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Abstract. These notes review the potential energy landscape thermodynamic
formalism and some of its recent applications to the study of supercooled glass
forming liquids. They also review the techniques which have been recently
developed to quantify the statistical properties of the landscape, i.e. the number
and the distribution in energy of the local minima of the surface for bulk systems.
A critical examination of the approximations involved in such a calculation and
results for models of simple and molecular liquids are reported. Finally, these
notes discuss how an equation of state, expressed only in terms of statistical
properties of the landscape, can be derived and under which conditions such an
equation of state can be generalized to describe out-of-equilibrium liquids.
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1. Introduction

The most fascinating phenomenon taking place in supercooled glass forming liquids [1]–
[4]—i.e. liquids where a metastable equilibrium is reached in a time shorter than the
crystallization time1—is the slowing down of the dynamics. On cooling, the characteristic

1 In ‘metastable equilibrium’ supercooled states, no drift of the one-time quantities (energy, pressure, and so on) is
observed and correlation functions depend only on time differences. Still, from a thermodynamic point of view the
liquid has a free energy higher than the crystal one. On timescales much longer than the characteristic structural
time of the liquid, a transition to a crystal state will take place.
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times increase by more than 15 orders of magnitude in a relatively small temperature
interval. According to the T dependence of the characteristic relaxation time (or of
the viscosity), two extreme classes of liquids can be defined [5]: strong liquids, mostly
network forming, for which an Arrhenius dependence describes the slowing down of the
dynamics well (suggesting a divergence of the characteristic time only at T = 0 K) and
fragile liquids, where a super-Arrhenius dependence is observed, suggesting a possible
divergence of the characteristic time at a finite T . The glass transition temperature
Tg is conventionally defined as the T at which the characteristic time becomes of the
order of 100 s. For T lower than Tg metastable equilibrium is hardly reached within
the experimental time window and one-time quantities evolve with time t. Similarly,
correlation functions depend not only on time differences but also on the previous sample
history.

The slowing down of the dynamics preceding the glass transition is accompanied by
another interesting phenomenon [6]: a significant decrease of the excess entropy ∆Sex,
defined as the entropy of the liquid minus the entropy of the crystal. ∆Sex indicates (with
some caveats) the number of distinct microscopic configurations available to the liquid as
compared to the ‘unique’ crystalline configuration2. The fast decrease of ∆Sex suggests
a progressive reduction of the number of configurations explored on supercooling. In the
case of fragile liquids, the apparent divergence of the characteristic times is mirrored by the
apparent vanishing of the excess entropy, indicating a correlation between thermodynamic
and dynamic properties. The divergence of the characteristic times and the vanishing of
∆Sex are located below Tg and hence are not experimentally accessible. Strong and fragile
liquids can also be discriminated according to their thermodynamic properties [7]. Fragile
liquids tend to exhibit large changes in the specific heat around Tg as compared to strong
ones.

Another important property of the dynamics of supercooled liquids is the development
of a separation of timescales. The short microscopic dynamics is not much affected by
supercooling, while the structural relaxation time (the so-called α relaxation, describing
the long time decay of correlation functions) is significantly changed by T (according to the
fragile/strong character of the system). This separation of timescales appears very clearly
in the shape of the correlation functions, when plotted on a log t scale to cover both short
and long times. The decay of the correlation is characterized by a fast relaxation toward
a plateau, followed by the much slower α relaxation to zero. Goldstein [8] interpreted
this separation of timescales, suggesting that molecular motions in supercooled liