian rather than Newtonian dynamics. The MCT
equations for colloids are then of first rather than of second order

�k
@

@t
�kðtÞ þ !

2
k �kðtÞ þ

ðt
0

dt0 Mkðt� t0Þ
@

@t0
�kðt

0
Þ ¼ 0

with the initial condition �kðtÞ ¼ 1. The �k term goes to a constant in the limit of k
going to zero, differently from the k2 behavior characteristic of Newtonian dynamics.
Within MCT, all features of the short-time dynamics enter the glassy dynamics via
an overall time scale t0 only. The complete dependence of the glassy dynamics on k
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and from the distance from the glass line for Newtonian and stochastic dynamics
is identical, except for the choice of t0 [21]. Therefore, according to MCT it does not
matter whether glassy dynamics is analyzed in simulations for Newtonian or
for stochastic dynamics. This was shown explicitly by Gleim et al. [22] and, more
extensively by, Voigtmann et al. [23].

The kernels Mk(t) are decomposed as the sum of a regular term Mreg
k ðtÞ, which

contains normal effects in colloids such as hydrodynamic interactions, and mode
coupling contributions of the form !2

k mkðtÞ. In the MCT calculations we report,
hydrodynamic interactions are not explicitly taken into account

In the limit of quadratic nonlinearities, the memory kernel is given by

mkðtÞ ¼
n

V

X
k0 6¼k

SkSjk�k0 jSk0
k � k

0

k2
ck0 þ

k � ðk� k
0
Þ

k2
ck�k0

����
����
2

�jk�k0jðtÞ�k0 ðtÞ

in terms of the structure factor Sk or the short-range correlation function
nck ¼ 1� S�1k .

The glass transition predicted by MCT is obtained solving the t!1 limit of the
equations for the normalized correlators �kðtÞ, the so-called non-ergodicity factor fk

fk ¼ lim
t!1

�kðtÞ:

The equations have the form

lim
t!1

mkðtÞ ¼
fk

1� fk

The solution to these equations admits not only the usual trivial solution fk ¼ 0,
but also solutions with fk 6¼ 0. The value of fk at the transition point is denoted f ck .
In MCT language, the transition is called a type B transition when fk grows
discontinuously on entering in the non-ergodic phase, and type A transition when
fk grows continuously from zero. The non-ergodic solutions fk 6¼ 0 depend on a
number of control parameters, usually volume fraction of the colloidal particles
and attraction strength. The theory accounts also for so-called higher-order
singularities related to bifurcation theory (named A3, A4), whose realization requires
a fine tuning of the interparticle potential parameters. The A3 bifurcation is the end
point of a type B transition.

The existence of a singularity of purely kinetic origin – not related to any ther-
modynamic singularity, such as in the case of MCT of critical dynamics – is the most
important prediction of the theory. The physical interpretation of the non-ergodicity
transition is related to the well-known cage effect, the difficulty of a particle to move
due to the crowd of the surrounding ones. Motion of the particle can only take place
if a collective rearrangement of the particles forming the cage opens up a passage
for the arrested particles.

2.2. MCT features

One of the merits of MCT is to identify the universal features of the temporal decay
of density correlators in terms of asymptotic power laws of approach to the ideal
glass transition. In order to properly define the asymptotic laws, it is preliminarily
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necessary to define a parameter � which quantifies, in terms of a control parameter x,
the distance from the kinetic transition at xc

� ¼
x� xc
xc

:

It is usually related to the fractional distance from the transition expressed in terms
of volume fraction �ðx ¼ �Þ or temperature ðx ¼ 1=T Þ. A convenient way of describ-
ing the universal characteristics of the decay is to introduce its relevant time scales
and the behavior of the time correlators in the various time ranges, namely:

(i) The region of the microscopic decay related to a short-time scale t0 of the order
of the Brownian time scale in colloidal systems and of the order of the inverse
phonon relaxation frequency in Newtonian systems.

(ii) The �-relaxation region corresponding to the decay toward a plateau f ck and
the further decay below the plateau when � < 0, while there is ergodicity break-
ing for � > 0. In the vicinity of the plateau MCT proposes a general expression
for the density correlators of the form

�kðtÞ ¼ f ck þ hk
ffiffiffi
�
p

g�
t

t�

� �
,

where the subscript in g� corresponds to the sign of �, which goes under
the name of factorization property, since the space and time dependencies
separate, and scales with the characteristic time t�

t� ¼ t0j�j
�1=ð2aÞ,

which in turn scales with an exponent related to the quantity a. The non-
ergodicity factor f ck , the critical amplitude hk and the �-correlator g�, are
independent from �. Given a particular system, g� is a function which can
be determined knowing n and the interparticle potential, which determines
the structure factor Sk. The leading behavior of the function g�ðt=t�Þ above
or below the non-ergodicity plateau is given by the power-law in time valid
for t=t� � 1

g�ðt=t�Þ � ðt=t�Þ
�a

with 0 < a41=2, while for t=t� � 1 the well-known von Schweidler law is
valid, with

g�ðt=t�Þ � �ðt=t�Þ
b

and 0 < b41. It is possible to relate both exponents a (for t� and g�) and b
through the following relation involving the Euler � function

ð�ð1� aÞÞ2

�ð1� 2aÞ
¼
ð�ð1þ bÞÞ2

�ð1þ 2bÞ
:

As for the case of critical phenomena, exponents and critical laws are expected
to be robust with respect to changes of system, while actual value of the kinetic
transition is significantly affected by the approximations employed in MCT.
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(iii) The �-decay regime is the last stage of the decay, the cage break-up, and is
characterized by a time scale � which diverges on approaching the transition
as a power law

� � j�j�	 ð1Þ

where the exponent 	 is given by

	 ¼
1

2a
þ

1

2b
:

The time scale � enters the so-called time–temperature superposition relation

�kðtÞ ¼ Fk

t

�

� �
where Fkðt=�Þ is a master function of the scaled time t=� which allows to draw a
master plot of the density correlators. A good approximation of this function
is very often given by the stretched exponential function

�kðtÞ ¼ Ak e� t=�kð Þ
�k
:

A sketch of the typical shape of the density correlators, highlighting the different
time regions described by MCT, is shown in figure 1.
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Figure 1. Sketch of the typical shape of the density correlators in the liquid, close to the
glass transition. The figure highlights the different time regions in the decay of the correlations.
The initial microscopic intra-cage dynamics (non-universal) is followed, according to MCT,
by a time region where universal features of the caging dynamics are observed and described
by the �-correlator g�, around the non-ergodicity parameter f. The leading terms in g� are
power law functions. This region is followed, in the liquid side, by the cage-restructuring decay
which can be well modeled by a stretched exponential function.
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Many aspects of the predictions of the ideal MCT have been tested in detail
in various systems, both experimentally and using computer simulation, with good
results. More recently MCT has also shown a relevant predictive power in the
important field of glassy colloidal systems dominated by attractive interparticle
interactions, where a number of interesting new phenomena have been discovered
and will be discussed at length in the next sections.

Many attempts have also been made to improve the ideal MCT, including the
early extensions of the theory due to Götze and Sjögren to account for activated
hopping processes [24]. This is obtained through a coupling to current modes,
besides the density modes, which destroy the ergodic–non-ergodic transition below
the mode coupling temperature. Das and coworkers [25] have derived a set of
MCT-like dynamic equations, called self-consistent MCT, starting from hydro-
dynamics and using field theoretical techniques to handle nonlinear mode coupling
terms. The non-ergodicity transition disappears with the inclusion of current corre-
lations with density fluctuations [26]. The approach has been recently reviewed [27]
and applied to binary hard spheres (HS) and Lennard-Jones systems [28], where a
dependence of the dynamic transition point on the mass-ratio of the components has
been observed. However, it was pointed out by Götze and Voigtmann [29] that the
dependence of the mass is not consistent with the standard MCT approach.

More recently Szamel [30] has introduced an attempt to go beyond MCT, using
a novel way of factorizing higher-order correlations entering the dynamic equations.
The new theory applies to concentrated colloidal suspensions and predicts, like
MCT, ergodicity breaking but at a volume fraction higher compared to the ideal
MCT value and closer to the experimental value. Szamel also discussed difficulties
of going beyond MCT both theoretically [31] and by numerical simulation [32].
Schweizer and Saltzman [33, 34] have developed a microscopic kinetic description
of single-particle transient localization and activated transport in glassy colloidal
fluids, which combines elements of MCT, density functional theory and activated
rate theory. A Langevin equation is constructed in which the driving force
contains terms favoring particle localization and the random force terms that restore
ergodicity through barrier hopping. The comparison with experimental results,
performed in the absence of adjustable parameters, was performed for HSs systems
and limited to tagged particle properties.

Finally Wu and Cao [35] have formulated a higher-order mode coupling theory
for the colloidal glass transition based on a matrix formulation for stochastic
dynamics. To lowest order the theory reduces to the usual MCT, while second
and third order give corrections to it. The volume fraction for the glass transition
of HSs, � ¼ 0:553, is closer to the experimental value, and the non-ergodicity factor
compares favorably with experiments.

The study of the slow dynamics in colloidal systems has benefitted a lot from
the possibility of a close comparison between theoretical predictions and experi-
mental or numerical findings. The present review brings together much of the
emerging experimental and numerical evidence that gives MCT increasing support.
Nevertheless, we have to warn the reader that the limit of validity of MCT,
especially in the most used formulation which neglects activated processes, remains
controversial. Indeed, neglecting activated processes is probably a safe approxima-
tion only in the HS case and when excluded volume is the driving force for caging.
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Activated processes may not be neglected when the attractive part of the
interparticle potential plays a significant role in the caging process. Indeed, in the
case of molecular MCT [16] (and apparently also network forming liquids [36, 37])
the ideal MCT predictions for the �-relaxation (e.g. the power-law dependence of
the characteristic time, equation 1) properly describe only the first three to four
orders of magnitude in the slowing down of the dynamics. Depending on the
material, the location of the MCT glass line (which retains only the meaning of
cross-over from a power-law growth of the �-relaxation time to a super-Arrhenius
dependence) can be very different from the location of the line at which arrest
is observed on an experimental time scale (the calorimetric glass transition
temperature). It is unfortunate that the full form of the extended MCT, which
formally includes activated processes, cannot be compared to experimental or
numerical data, except in a schematic version which neglects the wavevector
dependence [38–40].

2.3. Other theoretical approaches

A complete account of the theories of the glass transition is outside the scope of this
review, which is limited to colloidal systems where MCT is considered to be the most
appropriate and direct quantitative approach. We therefore simply make a partial
list of the various theoretical approaches developed so far for understanding the
slowing down of the dynamics in structural glasses.

(i) An important contribution to the theory of glasses was given by the proto-
typical model of spin glasses of Sherrington and Kirkpatrick [41] and the Parisi
solution of its mean field approximation [42]. This approach has clarified the
physical ideas and the concepts, such as replica symmetry breaking and con-
figurational entropy, that have opened the way to other approaches. These
ideas have been transferred to the field of structural glasses in the theory of
Mézard and Parisi [43, 44], based on the replica-symmetry-breaking method,
which has been applied to hard [45] and soft spheres [46] with good qualitative
results. They study the glass transition in the hypernetted chain (HNC)
approximation by means of an effective potential, and find a transition
scenario analogous to that of long-range disordered systems with one-step
replica symmetry breaking.

(ii) The potential energy landscape (PEL) approach of Stillinger and Weber [47]
focuses on the statistical properties of the system in the configuration space.
It is interesting to observe that the free energy expression based on Stillinger
and Weber approach are conceptually similar to those derived on the basis
of disordered spin models for structural relaxations [48]. The PEL approach
has been useful in clarifying many aspects of the physics of glasses [49].

(iii) A more general kinetic approach to supercooled liquids was proposed
some time ago by Kawasaki [50], who introduced in the seventies the idea of
non-linear coupling of hydrodynamic modes in critical dynamics. The equa-
tions derived, called dynamic density functional theory (DDFT), can be written
as functional Fokker–Planck equations or as Langevin equations with multi-
plicative noise [51]. These equations are difficult to handle, and only some
preliminary attempt has been made to solve them [52], but according to the
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authors the solution has the correct equilibrium properties and should
incorporate activated processes. Similar attempts have also been reported by
Miyazaki and Reichman [53] using equations analogous to the ones of DDFT,
derived using field theory with multiplicative noise.

(iv) Recent studies of the glass transition have focused on the random first-order
transition theory of glasses [54, 55]. This theory starts from exactly solvable
mean field glass models, but extend them to include activated motions by
considering entropic droplets [55]. The theory provides estimates of measurable
quantities near the glass transition for a wide range of substances. In this pic-
ture, a viscous liquid or glass consists of a mosaic of frustrated domain walls
separating regions of energetically less frustrated material. Each mosaic cell
resembles a local minimum of the free energy, or the PEL local minimum [47].

(v) Dynamical heterogeneities [56] are the basis of the theoretical approach of
Chandler and coworkers [57, 58]. Indeed, it has been shown experimentally
and by numerical simulation that, as the temperature approaches the glass
transition, mobility develops spatial inhomogeneity at a mesoscopic scale.
In this theory the heterogeneities are described in terms of local mobility exci-
tations that propagate with facilitated dynamics, i.e. mobile particles facilitate
the dynamics of neighboring ones, thus creating clusters of faster molecules.
The facilitated dynamical models focus on the constraint on the motion of the
particles, without postulating an underlying static anomaly.

(vi) The importance of the hydrodynamic interactions in concentrated HS sus-
pensions was stressed by Tokuyama and Oppenheim [59, 60] and applied to
supercooled colloidal liquids near the glass transition [61–63]. No divergence
of the relaxation times is found, although the dynamical properties of the
colloids show a drastic slowing down.

(vii) Finally, it is worth mentioning the role of some lattice models that have helped
in clarifying some elementary aspect of the dynamics of the glass transition.
Among these, the kinetically constrained lattice model of Kob and Andersen
[64] and the model introduced by Biroli and Mézard [65] are noteworthy.
Recent work in this direction by Dawson and coworkers [66–68] introduces
the dynamically accessible volume as an order parameter, and identifies two
distinct regimes which show slowing down of the dynamics, with a sharp
threshold between them.

Unfortunately, although these theories are useful in clarifying the fundamental
aspects of the glass transition, none of them provides detailed predictions for the
wavevector dependence of the density correlations, and for the shape of the glass
transition line in the temperature and packing fraction plane, preventing the
possibility of an accurate comparison with the slow dynamics in colloidal systems.
On the contrary, the comparison is possible using MCT.

3. Hard colloids

Hard colloids constitute an idealized version of a system composed by par-
ticles which experience no forces among themselves unless they are in contact.
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When particles touch, they experience an infinite repulsion, preventing overlap.
Thus, the pairwise additive interaction potential arises only due to the excluded
volume effect. To experimentally realize the ideal hard-interaction case, it is neces-
sary to suppress the inevitable van der Walls (short-range) attraction arising from
polarizability [69]. To this aim, particles are chemically treated, for example via steric
stabilization, to prevent close approach. To further reduce the effect of van der
Waals interactions (and at the same time reduce turbidity) particles are often dis-
persed in a solvent of comparable refractive index. Steric stabilization requires
the grafting of polymer chains on the surface of the colloidal particle. Similarly,
a density match between solvent and colloidal particles is often implemented to
minimize the effect of gravity.

3.1. Hard sphere colloids

One of the most studied model system, approaching the ideal HS case [70], is
composed by poly-(methyl methacrylate) (PMMA) particles, grafted with a layer
of poly-(12-hydroxy stearic acid) (PHSA) in a solvent composed by decalin and
tetralin. It has been shown that the equation of state does not deviate from the
one of a perfect HS system under any relevant experimental condition [70], for
particle sizes larger than 50 nm in diameter and for packing fractions as large as 0.64.

The HS is a model system for studying structure and dynamics of liquids, crystals
and glasses and the thermodynamic transitions between them. It is often used as
reference model for evaluating properties of more sophisticated and realistic poten-
tials [71]. The phase diagram of HS of uniform size depends only on the packing
fraction �. Computer simulation studies, in the late-1950s [72], provided evidence
that the HS fluid, despite the absence of any attractive part in the potential, crystal-
lized when � > 0:49. Up to �¼ 0.545, the crystal phase coexists with the fluid phase.
Below �¼ 0.49 the fluid phase is stable, above �¼ 0.545, the crystal phase is stable.
The crystallization of the HS arises from a delicate balance of entropy. In the fluid
phase, disorder is associated to a larger number of configurations (large configura-
tional entropy). Each of these configuration is characterized by a rattling entropy
(the analogous of the vibrational entropy in the case of continuous potentials),
reflecting the available volume in which particles can rattle without leaving
the configuration. Interestingly enough, the rattling entropy in the fluid phase is
smaller than that in the crystal state, since disorder confines several particles
in volumes significantly smaller than the crystal cage volume. The sum of the
configurational entropy and the rattling entropy of the fluid at �¼ 0.49 equals
the crystal rattling entropy at �¼ 0.545 and a crystallization transition takes
place. The ordered crystalline state becomes more disordered than the disordered
fluid state.

Among the possible crystal structures, the face-centered-cubic ( fcc), hexagonal
close packing (hcp) and body-centered-cubic (bcc) (the first two differing only for
the stacking of different hexagonal planes) have the lower free energy (for a recent
review see [73]). Among them, the lowest absolute one is provided by the
fcc structure. The experimental study of the crystallization process in HS
colloidal dispersions is an active field of research, revitalized by recent experiments
in microgravity in order to eliminate the sedimentation, convection and stress due
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to gravity [74–76]. Interestingly enough, experiments have shown that crystallites
grow faster and larger in microgravity and the coarsening between crystallites
is suppressed by gravity. Dendritic structures have also been observed to grow.
Particularly important appears the experimental evidence that crystallization
proceeds even for � > 0:58, a value for which, in normal gravity, no signs of crystal
formations are observed even for extremely long observation times [77]. Computer
simulation studies [78] confirm the role of gravity in affecting crystallization,
suggesting that gravity appears to stabilize the glass state by reducing the mobility
of the particles.

One important scientific question concerns the limit of stability of the fluid
phase. Under appropriate experimental conditions, for finite experimental observa-
tion times the concentration of HS can be continuously increased beyond �¼ 0.49,
generating a metastable fluid phase (metastable respect to the coexistence of a fluid
at �¼ 0.49 and a crystal at �¼ 0.545). When the fluid properties are time-
independent, the system can be properly considered as lying on the metastable
extension of the fluid branch. On increasing �, the time requested to reach a meta-
stable equilibrium (i.e. when pressure does not change any longer) becomes compar-
able to the crystallization time and a proper extension of the metastable fluid branch
cannot be further measured. Despite this undeniable difficulty which stops the
observation of metastable equilibrium states at � � 0:54, several studies have
addressed the issue of the large � extrapolation of the metastable branch. Several
researchers have argued that the metastable extension of the fluid equation of states
predicts a divergence of the pressure around �RCP � 0:64, a value historically
identified with the random close packing state, i.e. the maximum density at which
a random distribution of non-overlapping spheres can be generated. The pressure
divergence at �RCP would correspond to the fluid analog of the divergence
at p=

ffiffiffiffiffi
18
p
� 0:74 which is the densest [79] possible packing fraction of spheres,

corresponding to the close-packed fcc lattice or its stacking variants.
The utility of the concept of random close packing has been recently questioned

by Torquato and coworkers [80], on the basis that configurations with any arbitrary
packing can be generated with an appropriate amount of crystalline order. Indeed, in
the absence of any thermodynamic condition, no unique property can be associated
to HS configurations with �0 0:54. Different preparation techniques, or different
growth process in numerical simulations, may generate different realizations strongly
differing in static and dynamic properties. For this reason, Torquato and coworkers
have suggested to switch from the Random Close Packing (RCP) ill-defined concept
to the Maximally Random Jammed state as the most disordered jammed state. In
this case disorder is defined via an appropriate order parameter, and a jammed state
is defined as a state in which all particles in the configurations are blocked by nearest
neighbors contacts.

When HS configurations are generated at high packing fraction �0 0:58,
both experimentally by shear melting the crystal or numerically by compression
algorithms [81, 82], the relaxation time of the system becomes much longer than
the experimentally available time and the system behaves as a non-ergodic system.
In particular, in experiments on earth, no signs of crystallization have been observed
in the range 0:58 < � < 0:64 (except for an extremely slow aging) leading to the
hypothesis that, even for a one-component monodisperse HS system, a glass state
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can be defined. The comparison with the zero gravity experiment confirms that
these glassy states are metastable, as compared to the crystal state, and are
kinetically stabilized by a growth of the crystallization time scale induced by
gravitational effects. Still, around �¼ 0.58 a change in crystallization kinetics has
been reported [77, 83–86]. Support for the existence of an underlying ideal glass
transition is offered by the experimental studies of the relaxation dynamics close
to �¼ 0.58. In the experiments, the presence of a small polydispersity (and possibly
of the gravitational field) delays the crystallization process, allowing for the experi-
mental measurements of the decay of the density fluctuations. The decay of the
correlation functions (figure 2) shows the insurgence of a clear two-step relaxation
process on approaching �¼ 0.58. For � > 0:58, correlation functions do not decay
to zero any longer within the experimental time window. The � dependence of the
characteristic time follows a power law dependence, consistent with the prediction of
the ideal MCT. A recent refined analysis of the light scattering data based on the
results of the full MCT, reported in [87], provides further support. A more thorough
comparison of the entire t and � dependence of the correlation function with the full
solution of the ideal MCT equation, confirms the ability of MCT to model the shape
and � dependence of the dynamics close to dynamic arrest [88]. The presence of weak
polydispersity and gravity is apparently fundamental in the experimental observa-
tion of the slowing down of the dynamics close to �¼ 0.58. Indeed, simulation
studies in zero gravity and in purely monodisperse systems cannot be performed
close to �¼ 0.58, since above � � 0:53 crystallization intervenes well before correla-
tion functions have decayed to zero, preventing the calculation of any equilibrium
dynamic property.

Figure 2. Dynamic light scattering experiments in hard-sphere colloids. The figure shows the
intermediate scattering function for kR ¼ 4:10 (k is the wavevector, R the particles radius)
on increasing concentration. In scaled units, the maximum of the structure factor is located
around kR ¼ 3:46. The solid lines are MCT fits. Courtesy of the authors, redrawn from [85]
with permission of the APS (American Physical Society).
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Theoretical work based on the solution of the MCT equation using as input
the static structure factor Sk calculated in the Percus-Yevick (PY) approximation,
predicts an ideal MCT transition at �c ¼ 0:516. Close to �c, the relaxation time
scales as j�� �cj

�	 with 	¼ 2.52 [89]. The exponent 	 has been calculated first by
Barrat et al. [90] (see also ref. [89]). A first test of exponents and scaling laws for
HS was done by Götze and Sjögren [91] based on the pioneering work of van Megen
and Pusey [84]. As we mentioned earlier, exponents and critical laws are expected to
be largely universal, while the actual value of the transition is significantly affected by
the underlaying approximation. Indeed, as alluded above, comparison with experi-
ments confirms the quality of the theoretical predictions once experimental and
simulation data are considered at the same relative distance from �c. Improvement
on the Sk used as input to the theory (going from PY to Verlet–Weis [92] or to the
exact Sk calculated in computer simulations of the HS model) does shift the estimate
of �c up to 0.546 [93]. A recent extension of the MCT approach shifts �c to 0.549,
although the agreement with the experimentally measured correlation functions is
slightly worse [30]. The mean square displacement in colloidal HS has been studied
with ingenious light scattering techniques by van Megen et al. [94]. This quantity
provides a precise and direct estimate of the onset of slow dynamics and of the
particle cage, an important concept in the discussion of the glassy dynamics.
A careful explanation of the mean square displacement data has been recently
provided by Sperl [95].

Dynamics in HS systems in colloidal supercooled fluids and colloidal glasses
have also been investigated in real space with laser scanning confocal microscopy
[96, 97], a technique which provides the full three-dimensional trajectories of several
thousand fluorescence labeled particles. It was found that particles moved coopera-
tively. These heterogeneities manifest themselves as a non-Gaussian probability
distribution of particle displacements and affect the onset of long-time diffusive
behavior. The characteristic size of the cluster of mobile particles grew markedly
in the supercooled fluid as the glass transition was approached, confirming computer
simulations results [98]. Again the glass phase [99] was also shown to be both
spatially and temporally heterogeneous. Furthermore, while the characteristic
relaxation time scale grows with the age of the sample, nontrivial particle motions
continue to occur on all time scales. The same technique has also been used to study
crystallization of concentrated colloidal suspensions [100]. Direct imaging in three
dimensions allowed the identification and observation of both nucleation and
growth of crystalline regions, providing an experimental measure of properties of
the nucleating crystallites. The structure of the nuclei was found to be the same as
the bulk solid phase, random hexagonal close-packed, and their average shape was
rather non-spherical, with rough rather than faceted surfaces.

In the spirit of MCT, the ideal glass transition is a kinetic transition, completely
disconnected from any thermodynamic one. Extending the theory to include
hopping effects (which in a first approximation may not play a significant role in
HS systems), could explain the residual mobility beyond �¼ 0.58, consistent with the
observed extremely slow decay of correlation functions above �c and the crystal-
lization observed in the zero gravity experiments. Instead, other theories suggest the
presence of a real thermodynamic transition on increasing �, related to the vanishing
of the configurational entropy, defined as the number of explored distinct disordered
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configurations. Speedy [101] studied the thermodynamic properties of HS fluids and
their glasses, using molecular dynamics simulations, describing them within a unified
formalism, by expressing the number of configurations of a fluid as a sum, over all
its glasses, of the number of configurations of each glass. For pure HS and mixtures
of HS this approach provides an equation of state that interpolates between the
ideal gas low density limit and an ideal glass high density limit, and includes
a thermodynamic glass transition. On a finite time scale, a real glass transition
pre-empts the ideal one. The ideal glass transition is predicted around �¼ 0.657,
at which point the specific heat shows a discontinuity. Speedy also notes that the
entropy of the glass at the ideal glass transition is different from the crystal entropy
at the same temperature and pressure, due to the difference rattling entropy of the
two states, this time both of them characterized by the same configurational entropy.
Recent calculations are consistent with Speedy’s findings [102].

A similar conclusion is reached by Cardenas and coworkers [45, 103], who
studied the glass transition for simple liquids in the HNC approximation by
means of an effective potential, recently introduced. Integrating the HNC equations
for HS, they find a transition scenario analogous to that of long-range disordered
systems with one-step replica symmetry breaking. These results have been extended
in a recent work of Parisi and Zamponi [104]. Finally, Aste and Coniglio [105]
developed an approach that combines the ideas of inherent structures, free volume
theory and geometrical packing properties. When applied to HS systems, the theory
describes the critical approach toward the random close packing density, with the
congurational entropy that approaches zero.

3.2. Polydisperse hard spheres

One possible mechanism to hamper crystallization is provided by disorder in the
particle sizes, inducing concomitant disorder in the interparticle potential. Above a
certain polydispersity of about 7% a crystalline phase does not usually exist, while
slowing down of the dynamics is certainly observed. In this respect, the glass
dynamics does not require metastability with respect to a crystal phase. In experi-
mental samples, an intrinsic polydispersity (of the order of a few percent) induced
by the preparation techniques, is often present. Especially in numerical studies,
polydispersity is induced under controlled conditions to be able to study packing
fraction values at which the monodisperse HS system inevitably crystallizes,
significantly extending the interval of explored time scales.

Binary mixtures of simple particles have been used, since the work of Hansen
and collaborators [106], for numerical studies of the glass transitions, as a way of
suppressing crystallization. More recently, experiments [107], theory [29] and
simulations [93, 108] have addressed the effect of mixing on structural relaxation
to identify the influence of composition changes and variation of the particle size
disparity on the HS glassy dynamics. In the experimental work of Williams and
van Megen [107] three mixing effects have been reported. If the percentage of the
smaller particles increases from 10 to 20% of the relative packing fraction, then (i) the
time scale for the final decay of the density correlators decreases; (ii) the plateau
value for intermediate times increases and (iii) the initial part of the structural
relaxation slows down. The first effect means that mixing has promoted the liquid
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as if the smaller particles provide some lubrication. This effect has some analog in the
plasticization observed in dense polymeric liquids due to mixing with polymers of
shorter lengths. However, effects (ii) and (iii) indicate a stiffening of the dynamics
upon mixing. Theoretical work [29] has identified these phenomena as structural
relaxation effects rather than colloid-specific features. It suggests moreover that
the speed up of the dynamics reported in [107] is characteristic only of sufficiently
large size disparity, predicting the opposite effect (i.e., mixing slows down
the dynamics and the ideal-glass critical packing fractions decrease) for smaller size
ratio. Theoretical predictions have been confirmed by numerical simulations
[93, 108]. Simulation results provide evidence that increasing the mixing percentage
of the smaller minority particles can lead to a speeding up, as well as to a slowing
down, of the long-time decay processes, depending on whether the size disparity is
large or small, respectively. There is also an increase of the height of the plateau of
the density autocorrelation functions for small and intermediate wave vectors,
reflecting a stiffening of the nearly arrested glass structure. These findings, which
pose a challenge to theories of the glass transition, show, in particular, that the
description of a glass-forming mixture by an effective one-component liquid cannot
be possible for all properties of interest. Due to the suppression of crystallization
phenomena, the comparison between simulation and theoretical predictions in
binary mixtures can be performed in a punctual way. Indeed simulations can be
extended over five orders of magnitude in dynamic range, without any sign of
crystallization. In these conditions, indications of slow dynamics are rather clear
and allow researchers to provide high quality data. In the case of binary HS systems,
the wavevector dependence of the non-ergodicity parameter has been found to
closely describe the theoretical predictions, once the exact numerical partial structure
factors are used as input in the theory, as shown in figure 3. We refer to ref. [23, 87,
93, 108] for a thoroughtful comparison between MCT predictions and simulation
results for the binary HS system.

A significant influence of gravity on the long-time behavior of the mean squared
displacement in glasses of polydisperse colloidal HS was reported in an experimental
study, based on real space fluorescent recovery after photobleaching [109]. Systems
which are glasses under gravity (with a gravitational length on the order of tens of
micrometers) show anomalous diffusion over several decades in time if the gravita-
tional length is increased by an order of magnitude. No influence of gravity was
observed in systems below the glass transition density. It appears that gravity
dramatically accelerates aging in colloidal HS glasses. This behavior is consistent
with the observation that colloidal HS systems which are a glass on Earth rapidly
crystallize in space [74–76].

Highly polydisperse HS systems have been recently studied to address
the question of a possible thermodynamic transition associated to the
slowing down of the dynamics. For the case of two-dimensional polydisperse HS,
Santen and Krauth [110] have designed a clever Monte Carlo cluster
algorithm which makes it possible to equilibrate the system under high pack-
ing fraction conditions, finding no evidence of a thermodynamic transition.
Unfortunately, the significant presence of polydispersity does not settle the issue
once and for all [80].
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3.3. Hard ellipsoids

An interesting class of hard particles which is receiving considerable interest
is constituted by hard ellipsoids of revolution, the simplest extension of the HS case
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Figure 3. Non-ergodicity parameter for binary HS systems. This figure shows results from
a event driven simulation of a binary mixture of particles A and B, with B/A size ratio of
� ¼ 0:60. Circles and squares represent the Kohlrausch amplitudes A(q) determined by fitting
the �-relaxation decay to the equation �ðq, tÞ ¼ AðqÞ exp½�ðt=�ðqÞ�ðqÞ� to the simulation data
and to numerical solutions of the MCT equations for the normalized autocorrelation func-
tions. Results for the big particles A are in the top panel, while for the small particles B in the
bottom panel. The solid and dashed lines show the MCT plateau values calculated using
respectively as input the structure factor evaluated from the simulation data and from the
Percus-Yevick approximation. Redrawn from [93] with permission of the APS.
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toward non-spherical interactions. The phase diagram of this system [111]
is a function, beside packing fraction, of the ratio x � b=a (0 < x <1), where a
and b denote the length of the major and minor axis of the ellipsoids. Oblate and
prolate ellipsoids are respectively described by x<1 and x>1. At low �, the phase
diagram includes an isotropic phase bounded by nematic phases both at large and
small x [111–113]. In the nematic phase, orientational order is long-range, while
translational center of mass order is short ranged. At large � translational ordered
phases are found, with plastic features (orientation disorder) for x � 1.

The slow dynamics in hard ellipsoids has been characterized within molecular
MCT [114] using as input static orientational correlation functions evaluated via
PY closure [113, 114]. The resulting kinetic phase diagram is reproduced in
figure 4. The slowing down of the ellipsoids in the isotropic phase is predicted to
take place via two different mechanisms: one is the usual mechanism related to
caging, as found also in the HS case, the second one is a slowing down driven by
the angular degrees of freedom, which takes place close to the nematic transitions.
Experimental and/or numerical evidence for this second additional mechanism is
still missing, and is one of the open challenges in this field. In both mechanisms,
translational–rotational coupling is sufficiently strong to produce a simultaneous

Figure 4. Phase diagram for the ideal glass transition of hard ellipsoids. The horizontal axis
shows the aspect ratio x ¼ b=a (b and a major and minor axis of an ellipsoid of revolution)
scaled with ðx2 � 1Þ=ðx2 þ 1Þ. In this system, two different types of glass lines (type A
and type B) are predicted, differing from the evolution of the non-ergodicity parameter at
the transition, evolving continuously from zero in type A transition and discontinuously in
type B. The type B glass transition lines are depicted as thick solid and dashed lines. The thin
solid line is the A glass transition line. Note that an enlargement of the intersection would
show that the type A line meets the B line tangentially. The figure shows also the location
of the nematic instability (as evaluated from the PY theory) as thin dashed-dotted lines.
Redrawn from [114]. Courtesy of the authors, with APS permission.
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freezing of both orientation and translation dynamics. An additional glass transition
line is also predicted for nearly spherical ellipsoids, where the orientational degrees
of freedom with odd parity (i.e. 180	 flips) freeze independently from the position,
with a type A-MCT transition [114].

A detailed MCT study of the dynamics of hard dumbells as a function of the
dumbell elongation, in the site–site representation [115, 116], shows a behavior
similar to the one predicted for nearly spherical ellipsoids in [114]. Figure 5 shows
the predicted theoretical phase diagram for dumbells. Similarly to the ellipsoid case,
below a critical elongation, center of mass and odd orientational degrees of freedom
decouple, giving rise to a plastic phase which ends, on increasing packing fraction,
at a type A transition. Evidence for this scenario has been recently provided by
numerical simulations [117, 118].

Both the molecular MCT for the case of hard ellipsoids and the site–site MCT for
the case of hard dumbells, suggest a non-monotonic behavior of the critical packing
fraction, with a maximum at intermediate values of the asymmetry [114–116]. Recent
experimental studies on systems with elongated particles, like ellipsoids [119] and
spherocylinders [120], have revealed that the random (amorphous) jammed packing
is characterized by a maximum attainable packing fraction �max, which is a non-
monotonic function of the elongation parameter which characterizes the shape of the
particles [119, 120]. Starting from �max � 0:64, the value for random close packing of
hard spheres, �max reaches a maximum 00:70 at intermediate elongations and then

Figure 5. Ideal MCT glass transition locus for the symmetric hard dumbell system in the
packing fraction �-elongation 
 plane. As in the ellipsoid case, a type A and a type B transition
are predicted, partitioning the phase diagram in three regions. The solid curve marks the
type B liquid-glass transition line. The dashed curve denotes the type A transition line between
phases II and III. The type A transition line terminates at the critical elongation 
c ¼ 0:345,
marked by an arrow. The horizontal arrow marks the transition point of the HS system.
Redrawn from [116]. Courtesy of the authors, with APS permission.

Glassy colloidal systems 489



decreases again for larger ones. The similarity between the shape of the crystalliza-
tion line, the MCT ideal glass line and the �max line in the �-aspect ratio plane
suggests a common origin for all these observations, an issue which will deserve
further debate and which may provide an explanation of the experimental
findings in terms of MCT. The increase of maximum attainable packing fraction
in disordered states observed in hard ellipsoids, as compared to the case of HS, is a
characteristic not only of the disordered state but also of the crystal state. Indeed,
while the maximum packing fraction of the HS is 0.7405, in the case of ellipsoids
a recent study [121] reports a maximum packing fraction up to 0.7707 for aspect
ratios larger than

ffiffiffi
3
p

, when each ellipsoid has 14 touching neighbors.

4. Attractive colloids

In most cases, colloid–colloid interactions are characterized not only by the hard-
core excluded volume interaction, but also by an additional one, arising from the
polarizability of the particle and from the chemistry of the particle surface.
The strength and range of these interactions is modulated by the solvent properties
(temperature, salt concentration, pH, solvent composition). The effective colloid–
colloid interaction can also be controlled by the addition of a third component
(beside colloid and solvent), which acts as depletant agent. Often, the range of the
interaction is significantly smaller than the particle size, giving rise to interparticle
effective potentials that have no counterpart in atomic or molecular systems.

An interesting case is generated when the hard core potential is complemented by
an attractive potential, the range of interaction of which is significantly smaller than
the colloid size. The addition of an attractive component introduces the possibility
of a separation into coexisting colloid-rich and a colloid-poor phases, when the
interaction strength overcomes a critical value. The separation of the homogeneous
solution into two coexisting phases is the analog of the liquid–gas coexistence in a
one-component atomic or molecular system. Contrary to the atomic or molecular
liquid cases, for which the interaction range is always comparable to the particle size,
in the case of very short-ranged potentials the two-phase coexistence is located on
the metastable extension of the fluid free energy and technically no triple point
(crystal, liquid, gas coexistence) exists [122]. Coexistence of fluid and crystal phases
is the equilibrium state. Indeed, it is found that the critical interaction strength
(i.e. the strength at which the second-order colloid-rich colloid-poor critical point
is located) decreases on increasing the range of interaction [122–135]. Only when the
interaction range becomes approximatively 20% of the colloid diameter [135],
the critical point emerges into the stable fluid phase and a proper equivalent
of the equilibrium liquid phase can be defined [136]. A pictorial representation
of the evolution of the phase diagram on increasing the range of interaction is
shown in figure 6 [122].

The addition of an attractive part to the HS potential brings in the possibility
that slowing down of the dynamics can be driven not only by the increase in packing
(the �-route), but also by an increased role of the attraction between different
particles (the T-route). The possibility of going continuously from the HS case to
the atomic case by progressively increasing the range of interaction, has motivated
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in the last decade a relevant number of studies, which have provided an extensive
and unifying picture of the slow dynamics in fluid systems, either colloidal or atomic
and molecular.

4.1. MCT predictions

The first theoretical analysis of the role of a short-ranged attractive potential in
the dynamics of colloidal suspension was presented in two seminal MCT studies
[137–139]. These studies showed that the arrest of density fluctuations can either
be dominated by repulsion of the particle by its cage-forming neighbors (as in HS
systems), but also by the formation of bonds (energetic cages) between particles. The
original calculations, based upon Baxter’s adhesive HS model [140] (with a suitable
cut-off at large wavevectors to account for the unphysical divergence due to excita-
tions with large wave vectors), were confirmed by more refined calculations based on
the square-well (SW) model [141]. The interaction SW potential V(r) for particles
with separation distance r consists of a hard-core repulsion for r < �, and it has the
negative value �u0 within the attraction shell � < r < � þ�. The SW kinetic MCT
phase diagram is reproduced in figure 7. The unexpected theoretical predictions
resulting from these analysis included the following.

(i) The possibility of melting a HS glass by progressively switching on an attrac-
tive interaction with a range smaller than about one-tenth of the particle
diameter. In the case where attraction is induced by depletion mechanisms,
theory predicts a melting of a glass by further addition of a third component.

(ii) The vitrification of the melted HS glass upon further increase in the attraction
strength.

(iii) The possibility of generating liquid states at packing fractions significantly
higher than the packing fraction at which the HS system arrests.

(iv) A non-monotonic behavior of the characteristic structural times as a function
of the attraction strength.

(v) The possibility of a sharp transition between the HS and the bonding
localization mechanisms, for very small ranges of attractions. The transition

Figure 6. Pictorial representation of the phase diagram of colloidal particles. The first panel
refers to hard spheres, where freezing occurs at �f ¼ 0:494, melting at �m ¼ 0:545. The
middle panel shows the appearance of the liquid–gas coexistence, and the associated critical
point, when an attractive potential is added to the hard-sphere repulsion. The last panel shows
the disappearance of the liquid phase, which becomes metastable when the range of
the interaction becomes sufficiently short ranged. Phases are labelled as follows: fluid (F),
crystal (C), gas (G) and liquid (L). Redrawn from [122], courtesy of the authors, with permis-
sion from Nature Publishing Group.
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is accompanied by a discontinuous changes of the elastic properties of the
glass.

(vi) A decay of the density correlation function utterly different from the one
characteristic of the HS system, in the region where the two different localiza-
tion mechanisms compete with comparable strength [142, 143].

(vii) The possibility of observing, for a specific choice of the interaction range, a fully
developed logarithmic decay of density fluctuations (a higher-order singularity
in the MCT classification scheme) [142, 143].

The basic physics behind these phenomena results from a competition between
two different mechanisms constraining the particle motion. To grasp the origin of
this competition, consider the HS system. When the volume occupied by the HS
becomes larger than 58% of the available volume, structural arrest is observed. In the
resulting glass, particles are hindered from moving too much by the presence of
neighboring ones, and are caged by their neighbors. Only an extremely rare collective
rearrangement, for example opening a channel out of the cage, makes particle diffu-
sion possible. In such packed conditions, particles can only rattle within their own
cage, getting no further than an average distance of around 0.1�. In the presence of
an additional short-range interparticle attractive interaction something different
takes place. At high temperature, the attraction does not play any role and, if the
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accessible from the equilibrium liquid. Redrawn from [141], with APS permission.
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volume fraction occupied by the particles is large enough, the material will behave
pretty much like a HS glass. But if the range of the attraction � is smaller than 0.1�,
then on cooling particles will begin to stick together, effectively shrinking the con-
fining cage size and producing a more inhomogeneous distribution of the empty
space. The structure factor of the system reflects these changes. The height of the
first peak decreases while the small wavevector value, a measure of isothermal com-
pressibility and hence of the density fluctuations, increases. These empty regions
form channels through which particles can diffuse and so the material starts to
melt. As a result, the glass turns into a liquid on cooling. If the temperature is
further lowered, interparticle bonding will become strong and longer lasting,
thereby restoring the usual progressive slowing down of dynamics, which results in
another structural arrest. The liquid turns back into a glass. In the temperature–
volume fraction phase diagram, this glass–liquid–glass sequence results in a
re-entrant (non-monotonic) glass transition line. It also means that some liquid
state can be stabilized by the short-range attraction, and so – compared to the
long-range attraction case – the range of stability of the liquid phase is increased.
Within the MCT, the glass–fluid–glass transition arises from the progressive changes
of the structure factor, the only input of the theory beside the (constant) number
density. The HS glass, stabilized by the large value of the first peak of the structure
factor, melts due to the weakening of the structure factor in the first peak region. The
new glass transition is instead driven by the increased large wavevector oscillation
(arising from the well defined bonding length and to the bonding localization). The
phenomena we just described are summarized in the schematic sketch of figure 8.

A significant experimental and numerical body of work has attempted to check
the theoretical predictions and/or reinterpret previous results in the frame set by
MCT calculations. The most thorough investigation is based on a dense systems
of colloidal particles, characterized by a hard core and strong attraction of a range
smaller than the core diameter by a factor of at least 10, realized experimentally,
when adding non-adsorbing polymers to a suspension of colloidal HS. In this case,
an entropic generalized force is produced, related to the different volume accessible
to the polymer when its center of mass is located between two colloidal particles,
compared to the condition when the polymer is not constrained by the colloid. The
Asakura–Oosawa model [145] is conventionally used to present the equilibrium
phase behavior of colloids containing non-adsorbing polymers. According to this
model, colloidal particles are represented by HS and polymers by ideal chains that
do not interact with each other. While the ideal polymer chains are allowed to
interpenetrate, they are excluded from the particle surface, i.e., the center of mass
of a polymer chain is located from the particle surface at a distance no closer than
the polymer radius of gyration. Due to the entropy effect, the excluded volume of the
ideal polymers results in an effective attraction between colloidal particles, which can
be represented by the Asakura–Oosawa potential VAO

ðrÞ. This potential is zero for
distances (between the colloidal particles’ centers) r > � þ �p, where � is the colloid
diameter and �p is twice the polymer gyration radius. For r < � þ �p
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where �p � ðp=6Þ�
3
pnp is an effective packing fraction of the depletants, with number

density np. The Asakura–Oosawa potential was originally obtained from geometric
considerations but it can also be derived from statistical mechanics [146] under the
assumption �p=�9 0:1547 [147]. According to this potential, the strength of attrac-
tion between colloidal particles is controlled by the polymer packing fraction and the
range of attraction by the polymer radius of gyration. Various statistical mechanical
theories for representing the thermodynamic properties of AO fluids have been
recently reviewed by Poon [148].

4.2. Experiments

In the work of Pham and colleagues [7, 149], the investigated sample was composed
of stabilized PMMA particles (HS radius R ¼ 202 nm, polydispersity 7%) dispersed
in cis-decalin, a well-characterized HS sample. A short-range attraction was induced
by adding a non-adsorbing polymer, polystyrene (radius of gyration 17:8 nm).

Figure 8. Schematic phase diagram of a colloid with hard-sphere interactions complemented
by a short-range attractive part. Two intersecting glass lines are observed, separating the
metastable supercooled liquid by the repulsive and attractive glasses. At high temperatures
the repulsive glass line approaches the hard-sphere one. The repulsive glass is dominated by
cage effects driven by the excluded volume. At lower temperatures the repulsive glass line
moves to higher volume fractions and gives rise to a pocket of liquid states. At low tempera-
tures there is an attractive glass line. The attractive glass is dominated by cage effects driven by
the short-range sticky interactions. The attractive glass line generates at high � a glass–glass
line along which the elastic properties of the glass change discontinuously. At much lower �, a
gel line is experimentally observed. The connection between the gel line and the attractive glass
line is object of ongoing research. Reproduced from [144], with permission from Nature
Publishing Group.
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The dimensionless range of the depletion attraction was estimated to be 0.09. The
experimental study of the particle dynamics reveals a re-entrant glass transition
(figure 9). With little attraction, the system at high enough volume fraction is
stuck in a repulsive glassy state, where the arrest is due to caging by neighboring
particles. The data clearly support the suggestion that attraction causes particles to
cluster, thus opening up holes in the cages and melting the glass. Increasing the
attraction further leads to different kind of arrest, where the strong attraction
between particles creates long-lived bonds and prevents structural rearrangement,
giving rise to an attraction-dominated glass. Detailed light scattering experiments,
used to probe the effect of attraction on both structure and dynamics, confirmed the
differences in the shape of the density autocorrelation functions and the different
localization lengths characteristic of the two glasses. Experiments [149] were also
able to detect a very slow, long-time dynamics in the re-entrant region where the two
glass transition lines are expected to meet, providing full support to the theoretical
predictions. Experiments also showed differences in the aging dynamics of the two
different glasses, a feature which cannot be easily studied theoretically, but which has
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Figure 9. Light scattering correlation functions for a hard-sphere colloid system in the presence
of depletion interactions. The figure shows the intermediate scattering function at kR ¼ 1:50
for a PMMA sample at constant � on increasing polymer concentration (from A to H).
The actual values of the concentration of depletant are reported in [149]). On increasing
depletant concentration, the correlation function becomes first faster and then slows down
again approaching again structural arrest, signaling a non-monotonic dependence of the
characteristic time. Note also that the height of the plateau (the non ergodicity parameters)
changes from values characteristic of HS ( fq � 0:6) to much larger values characteristic of
the attractive glass ( fq � 1). The time axis is scaled with kR and the relative polymer solution
viscosity �r. Redrawn from [149]. Courtesy of the authors, with APS permission.
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been confirmed numerically [150], and which calls attention to the role of activated
processes for the final decays of the dynamics in the attractive glasses and their aging
behavior, a topic which requires further studies.

The first hint of the presence of a higher-order singularity in an attractive
colloidal suspension was found in a copolymer–micellar system [151], where dynamic
percolation and structural arrest transitions coexist in different regions of the
phase diagram. The intermediate scattering function, reproduced in figure 10,
showed a non-ergodic transition along a temperature and concentration dependent
line. Analyses showed a logarithmic time dependence, attributed to a higher-order
glass transition singularity of type A3 as predicted by MCT, followed by a power
law. These effects were tentatively related to short-range intermicellar attraction.

One of the first evidence for the MCT scenario for short-range attractive poten-
tials was provided by a study of a binary mixture of polystyrene micronetwork
spheres, swollen in the good isorefractive solvent (2-ethyl-naphthalene), of radius
150 and 185 nm respectively. The polymer chains within the particles are highly
cross-linked so that particles can be reasonably well approximated as HS
[152–154]. The colloid packing fraction was kept constant to 0.67, where a repulsive
glass, consistent with the HS dynamics is found. In order to introduce short-ranged
attractive interactions, linear polystyrene chains were added as a depletant, resulting
in an interaction range �p=� � 0:054. The measured density autocorrelation func-
tions clearly showed a non-monotonic dependence on �p, showing non-ergodic states

Figure 10. Light scattering correlation functions from a triblock copolymer systems. Density
correlators for various concentrations of the dispersed phase and temperatures (listed in the
panels from top to bottom) in the glass region of a copolymer-micellar system. At low con-
centration c (top-left panel), no signatures of slow dynamics are observed. On increasing c, the
system develops a plateau, followed by a decay for longer times, which is well described by
the von Schweidler power-law in time (short-dashed lines). For shorter times the intermediate
scattering functions show, at lower temperatures, a logarithmic decay (long-dashed lines).
The latter has been interpreted as an effect of a nearby A3 higher-order singularity. Redrawn
from [151], with APS permission.
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both at low and at high �p. The shape of the correlation function, reproduced in
figure 11 for two different added-polymer values. It is worth noticing that an experi-
mental study of the same system had already evidenced the presence of a logarithmic
decay of the density autocorrelation functions, which had been interpreted in term
of higher-order MCT transition [155–158].

Several following studies have provided further confirmations of the lubrification
phenomenon induced by the short-range attraction, and the different dynamics of
repulsive and attractive glasses [8, 159–161]. Particularly interesting is the case of
a copolymer–micellar system with a short-range interparticle attractive interaction,
studied by Chen and coworkers [8, 161]. Within a certain range of micellar volume
fractions, a sharp transition between two types of glass has been observed by varying
the temperature. Furthermore, an end point of this transition line, beyond which the
two glasses become identical in their local structure and their long-time dynamics,
has been detected. However, differently from the theoretical case which predicts that
the glass–glass transition is essentially isostructural, in the experiments the different
glass dynamics is associated to an abrupt change of the structure factor.

Rheology and dynamics measurements of a micellar solutions of polystyrene-
poly(acrylic acid) block copolymers at large packing fractions provide another
important example of a reentrant transition in the dynamics, and of the presence
of higher-order MCT singularities [4]. In this system, attraction is increased progres-
sively by controlling the percentage of stickers in the micelle corona. On increasing
attraction, the elastic modulus G0 first decreases and then increases again, while the

Figure 11. Re-entrant behavior detected with scattering from micronetwork spheres in the
presence of a depletant agent. Comparison of the density autocorrelation functions of a micro-
network spherical colloidal suspension before (thick solid lines) and after (thin solid lines)
the addition of linear polymer chains with volume fraction �p ¼ 0:26 (size ratio of polymer to
colloid is 0.054). The colloid volume fraction � of each set increases from left to right as
indicated in the figure. The dynamics is probed at a scattering vector corresponding to the
peak of the structure factor of the pure colloid suspension at its glass transition volume
fraction of 0.595. The attraction causes the system to make a transition from glass to liquid
state. Redrawn from [152], courtesy of the authors, with APS permission.
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system progresses from the repulsive to the attractive glass. In the region where
G0 has a minimum, the particle dynamics shows a remarkable extended logarithmic
decay, covering more than four orders of magnitude in time.

4.3. Numerical studies

A strong confirmation of the MCT theoretical predictions has been provided
by accurate numerical studies of the slow dynamics in models of short-range
attractive colloids [161–165]. The first results, provided by Puertas and coworkers
[162, 163], focused on a polydisperse system of particles interacting via the
Asakura–Oosawa potential, complemented by repulsive interaction (extending up
to 2�) to prevent the colloid-rich colloid-poor phase separation. Numerical calcula-
tions provided a clear evidence of the two different localization mechanisms, in close
agreement with experimental results. Evidence of the anomalous dynamics was also
provided by a study of the isodiffusivity curves in a one-component SW potential in
the ð�,T Þ plane [164]. Irrespective of the sharp intervening of crystallization, which
effectively prevented the system to approach very closely the glass transition, it was
possible to have a clear picture of the reentrant shape of the glass curve
in the temperature-density plane. This was achieved by plotting isodiffusivity curves
and examining their trends when approaching the limit D! 0. The shape of the
isodiffusivity curves indeed provides indication of the shape of the ideal glass
transition line, which can be considered as the zero iso-diffusivity locus. This
study provided evidence of a re-entrant shape of the diffusivity line, in agreement
with the MCT prediction. The study of the slow dynamics in a wider range of
T and � values required the extension to a binary mixture SW model, to prevent
crystallization [165]. The choice of a two-component system makes it possible to
extend the range of isodiffusivity curves to almost three decades, as well as the
range of studied packing fractions from 0.57 for one-component to 0.62 for binary
systems. The shape of the isodiffusivity lines in the ð�,T Þ is shown in figure 12. The
resulting binary model may be regarded as canonical for interpreting the dynamical
arrest. The accurate numerical study confirmed the theoretical predictions for
re-entrance, logarithmic singularity and provided a direct evidence of the existence
of two distinct glasses. The simulation clearly shows that when repulsive interac-
tions dominate the classical arrest scenario is observed, in which plateaux develop
as arrest is approached. These plateaux indicate the development of an observable
characteristic cage time, and are quite typical of MCT predictions for HS systems.
In the re-entrant region, the mean square displacement and the density correlators
were found to exhibit an unconventional decay, which was interpreted as evidence
of a nearby higher-order MCT singularity, the pattern of evolutions being essen-
tially in agreement with the predictions of the theory. The numerical study also
provided evidence of an abrupt change of the non-ergodicity factors along the
arrest curve, a strong evidence of a transition from a repulsive to an attractive
glass, again in line with theoretical predictions. An important point raised by the
numerical study is the strong systematic shifts of all the MCT arrest curves in
relation to the simulated ones, a phenomenon long known from the example
of the HS. While at high T (the HS case) the shift between theory and simulation
is of the order of 15% in �, it becomes significantly larger (up to 300% in T )
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for the attractive glass case [143, 166]. However, qualitatively, the theoretical
predictions of the reentrant regime, with an associated crossover to
logarithmic singularity, and glass-to-glass transition are confirmed by the detailed
molecular dynamics calculations.

4.4. Higher-order singularities

The significant agreement between experiments, simulations and theoretical MCT
predictions has prompted researchers to test, via specific accurate simulations, the
most striking and unusual predictions of the theory. Recently, simulations have been
designed to study numerically both the glass–glass transition and the dynamics close
to an A4 singularity [142, 143, 167]. Both these numerical studies have been
performed using the SW binary mixture model discussed above. An important
prediction of the theory regards indeed the presence of a kinetic (as opposed to
thermodynamic) glass–glass transition, which should take place in the glass phase
on crossing a critical temperature. Heating a short-ranged attractive glass should
produce a sudden variation of all dynamical features, without significant structural
changes. For example, at the transition temperature, the value of the long-time
limit of the density–density correlation function, the non-ergodicity factor fk,
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Figure 12. Simulated iso-diffusivity lines for the short-range square well system, for the
determination of the glass line(s). The curves of iso-normalized-diffusivity D=D0 (with
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) in the volume fraction vs. temperature plane, obtained by event-driven molec-
ular dynamics, provide an indication of the shape and location of the line of structural arrest.
The vertical arrow provides the infinite temperature limit for the lowest iso-D=D0 curve,
i.e., D=D0 ¼ 5
 10�6, corresponding to the hard-sphere case. Along each curve, the corre-
sponding most reentrant point is represented with a filled squared symbol. The inset shows
the MCT prediction for the same square well system, calculated using as input of the MCT
the PY structure factor. Redrawn from [165], with APS permission.
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should jump from the value characteristic of the short-ranged attractive glass to the
significantly smaller value characteristic of the HS glass. The numerical work
suggests that the ideal attractive glass line in short-ranged attractive colloids has
to be considered, in full analogy with what has been found in the study of
glass-forming molecular liquids [26], as a crossover line between a region where
ideal-MCT predictions are extremely good (in agreement with the previous calcula-
tion in the fluid phase) and an activated-dynamics region, where ideal-MCT predic-
tions apply in a limited time window. The anomalous dynamics, which stems from
the presence of a higher-order singularity in the MCT equations [137, 138, 166], still
affects the dynamical processes in the fluid and in the glass, even if activated
processes pre-empt the possibility of fully observing the glass–glass transition
phenomenon, at least in the SW case [168]. It is important to note that systems in
which the short-ranged inter-particle potential has a shape enhancing the bond
lifetime, could produce dynamics which are less affected by hopping processes,
favoring the observation of the glass–glass phenomenon.

Simulations have also been performed to investigate the dynamics close to the
A4 point [166]. In the SW case, the systems are characterized by three control par-
ameters, the packing fraction �, the ratio of the thermal energy to the typical well
depth u0 and the range � of the attractive potential. Within MCT, the phase
diagram of this three-dimensional control parameter space is organized around
a critical point ðT4,�4,�4Þ, referred to as a type A4 higher-order glass transition
singularity in the MCT classification. A4 is the end point of a line of higher-order
singularities (of type A3). From a physical point of view, A4 is characterized for being
the simplest higher-order singularity on a type B transition line accessible from the
liquid phase. For � > �4 no singular points are predicted by the theory, while
for � < �4 the A3 singularity points are buried in the glass phase, and their presence
can be observed only indirectly. Near the A4 singularity, MCT predicts a structural
relaxation dynamics, which is utterly different from that known for con-
ventional glass-forming liquids. It is ruled by logarithmic variations of correlators
as a function of time and sub-diffusive increase of the mean squared displacement.
Theory makes precise predictions for the time interval where this unusual dynamics
is expected, as well as for its variation with changes of the T, � and � control
parameters. The simulation data – with parameters explicitly chosen close to the
A4 point – exhibit the mentioned laws over time intervals up to four orders of
magnitude, as shown in figure 13. More importantly, the decay patterns vary with
changes of the control parameters and wavevectors as expected [142, 169], properly
testing the theoretical predictions.

4.5. Mechanical properties

The dynamic differences between the attractive and repulsive glasses discussed above
generate differences in the mechanical properties of the two glasses. In general terms,
glasses dominated by attraction have a stronger rigidity under shear than those
produced simply by packing forces. This phenomenon originates from the changes
in the non-ergodicity factor associated to the glass–glass transition, which lead
the system to soften with respect to shear on approaching the repulsive glass. New
possibilities are expected to arise from further studies of the mechanical properties
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of short-range colloidal systems. The short-range bonding characteristic of the low
temperature (attractive) glass produces a much stiffer material than the one formed
at high temperature (repulsive glass). By tuning the volume fraction and the attrac-
tion range, it should also be possible to design a material where the transition
between the attractive and repulsive glass takes place without any intermediate liquid
phase, i.e. a glass-to-glass transition. In these specific conditions, a small change in
the external parameters would produce a remarkable change in the elastic properties
of the material with no significant structural change. Theoretically, more than one
order of magnitude change in the stiffness is expected. For material scientists, design
production and technological exploitation of such a material is one of the most
fascinating challenges opened by the study of the dynamic properties of short-
range attractive colloids. In this respect, MCT calculations, whose predictive
power has been significantly strengthened by the close agreement between predic-
tions and experimental observation, might become a valuable instrument for guiding
the design of novel soft materials with specific properties.
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Figure 13. Decay of the density fluctuations close to a higher-order singularity. Numerical
study of the density fluctuation correlators in a 50–50 binary mixture of particles of size ratio
�BB=�AA ¼ 1:2 at T=u0 ¼ 0:4 and � ¼ 0:6075 for two different values of the well width, close
to the estimated position of the A4 singularity of the SW (T=u0 ¼ 0:416; �ij ¼ 0:043�ij;
�¼ 0.6075). Six different wave vectors (from top to bottom k�BB ¼ 6.7, 11.7, 16.8, 23.5,
33.5 and 50.3) are shown. The long dashed lines are fits according to the MCT predictions
for systems close to the A4 singularity. The vertical dashed lines indicate the fitting interval.
The top panel refer to the states S1 (SW width 0.031 of the particles diameter) and the bottom
panel to the state S2 (width 0.043). Note that on approaching the A4 singularity, the range
of validity of the asymptotic MCT predictions increases by one order of magnitude in time.
Note also the large window in which an essentially logarithmic decay in time is observed for
a selected value of k. Redrawn from [166] with APS permission.

Glassy colloidal systems 501



The theoretical predictions of the viscoelastic behavior of the fluid phase, close to
dynamic arrest, is receiving significant attention in the last years [53, 171–174]. The
richness of the dynamics in the short-range attractive colloids can provide a valuable
test case for comparing theoretical predictions and numerical data. Viscoelastic
properties of the Asakura–Oosawa and SW models have been recently studied
numerically, computing the shear viscosity � as the integral of the correlation
function of the non-diagonal terms of the microscopic stress tensor,

��� ¼
XN
i¼1

mvi�vi� �
XN
i<j

rij�rij�
rij

V 0ðrijÞ

where vi� is the �-th component of the velocity of particle i, and V 0 is the derivative
of the total potential. More precisely

� �
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h���ðtÞ���ð0Þi, ð2Þ

where V is the volume of the simulation box. It has been found that � diverges
following a power law as the transition points (attractive and repulsive) are
approached, with the same exponent as the time scale of the density fluctuations,
but different from that of the self diffusion [175]. On approaching the glass transi-
tion, the slow-decaying part of the C��ðtÞ can be time rescaled into a master function
which has the same shape as the square of the density–density correlation function at
a specific wavevector k. For the case of the repulsive glass the inverse k value
corresponds to the nearest neighbor distance, while in the case of the attractive
glass it corresponds to distances comparable to the (short) range of attraction.
This interesting feature can be related, within MCT, to the fact that C��ðtÞ can be
expressed as [13, 176]
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A particularly interesting calculation of the elastic shear modulus G0 was
performed in the region where the attractive glass line extends into the glass regions,
separating two different types of glass, the repulsive and the attractive one, and
ending in the higher-order singularity A3 [170]. Figure 14 shows the discontinuity
in G0 when crossing the glass line, a signal of the difference between the two types of
glass. The discontinuity tends to disappear on approaching the singularity A3.

4.6. Remarks on attractive colloids

Dynamical heterogeneities in a colloidal fluid close to the attractive glass line have
been studied by means of computer simulations [177, 178]. A clear distinction
between some fast particles and the rest, the slow ones, was observed, yielding a
picture of the attractive glass composed of two populations with different mobilities.
Analyzing the statics and dynamics of both sets of particles, it was shown that
the slow ones form a network of stuck particles, whereas the fast ones are able
to move over long distances. No string-like motion was observed for the fast
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particles, but they occupy preferential sites in the surface of the structure formed
by the slow ones.

To conclude this section, we note the interesting possibility that the attractive
glass line extends to low packing fraction acting as a gel line, an idea which would
provide a unifying interpretation of the gel and glass arrested states of matter [139].
This idea has indeed been used to interpret experimental data on gelation in
colloid-polymer mixtures [179, 180], postulating that the attractive glass line
pre-empts the colloid-poor–colloid-rich phase separation process, which is expected
to take place at low packing fractions. Recent simulations have addressed specifically
this issue, for the binary SW case, attempting to locate the actual dynamic arrest
lines in the full thermodynamic phase diagram of the system. The results of the
numerical calculations show unambiguously that in the SW case, arrests at low
packing fraction results from an interrupted colloid-poor–colloid-rich phase separa-
tion, caused by the glass transition which takes place in the dense regions created
during the spinodal decomposition kinetics after a deep quench [181–185]. The
fundamental reasons for gel formation in colloidal systems [186] and the possible
routes to gelation are one of the topics which clearly requires additional work.

As a final remark, on theoretical and simulation studies, bases on effective one-
component potentials, we point out that, while, in principle, the structural properties
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Figure 14. Behavior of the elastic shear modulus across the glass–glass transition region. Mode
coupling predictions for the T-dependence of the elastic shear modulus G0 for a short-range
SW system with range of interaction equal to 0.031 of the hard core �. �¼ 0.5397 (full circles)
and �¼ 0.5441 (empty circles). The lines are a guide to the eye. The first � value corresponding
to crossing the glass–glass coexistence line. At this � value a discontinuous change in G0 is
observed. The second corresponds to crossing the glass–glass line close to the endpoint A3.
Here the width of the jump in G0 approaches zero. Note also that G0 in the attractive glass can
be almost two orders of magnitude larger than the repulsive one. The inset shows a magnifica-
tion of the transition region. Redrawn from [170] with APS permission.
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of the colloidal particles can be reproduced by a proper effective one-component
potential [147], there is no guarantee that dynamic properties in the original and in
the effective one-component system are similar [187]. In the case where attraction is
induced via addition of a small second component, the relative short-time mobility
of the constituent components may play a crucial role in determining the occurrence
of vitrification of a fluid or melting of a glass. Recent numerical results [188] suggest
that a reentrant glass scenario requires not only a large size asymmetry but also that
the short-time mobility of the added component be much higher than that of the
glass-forming species. It has been found that if the short-time mobilities of the two
species are comparable, the depletion potential still exactly determines the partial
static structure of the larger component, but not its dynamical behavior. More work
in this direction is expected in the next years.

5. Soft colloids

5.1. Charged colloids and the Wigner glass

Charge and sterically stabilized colloidal particles have been extensively studied as
ideal model systems, since they are much more suitable than molecular systems to
investigate the static and dynamic properties of strongly interacting particles, with
particular emphasis on phenomena like melting, crystallization and glass transition.
While uncharged colloids are mostly interpreted in terms of HS systems, charged
ones are mostly modeled using screened Coulomb interactions. In dilute systems the
potential is essentially soft, while in dense systems both the short-range hard core
and the long-range repulsion play an important role.

In the simpler case, the system is composed of spherical charged mesoscopic
particles, the macroions, immersed in a solvent. Both counterions and co-ions
present in the solvent screen the colloid–colloid Coulomb interactions. The general
electrostatic problem can be treated at various level of approximations, using the
Poisson–Boltzmann equation or the Debye–Hückel approach, where ions are
considered point-like and the equations are linearized. The effective inter-colloid
interactions can then be modeled with a screened Coulomb potential which can be
written as a hard core interaction complemented by a Yukawa repulsive potential.
The Yukawa potential is defined as

VYðrÞ ¼ A
e�r=

r=
: ð3Þ

where A is a strength parameter and  a measure of the Debye screening length,
which is determined by the concentration of counterions and co-ions, the latter when
electrolytes are present. We note that, for the Yukawa potential, it is possible to
derive an analytic solution of the Ornstein–Zernike equation for the direct corre-
lation function in the mean spherical approximation [189]. Within the linearized
Poisson–Boltzmann equation

A �
Z2e2

4p��0ð1þ ��=2Þ
e�� ð4Þ
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and

�2 � 1=2 ¼
1

��0kBT
Ze2nc þ

X
i

z2i ni

 !
: ð5Þ

Here Z is the effective charge of the macroions, e is the electron charge, �0 is the
vacuum dielectric constant, � the solvent relative dielectric constant, nc the colloid
number density and zi and ni the valence and the number density of the i-th co-ion.

It is important to stress that the assumption of linear response is strictly valid
only for dilute suspensions of weakly charged macroions. The range of validity of
the linear response approximation on increasing colloid concentration or on high
Coulomb coupling, especially in the presence of multivalent counterions, is still
an open question [190]. Ab initio calculations suggest [191] that the general form
of the screened Coulomb pair potential at appreciable concentrations remains valid,
although with renormalized parameters. We also note that within the electrostatic
calculation, the possibility of a state dependence of the effective colloid charge,
driven by specific interactions with counterions and salts is neglected. It also appears
that the hypothesis of pair-wise additive interaction starts to break down when the
colloid concentration is such that more than two particles are found simultaneously
within a distance smaller than the screening length [192, 193]. Finally, we note that
the definition of ion number density should be based on the volume accessible to the
ions [194].

Charged colloids crystals [195], when particles are interacting essentially with
repulsive Coulomb interactions, could be considered the classical analogue of
the Wigner crystals predicted for electrons [196, 197]. Due to the long-range of the
repulsive interactions, the inter-particle distances in the crystal are much larger than
the size of the particles, leading to ordered solid phases of low density compared
to normal crystals. For these reasons, the phase diagram of the Yukawa repulsive
potential (equation 3) has been extensively studied through experiments [198],
theory [199–205] and numerical simulation [206–208] over a wide density range.

The phase diagram of the Yukawa potential shows a liquid phase at low density,
followed by a bcc crystal phase and a fcc crystal. Since the potential is a function of
r=, the phase diagram for arbitrary  values can be scaled by using the dimensionless
quantity

� ¼ n�1=3�1 ð6Þ

with n the number density. The variable � is a measure of the average interparticle
distance in units of . Possible choices of dimensionless temperature T � include
T � � kBT=A or

T � �
kBT

VYð�Þ
¼

kBT�

Ae��
ð7Þ

where the thermal energy kBT is scaled by the potential energy evaluated at �.
Figure 15 reports the phase diagram of the repulsive Yukawa potential based on
extensive numerical simulations. In [206, 207], the freezing transitions between liquid
phase and bcc and liquid and fcc crystals were calculated from the simulations by
using the Lindemann and Hansen-Verlet criteria for melting. The numerical results
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showed agreement with the experiments, and pointed in favor of the accuracy of the
Lindemann criterion with a mean squared displacement equal to 0.19 of the average
particles distance, for small inter-particle distances. Later on, Meijer and Frenkel
[208] performed a more accurate simulation of the Yukawa system and computed the
free energies of the liquid and the solid phases, obtaining a Lindemann ratio
of 0.19 for the bcc-liquid transition, and of 0.16 for the fcc-liquid melting.
As shown in Meijer and Frankel [208], the coexistence region between fluid and
crystal is extremely small.

Lindsay and coworkers [195] used monodisperse colloidal crystals and measured
the shear moduli which are related to the energy density and therefore to the inter-
particle potential. The crystals are characterized by Bragg scattering and shear rigid-
ity, evidenced by a finite shear modulus and interpreted as the analog of the classical
Wigner crystals, as mentioned above. Analogous measurements in binary systems of
similar colloids gave instead rise to Wigner glasses, showing rigidity but no Bragg
scattering. Sirota and coworkers [198] later performed a synchrotron X-ray scatter-
ing study of the complete phase diagram of polystyrene spheres (polyballs) and
found a qualitative agreement with the theoretical predictions on charged colloidal
systems, at least for small volume fractions (below 20%) of the colloid. Criteria for
melting and freezing also seemed to be verified. A glass phase was obtained at a
volume fraction of 20%, somewhat unexpected in a one-component system.
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Figure 15. Phase diagram of the Yukawa potential. The average particle distance � and the
scaled temperature T * are defined in equations 6 and 7 respectively. The circles indicate the
coexistence points calculated numerically. The solid line is the estimate for the melting line.
The pluses refer to the solid states with Lindemann–criterion ratio equal ¼ 0.19. The dashed
lines indicate the phase diagram calculated in [206, 207]. The squares are the glass transition
points calculated with ideal MCT [209] using as input the structure factor calculated from
molecular dynamics trajectories. Redrawn from [208]. Courtesy of the authors, with American
Institute of Physics publications (AIP) permission.
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Turning more specifically to the liquid–glass transition, we recall that, once the
structure factor is known, the MCT equations can be solved numerically for the
Yukawa potential, and from the calculation of the asymptotic value of the density
correlators it is possible to calculate the line of liquid to glass transition. This study
has been performed by Lai et al. in particular for charged colloidal dispersions,
using a HS potential followed by a Yukawa repulsive interaction [210]. A subsequent
careful analysis [211] of the approximations has been used to introduce a rescaling
of the static structure factor, necessary in order to avoid unphysical values of the
system parameters. The rescaling has been employed to calculate the ergodic to
non-ergodic transition in the same system for very high density colloids in a more
reliable way. More recently a detailed analysis of the glass transition in pure
Yukawa systems (i.e. point-like macroions without hard core short-range repulsion)
has been performed by numerical simulation and through the solution of MCT
equations [209]. The exact structure factor, obtained numerically, was used in
order to calculate the liquid–glass transition line that is reproduced in figure 15.
The shape of the theoretical glass line in the temperature–density plane has
been found to be very similar to the shape of the isodiffusivity lines. As it is often
the case, the glass line follows the same general pattern and shows a behavior very
close to the one of the melting line. It is worth observing that, in simulations of
the one-component Yukawa system, crystallization always prevents the possibility
of equilibrating metastable states, in which a clear caging phenomenon is observed
in the dynamic properties. While in the HS case the introduction of a small
polydispersity appears to significantly slow down crystallization, thus offering
the possibility of studying on the computer time scale slow dynamics processes,
in the Yukawa case comparable polydispersity in  or A is not sufficient to prevent
crystallization.

Further experimental evidence for Wigner glasses has been provided by Härtl
et al. [212] and Beck et al. [213]. Static and dynamic light scattering in concentrated
suspensions of spherical charged polymer colloids showed an amorphous phase for
volume fractions larger than 0.22. Static scattering experiments furnished structure
factors very similar to the HS systems (with the appropriate re-definition of the
length scale). The dynamic scattering gave correlation functions that showed the
typical plateau characteristic of a glass phase. The experimental results were
compared with the general predictions of MCT. In particular dynamic correlators
have been successfully interpreted in terms of the MCT �-correlator and the von
Schweidler power law.

An example of Wigner glass could be provided by the arrested states observed in
Laponite colloidal suspensions in the absence of added salt [214], although alterna-
tive interpretations have been given, ranging from frustrated nematic transition,
micro-segregation and gelation [215]. Laponite is a synthetic clay made of disc-like
colloidal particles with a diameter of �30 nm, a height of 1 nm, a charge of the order
of a few hundreds and forms a suspension which is nearly monodisperse. Since the
colloidal particles are charged, there is a long-ranged repulsive screened Coulomb
potential of the Yukawa form to which a van der Waals short-ranged attraction,
or an electric quadrupolar term, is to be added.

The hypothesis of a Wigner glass has been formulated in a series of papers where
the authors [214, 216–218] have performed a study of a charged colloidal suspension,
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focussing in particular on non-ergodic states of the system which is not in an equilib-
rium state. They have made a qualitative analysis of the suspension, making a
distinction between gel and glass formation, related to the attractive and repulsive
components of the interparticle potential. In particular, aging of a glass is related
to the presence of cages of particles at high concentration due mainly to repulsive
interactions, while gelation corresponds to cluster formation due to attraction.
The study is made in terms of the ionic strength of the solution I, which is related
to the Debye screening length  through I ¼ ð2e2=�kBTÞ

2. The system reveals a
different behavior below the value 10�4 and above 10�3. Low values of I < 10�4

are dominated by repulsive interactions of the Coulomb type and are interpreted as
repulsive glassy states. At higher values I > 10�3 gel states are found, connected to
the attractive part of the potential. In the intermediate region the competing attrac-
tive and repulsive parts of the potential are effective and might give rise to an
attractive glass. Finally at high values of I > 10�2 phase separation occurs.
The simultaneous existence in the state diagram of glassy and gel states opens the
possibility of a liquid-to-solid transition when the system is ergodic.

Recently Ruzicka et al. [219] have performed an extended dynamic light scatter-
ing experiment on Laponite and have detected aging and structural arrest for both
low and high concentrations, the dividing value being of the order 0.015–0.018 in
weight concentration. Originally this value was supposed to be separating a stable
liquid phase from a gelling system. Measurements performed over long periods
of time have instead shown two different routes to gelation, related to the shape
of the interatomic potential which contains attractive and repulsive parts. The situa-
tion is therefore reminiscent of the situation of competing interactions which
gives rise to Wigner-type glasses [209]. Therefore, the low concentration phase
is interpreted in terms of a cluster phase which produces a sort of fragile gel.
The long times needed are due to the phase of formation of the clusters. The high
concentration Laponite colloid is again interpreted as a Wigner glass, composed now
of Laponite platelets, due to the fact that the effective packing fraction of
the suspension is of the order of 0.43 because of the Debye-Hückel sphere
associated with each platelet. As a concluding remark we may suggest that the
clay platelets of Laponite seem to possess many of the features that are expected
from a Wigner glass.

A different interpretation was proposed by Nicolai and coworkers [215, 220, 221]
based on a picture in which aggregation between the platelets is induced by
salt addition, which reduces electrostatic repulsion and produces fractal
aggregates that will eventually form a gel. It was suggested that attractive interaction
leads to aggregation of the Laponite particles and the formation of a house of
cards structure. To support the proposed picture, it was recently shown that
the presence of positive charges on the rim of the Laponite disks is necessary to
induce aggregation and gelation [215]. These charges were neutralized by added
pyrophosphate and aggregation and gelation was slowed down, even though the
resulting ionic strength was increased. A revised state diagram was recently proposed
in which a distinction between homogeneous and inhomogeneous dispersions was
made and where it was argued that the sol–gel distinction is largely arbitrary.
Simulations of simple models of Laponite [222–224] may help resolving this
controversy.
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5.2. Competing interactions: cluster phases

In several colloidal systems, as in the case of Laponite discussed above, the excluded
volume and the screened electrostatic interactions are complemented by an attractive
component, which can have quite different physical origins. The classical example
goes back to the celebrated Derjaguin, Landau, Verwey and Overbeek (DLVO) [225]
form of the interparticle potential, which has contributions from the hard core
of the particles, the screened Coulomb electrostatic interaction and the dipolar
van der Waals attraction. The final form of the potential depends parametrically
on various physical quantities relating to the state of the colloidal dispersion, e.g. the
charge and concentration of the counterions, the co-ions and the temperature. Quite
often, the range of the attractive interaction is significantly smaller than the range
of the repulsive electrostatic interaction. In these cases, the competition between
the two length scales gives rise to a wide variety of phenomena. We consider in
more detail cluster phases in equilibrium, as a possible path to spontaneous pattern
formation in kinetically arrested states.

Equilibrium cluster formation was observed by Segrè and coworkers [226] in a
colloidal sample of PMMA particles (mean radius a ¼ 212 nm) where the addition of
polystyrene induces an attractive depletion interaction. The main aim of the experi-
ment, static and dynamic light scattering, was to investigate the similarities between
the glass transition and the arrest at low packing fraction. Static measurements,
reproduced in figure 16, showed the presence of a low-k peak in the structure factor

0 0.2 0.4 0.6 0.8 1 1.2 

ka

0

5

10

15

20

Sk

f = 6.0 %

f = 7.9 %

f = 10.2 %

f = 11.0 %

Figure 16. Static light scattering in a cluster phase colloidal system. The figure shows the
static structure factor Sk at four different PMMA volume fractions, listed in the figure.
All samples are fluid-like, except the one at � ¼ 11:0% which behaves as an elastic solid.
Note that the peak position is smaller than the position of the nearest neighbor peak, located
around ka ¼ p. Redrawn from [226], courtesy of the authors, with APS permission.
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Sk which evolves towards small k and reaches a situation of kinetic arrest at
kca � 0:5, where it remains essentially unchanged. The peak is attributed to the
formation of fractal clusters of fractal dimension df. The value of k corresponding
to the cluster peak turns out to give rise to a characteristic length  of the order of
 � p=k � 6a, which gives an estimate of the cluster size and their average spacing.
The cluster volume fraction is then �c ¼ �ð=aÞ

3�df and gelation occurs when �c � 1
which gives  � a��1=ð3�dfÞ and a momentum transfer ka � pa= ¼ p��1=ð3�dfÞ, which
in the measured case, � ¼ 0:11 with df ¼ 1:8, predicts the correct value ka � 0:5 for
the structure factor peak. The proposed physical interpretation of the phenomenon
is that dynamical arrest occurs when clusters touch because of the high volume
fraction, leading to a non-ergodicity transition. Turning to dynamical behavior,
the intermediate scattering function, probed by light scattering, exhibits the typical
two-step decay characteristic of the glass transition. This effect is somewhat hard to
observe due to the fact that clusters are rather fragile, and their bonds can be easily
broken under the effect of gravity. Density matching of the dispersed phase and the
solvent was necessary in order to observe ergodicity breaking. The previous conclu-
sions have been tested in an imaging experiment, performed by the same group [227],
using confocal microscopy in the same systems. The investigation focussed in the
study of the bond formation among the PMMA particles which leads to dynamic
arrest. The sample preparation implies the existence of a charge on the particles
which results in a long-range repulsion, an important ingredient in the explanation
of the kinetics of formation of cluster phases.

The possibility of formation in equilibrium of large clusters of colloidal particles
was first proposed by Grönewold and Kegel [228]. They suggested a mechanism
of aggregation, based on the effect of a short-range attraction combined with the
stabilizing effect of small charges on the particles, which provided the long-range
repulsive interaction, preventing eventually large-scale phase separation. The same
authors have also made an interesting parallel with the effects in nuclear matter due
to the simultaneous presence of short-ranged attractive and long-ranged repulsive
forces [229]. A partial test of these predictions was made in an experiment
of Sedgwick and coworkers [230] on a colloidal system (PMMA) with depletion
interactions and residual charges on the particles. A cluster phase in coexistence
with monomers, followed by dynamic arrest was observed, some aspects of which
were in agreement with the model of Grönewold and Kegel. The small size of
the clusters, together with the lack of a dynamic equilibrium between clusters and
monomers, led the authors to conclude that the mechanism of aggregation was
still unclear.

Equilibrium cluster phases have also been studied in numerical simulations [209].
The principal aim was to investigate the interplay between gel formation and glass
formation as manifestations of a more general kinetic arrest phenomenon. The used
interparticle potential is composed by a long-range Yukawa repulsive interaction
(equation 3) and by a short-range potential VSR of the form proposed by
Vliegenthart and coworkers [231], which is a generalization of the Lennard-Jones
potential, and that mimics a hard core followed by an attractive well

VSR ¼ 4�
�

r

� �2�
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with � ¼ 100. The numerical study confirmed the possibility of generating both
equilibrium cluster phases and kinetically arrested phases, and identified the struc-
tural signature in the low k pre-peak of the structure factor. The final state results
from a subtle competition between aggregation (triggered by T ) and repulsion.
In [209] dynamic arrest was interpreted as a Wigner glass transition of the clusters
fluid. Indeed, under the hypothesis of spherical homogeneous clusters of radius R,
the cluster–cluster interaction is found to be of Yukawa form, with the same
screening length  as in the monomer–monomer interaction, but with renormalized
amplitude given by the expression

AðRÞ ¼ A 2p3ne�R= 1þ
R


þ

R


� 1

� �
e2R=

	 
� �2

where n is an effective monomer number density in the cluster. Following a T-jump,
the aggregation process can be thus visualized as a flow on the Yukawa phase
diagram, due to the simultaneous change of the cluster number density and T *
(equation 7). If the melting or the glass lines of the Yukawa model are crossed during
the cluster growth, the system becomes solid, i.e. a cluster crystal or, due to
polydispersity of the aggregates, a cluster glass. Similar models have been studied
by Coniglio and coworkers [232], using an interaction which mimics the DLVO
potential, with a finite value at contact.

Equilibrium cluster formation has been experimentally observed also in concen-
trated protein solutions and colloids by Stradner et al. [233]. The experiments have
been performed on lysozyme by small-angle X-ray and neutron scattering, with in
mind the typical application of protein crystallization, i.e. the ability to form high
quality crystal. They also used spherical colloidal particles interacting with a short-
range attraction, induced by depletion effects, and with a long-range repulsion, due
to a small residual charge on the colloids. In these cases too two peaks are observed
in the structure factor as a function of momentum transfer: the one at low values is
related to cluster–cluster correlations and is concentration independent but tempera-
ture dependent, the second one is due to monomer–monomer correlations within the
dense clusters and is both concentration and temperature independent (figure 17).
Therefore, the data are interpreted in terms of self-assembling of particles into small
clusters due to the short-range attraction, and limitation of the growth due to
long-range repulsion.

Baglioni et al. [234] have performed a detailed experimental study of concen-
trated protein solutions (cytochrome C protein) using small-angle neutron scattering
(SANS) and viscosity measurements. They observed intensity spectra that can be
described by screened Coulomb Yukawa-type interactions first, but require
attractive interactions upon increase of the pH of the dispersion. When salt is
added to the protein solution, two peaks are detected in the SANS spectra and
interpreted as due both to the usual protein–protein interaction and to cluster–
cluster interaction at lower values of the wave vector kc. The value of kc is related
to the average cluster size Rmax by the simple relation kc ¼ �p=Rmax, where � is a
constant of the order unity. The average cluster size is in turn simply related to the
volume fraction � by the power law giving fractal dimension of the aggregates

Rmax ¼ R0 �
1=ðdf�3Þ, with R0 ¼ 16:3 Å the protein radius. A plot of ln½p=ðkc R0Þ� as
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a function of lnð1=�Þ nicely confirms this simple estimate of the cluster size. These
observations are accompanied by a strong increase in the relative viscosity, and are
interpreted as due to metastable arrested states and a signature of the gelation
process along the lines outlined above.

MCT has been recently [235] applied to a model system in which particles inter-
act via short-range attractive and long-range repulsive Yukawa potentials, using the
structure factor calculated from the mean-spherical approximation for the equilib-
rium properties. The glass–glass reentrance phenomenon in the attractive colloidal
case is observed in the presence of the long-range repulsive barrier, which results in a
situation similar to the attractive and repulsive glasses reported above. Competition
between the short-range attraction and the long-range repulsion produces character-
istic behavior of the structure factor and the non-ergodicity factor. A careful analysis
gives rise to new regimes which appear in the attractive glass, and are tentatively
associated with a cluster liquid (called static cluster glass) and heterogeneous
structures (dynamic cluster glass). Crossover points separating the different glass
states are also identified along the liquid–glass transition line between the liquid
and the attractive glass.

The shape of the cluster as a function of the cluster size has been studied by
Mossa and coworkers for systems of particles with competing interactions [236].
In particular the ratio of the screening length  to the cluster size Rmax appears to
play an important role. As long as  exceeds Rmax the clusters retain the spherical
shape, but become elongated in the opposite limit. A characteristic cluster shape has

Figure 17. X-ray scattering intensity from a lysozyme solution. Structure factor obtained by
small-angle X-ray scattering from lysozyme solutions (monomer radius 1:7 nm) of different
concentrations ranging from 36mgml�1 (open squares) to 273mgml�1 (filled circles).
The dashed line indicates the cluster peak position, roughly independent on concentration.
In this sample, the monomer peak position is at k ¼ 2:24 nm�1. Redrawn from [233], courtesy
of the authors, with permission of Nature Publishing Group.
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been identified in the case of strong repulsive amplitude and short screening length,
giving rise to a Bernal spiral [237], depicted in figure 18. The linear shape of the spiral
can be reconstructed by considering it made by tetrahedra joined by a common face.

Quite recently an experiment performed by Campbell et al. on coated PMMA
spheres, using three-dimensional fluorescence confocal microscopy [239], has
evidenced in a clear way the existence of a cluster phase with the Bernal spiral
shape, as shown in figure 19. In the experiment particles have a mean radius of
a ¼ 777 nm, a 3% polydispersity, a mass density of 1.176 g cm�3, a small positive
charge of 140e and are both density and refraction index matched. The interactions
are provided by a hard core of size 2a, an attraction the range of which is measured
by the radius of gyration rg=a � 0:12 and a long-range Yukawa repulsion of range
�a � 0:78. What is observed is the presence of clusters at low volume fraction of the
dispersed phase. When the latter increases the clusters form chains of particles which
are identified as tetrahedra with a face in common. The final stage is a gel structure
composed of Bernal spirals, as detected studying orientational correlations.
Simulation of the same system, shown in figure 20 confirms the experimental picture
[238]. See also [232].

The main ideas introduced in the description of cluster phases, in colloidal
systems and in proteins, are strongly connected to the general work of pattern
formation in the case of competing interactions of different range. Indeed these
phenomena occur in a wide variety of systems, as for example water surfactant oil
mixture [240], mixtures of block copolymers [241] and magnetic and dipolar fluids
[242]. More recently, Sear et al. [243] have studied silver quantum dots at the

Figure 18. A pictorial view of the Bernal spiral. Particle have been shaded differently in order
to highlight the presence of three strands. In the spiral each particle has exactly six neighbors.

(a) (b) (c)

Figure 19. Confocal microscope images of colloid–polymer mixtures at different volume
fractions. From left to right: � ¼ 0:080, 0.094, and 0.156. The interparticle interaction is
composed by a screened electrostatic repulsion and by a short-range depletion attraction.
The attractive interaction is the same in all three samples. Images (a) and (b) shows a cluster
phase while (c) shows a network phase. Bars are 20mm long. Analysis of the coordinates shows
that the gel is composed of branching Bernal spirals. From [239], courtesy of the authors, with
APS permission.
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water–air interface and confirmed the spontaneous formation of spatially modulated
two-dimensional phases. When the concentration of the particles increases and the
long-range repulsion becomes more important, the clusters formed by aggregation
tend to pass from a spherical shape to stripelike arrays of dots. Two-dimensional
spontaneous pattern formation and microphase separation was also observed in a
recent computation of Imperio and Reatto [244] using Yukawa potentials.

An interesting system of interacting colloids and polymers where competing
interactions play an important role, is made of an aqueous solution of linear and
highly charged and flexible anionic polyelectrolytes, macromolecules carrying
electric charges, and oppositely charged colloidal particles, cationic liposomes
[245]. This system forms complexes, called lipoplexes, due to the adsorption of
polyelectrolytes at the liposome surface. This process, which is rather complex,
has been studied in detail and is responsible for the form of the interaction potential,
with both short-range attraction and long-range screened repulsion. Two unusual
phenomena are present in these type of systems: attraction between like charged
particles and overcharging of the colloids. In this case, more counterions are
adsorbed on the liposome surface than the ones necessary to neutralize the charge
on the macroions, an effect that gives rise to a charge inversion, i.e. an overall charge
of the macroion of opposite sign with respect to the original one. The adsorbed

Figure 20. Snapshot of a simulation of a Bernal spiral gel. A pictorial description of the shape
of the percolating cluster observed in a typical configuration at � ¼ 0:125 for low temperature.
The cluster spans, via periodic boundary conditions, the entire simulation box (full-line
square). In the model, particles interact with a short-range potential complemented by a
Yukawa repulsion. A close look to the figure shows that particles are locally tetrahedrally
coordinated generating a one-dimensional arrangement of tetrahedra. The structure of the
cluster is composed by large segments of Bernal spiral structures joined in branching points,
the latter providing the mechanism for network formation.
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polyions leave the macroion surface partially uncovered, since they tend to avoid
each other in order to minimize electrostatic interactions. In other words, they
form more or less ordered distributions of domains with excess negative charge,
polyelectrolytes domains, and excess positive charge, polyelectrolyte-free domains.
The inhomogeneous surface charge distribution gives rise to a short-range dipolar
attraction between lipoplexes. As a consequence of the balance between the
electrostatic repulsion and the charge patch attraction, the colloidal particles
tend to aggregate and form large equilibrium clusters. In some cases the cluster
phase seems to undergo a gelation process which shows aging. Transmission
electron microscope images of cluster formation of liposomes of size � 40 nm
(dioleoyltrimethylammoniumpropane, DOTAP) due to the interactions with a poly-
electrolyte (sodium polyacrylate salt, NaPAA) have clearly shown the formation of
aggregates of increasing size, up to �400 nm [246]. A careful study [247] of the size
distribution of the clusters shows also the reversible character of the lipoplex aggre-
gation, and qualifies the clusters as equilibrium aggregates. As a final result, the
analysis of the correlation functions obtained by dynamic light scattering in the
aging regime show the presence of two correlation times. The longer correlation
time increases with the waiting time, while the shorter one remains approximately
constant. This behavior, typical of arrested systems, is attributed, according to the
usual picture, to the fast motion of the particles in the cage formed by the neighbors
in the cluster and to the slow process of escape from the cage. Although still at a
semiquantitative level, these results fit in the general scenario of formation of an
arrested phase due to competing interactions described earlier. The study of compe-
titive interactions is in a quite active stage of development and has opened a large
spectrum of applications in various fields of research on complex liquids.

5.3. Ultrasoft colloids: star polymers

Star polymers are systems which occupy an intermediate position between
hard colloids with a strong repulsive core, such as HS, and soft flexible
polymeric systems [147]. They are also called ultrasoft colloids. Star polymers are
made of flexible arms, called functionality f, with one end linked to a common point.
The number of arms varies from a few units to a rather large value; in the latter case
the stars tend to behave as hard colloids, while lowering the functionality the inter-
particle potential becomes increasingly soft. Many interesting properties of star
polymers have been clarified on the basis of an effective interaction potential between
star polymer centers [248]. In line with their hybrid polymer–hard colloid character,
star polymers display no crystallization transition when the functionality f is low,
f � 34. At higher functionalities, a freezing transition takes place at about the over-
lap concentration of the system, into a bcc solid for lower functionalities and into
an fcc solid for higher functionalities. The freezing is succeeded by either a re-entrant
melting transition to the fluid for intermediate functionalities, 34 � f � 54, or by a
cascade of structural phase transitions at higher values of f. The functionality-
dependent bcc and fcc solids, as well as the reentrant melting transition, have been
experimentally observed in solutions of star-like block copolymer micelles. Though
the crystalline solids are the phases of thermodynamic equilibrium at such high
concentrations, the experimental situation is often somewhat different. A variety
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of studies with star polymers or star-like systems of various functionalities has shown
that it is quite difficult to nucleate a crystal. Especially at high functionalities, the
solutions display a glass transition, i.e., a dynamical arrest into an amorphous
crowded state in which the characteristic relaxation time of the system becomes
extremely long [249–254]. The onset of arrest, as opposed to crystallization, is further
enhanced by the presence of some polydispersity in the samples, which gets indeed
more pronounced as functionality increases.

The analysis of star polymers is based on the effective center–center interaction
potential
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where r is the distance between the two centers. This potential is a combination of
a logarithmic interaction at short distances, which gives the interaction its ultrasoft
character and stems from the scaling analysis of Witten and Pincus [255], and
a Yukawa form for the decay at long distances matched at a distance r ¼ �.
The potential only depends on the length � and the functionality f. The validity of
this potential has been demonstrated via extensive comparisons both with SANS
data [248, 252] and with monomer-resolved molecular dynamics simulations [256].
In this entropic effective potential f�1 plays the role of T in normal fluids.

Though the crystalline solids are the phases of thermodynamic equilibrium
at high concentrations, the experimental situation is often somewhat different. To
investigate arrest in star polymers, molecular and Brownian dynamics simulations
have been performed for a large range of functionalities f and packing fractions �.
Simulations show that the dynamics of star polymer solutions is extremely rich.
In order to approximate the line of structural arrest, the isodiffusivity curves have
been evaluated. These lines display both minima and maxima as a function of � and
minima as a function of f, which then have been successfully connected to the
behavior to the � and f-dependence of the effective hard core diameter of an
equivalent HS system. Even in this system, MCT provides an accurate modeling
of the structural arrest in supercooled liquid states. The detailed comparison between
theoretical predictions and simulation confirms that MCT is a valid approach for
guiding the interpretation of the disordered arrested states of soft matter materials
[144], offering a theoretical understanding for the observation of disordered arrested
states not only in colloidal systems characterized by a hard core [7, 137, 138, 141,
152], or charge-stabilized colloidal dispersions [210, 211, 257, 258], but also in
ultrasoft systems like star polymer solutions.

Recent works have addressed the issue of the effect of the addition of linear
chains, or small star polymers, to a star polymer arrested state. It has been found
[253] that the added polymer reduces the modulus of the gel, and in the limit of
high polymer molecular weight or concentration, the gel melts. Within the liquified
region, the reduced star viscosity drops upon further addition of linear polymer.
The effective star linear polymer interactions are shown to be responsible for
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the observed counterintuitive phenomena, via a depletion-like mechanism which
explains the gel–liquid transition. Eventually, for very high molecular weights a
reentrant gelation is observed and attributed to bridging flocculation induced by
the long polymer chains. Thus, the addition of linear polymer chains to a multiarm
star gel yields melting. Similar results were obtained when studying the influence
of the addition of a component, with a small number of arms and a small size, on a
concentrated solution of large stars with a high value of f [259]. Upon addition of the
small ones, it was reported a loss of structure that can be attributed to a weakening
of the repulsions between the large stars due to the presence of the small ones. These
phenomena of melting upon addition offer unique opportunities to design and
engineer novel nanostructured soft materials at the molecular level, leading to kinetic
manipulation of the state of soft materials though additives, and achieving liquefac-
tion or jamming. Moreover, they provide the framework for a thorough understand-
ing and control of the interactions in soft matter physics, where macromolecular
sizes and architecture critically influence the excluded volume, and thus, the entropic
and kinetic character of phase transitions.

Finally, we note that block copolymer micelles have been recently used as model
systems for investigating crystallization and kinetic arrest in ultrasoft star polymers
systems [260, 261]. Indeed, micellar functionality f can be smoothly varied by chang-
ing solvent composition (interfacial tension). Structure factors obtained by SANS
have been quantitatively described in terms of an effective potential for star poly-
mers. The experimental phase diagram of star-like PEP–PEO block copolymer
micelles [262] reproduces, to a high level of accuracy, the predicted liquid–solid
transition. Interestingly enough, whereas for intermediate f a bcc phase is observed,
for high f the formation of a fcc phase is preempted by glass formation.

6. Perspectives and conclusions

In the last years, a significant understanding of dynamic arrest in colloidal systems
has been achieved, thanks to the close contact between experiments, simulations and
theoretical studies. The present review aims at putting together a list of the relevant
results, albeit incomplete. Still, the study of glassy dynamics in colloidal systems
is far from being complete, and the present review will hopefully become quickly
obsolete. Several reasons conspire in this direction. First, the incredible technical
developments which are taking place in recent years and which provide experimental
information with an unprecedented level of accuracy and detail [263]. Particles can
now be followed in their actual trajectories, forcing a close comparison between
experiments, simulations and theoretical predictions. The physical and chemical
interactions between the particles (the effective interaction potentials) can also be
accurately measured [264], providing a valuable input to theoretical work [192, 193].
Second, the ability to design and assemble new colloidal particles with specific
shapes and interaction potentials will generate new classes of systems tailored for
specific material properties [265]. In this respect, several new lines are developing to
provide further control on the particle surface chemistry, control on the physical
properties of the solvent, and more important shape control. We expect in the near
future that colloidal particles of arbitrary shape can be produced, opening the way
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to a revolution in colloidal physics, redesigning at colloidal level forms nowadays
observed only in atomic and molecular fluids. Finally, it will be possible to control
the properties of the materials using external fields, thanks to the possibility of
embedding electric or magnetic dipoles within the colloids [266].

The possibility of fully exploiting these new challenges requires understanding
not only the equilibrium phases of the system and their modifications with the
external fields, but also understanding the kinetic phase diagram, i.e. the regions
in phase space where disordered arrested states can be expected, and when and how
these states are kinetically stabilized with respect to the ordered lowest free energy
phases. In this respect, the study of the glassy dynamics plays an extremely relevant
role. The concept of repulsive and attractive glass, of cluster phases, of reentrant
glass melting will provide a framework for interpreting and developing new ideas in
the study of tomorrow new materials. We also expect significant developments in
understanding an aspect of slow dynamics and arrest in colloidal systems which we
have not addressed in the present review. In particular we refer to the formation of
colloidal gel states, arrested states at low packing fraction which can be formed both
as a result of a colloid-poor–colloid-rich phase separation process, followed by a
glass transition of the high packing fraction phase or, as expected when patchy
colloids will become available, as equilibrium phase [267].

Finally, we cannot avoid noticing that, in most cases studied so far, MCT
calculations provide a very consistent estimate of the location of the glass line and
of its modification on changing the structure of the system. Even very peculiar
features (as in the case of the dynamics close to higher-order singularities) have
been predicted and succesfully compared with experimental data. At present time,
MCT is a valuable instrument for guiding the design of novel disordered soft
materials with specific properties.
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[24] W. Götze and L. Sjögren, Z. Phys. B 65 415 (1987).
[25] S.P. Das, G.F. Mazenko, S. Ramaswamy and J.J. Toner, Phys. Rev. Lett. 54 118 (1985).
[26] S.P. Das and G.F. Mazenko, Phys. Rev. A 348 2265 (1986).
[27] S.P. Das, Rev. Mod. Phys. 76 785 (2004).
[28] U. Harbola and S.P. Das, J. Stat. Phys. 112 1109 (2003).
[29] W. Götze and Th. Voigtmann, Phys. Rev. E 67 21502 (2003).
[30] G. Szamel, Phys. Rev. Lett. 90 228301-1 (2003).
[31] G. Szamel, Europhys. Lett. 65 498 (2004).
[32] G. Szamel and E. Flenner, Europhys. Lett. 67 779 (2004).
[33] K.S. Schweizer and E.J. Saltzman, J. Chem. Phys. 119 1181 (2003).
[34] E.J. Saltzman and K.S. Schweizer, J. Chem. Phys. 119 1197 (2003).
[35] J. Wu and J. Cao, Phys. Rev. Lett. 95 078301-1 (2005).
[36] J. Horbach and W. Kob, Phys. Rev. E 64 041503-1 (2001).
[37] F. Sciortino and W. Kob, Phys. Rev. Lett. 86 648 (2001).
[38] J. Baschnagel and M. Fuchs, J. Phys.: Condens. Matter 7 6771 (1995).
[39] A. Brodin, M. Frank, S. Wiebel, G. Shen, J. Wuttke and H.Z. Cummins, Phys. Rev. E

65 051503-1 (2002).
[40] W. Götze and Th. Voigtmann, Phys. Rev. E 61 4133 (2000).
[41] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 75 1792 (1975).
[42] G. Parisi, Phys. Rev. Lett. 43 1754 (1979).
[43] M. Mezard and G. Parisi, Phys. Rev. Lett. 82 747 (1999).
[44] M. Mezard and G. Parisi, J. Chem. Phys. 111 1076 (1999).
[45] M. Cardenas, S. Franz and G. Parisi, J. Chem. Phys. 110 1726 (1999).
[46] B. Coluzzi, M. Mezard, G. Parisi and P. Verrocchio, J. Chem. Phys. 111 9039 (1999).
[47] F.H. Stillinger and T.A. Weber, Science 225 983 (1984).
[48] F. Sciortino, J. Sta. Mech. P05015 (2005).
[49] P.G. Debendetti and F.H. Stillinger, Nature 410 259 (2001).
[50] K. Kawasaki and K. Fuchizaki, J. Non-Cryst. Solids 235 57 (1998).
[51] D.S. Dean, J. Phys. A 29 L613 (1996).
[52] K. Fuchizaki and K. Kawasaki, J. Phys.: Condens. Matter 14 12203 (2002).
[53] K. Miyazaki and D.R. Reichman, Phys. Rev. E 66 050501 (2002).
[54] S. Kirkpatrick, Phys. Rev. B 36 8552 (1987).
[55] T.R. Kirkpatrick, D. Thirumalai and P.G. Wolynes, Phys. Rev. A 40 1045 (1989).
[56] R. Richert, J. Phys.: Condens. Matter 14 R703 (2002).
[57] J.P. Garrahan and D. Chandler, Phys. Rev. Lett. 89 035704-1 (2002).
[58] J.P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. 100 9710 (2003).

Glassy colloidal systems 519



[59] M. Tokuyama and I. Oppenheim, Phys. Rev. E 50 R16 (1994).
[60] M. Tokuyama and I. Oppenheim, Phys. A 216 85 (1995).
[61] M. Tokuyama, Phys. Rev. E 62 R5915 (2000).
[62] M. Tokuyama, Phys. A 289 57 (2001).
[63] M. Tokuyama, H. Yamazaki and Y. Terada, Phys. Rev. E 67 062403-1 (2003).
[64] W. Kob and H.C. Andersen, Phys. Rev. E 48 4364 (1993).
[65] G. Biroli and M. Mezard, Phys. Rev. Lett. 88 025501-1 (2002).
[66] A. Lawlor, D. Reagan, G.D. McCullagh, P. De Gregorio, P. Tartaglia and K.A. Daw-

son, Phys. Rev. Lett. 89 245503-1 (2000).
[67] P. De Gregorio, A. Lawlor, P. Bradley and K.A. Dawson, Phys. Rev. Lett. 93

025501-1 (2004).
[68] P. De Gregorio, A. Lawlor, P. Bradley and K.A. Dawson, Proc. Natl. Acad. Sci. 102

5669 (2005).
[69] J.N. Israelachvili, in Intermolecular and Surface Forces (Academic Press, London, 1992).
[70] G. Bryant, S.R. Williams, L. Qian, I.K. Snook, E. Perez and F. Pincet, Phys. Rev. E

66 060501(R) (2002).
[71] J.-P. Hansen and I. McDonald, in Theory of Simple Liquids (Academic Press, London,

1986).
[72] B.J. Alder and T.E. Wainwright, J. Chem. Phys. 27 1208 (1957).
[73] S. Auer and D. Frenkel, Adv. Polym. Sci. 173 149 (2005).
[74] Z. Cheng, J. Zhu, W.B. Russel, W.V. Meyer and P.M. Chaikin, Appl. Opt. 40 4146

(2001).
[75] Z. Cheng, P.M. Chaikin, J. Zhu, W.B. Russel and W.V. Meyer, Phys. Rev. Lett.

88 015501 (2002).
[76] M. Sullivan, K. Zhao, C. Harrison, R.H. Austen, M. Megens, A. Hollingsworth,

W.B. Russel, Z. Cheng, T. Mason and P.M. Chaikin, J. Phys.: Condens. Matter 15

S11 (2003).
[77] P.N. Pusey and W. van Megen, Nature 320 340 (1986).
[78] I. Volkov, J. Koplik and J.R. Banavar, Phys. Rev. E 66 061401 (2002).
[79] T.C. Hales, P. Sarnak and M.C. Pugh, Proc. Natl. Acad. Sci. 97 12963 (2000).
[80] S. Torquato, Nature 405 521 (2000).
[81] F.H. Stillinger and B.D. Lubachevsky, J. Stat. Phys. 73 497 (1993).
[82] A.S. Clarke and J.D. Wiley, Phys. Rev. B 35 7350 (1987).
[83] W. van Megen, S.M. Underwood and P.N. Pusey, Phys. Rev. Lett. 67 1586 (1991).
[84] W. van Megen and P.N. Pusey, Phys. Rev. A 43 5429 (1991).
[85] W. van Megen and S.M. Underwood, Phys. Rev. Lett. 70 2766 (1993).
[86] S.I. Henderson, T.C. Mortensen, G.M. Underwood and W. van Megen, Phys. A 233

10290 (1996).
[87] Th. Voigtmann, Phys. Rev. E 68 051401-1 (2003).
[88] W. van Megen, Trans. Theory Stat. Phys. 24 1017 (1995).
[89] M. Fuchs, I. Hofacker and A. Latz, Phys. Rev. A 45 898 (1992).
[90] J.-L. Barrat, W. Götze and A. Latz, J. Phys.: Condens. Matter 1 7163 (1989).
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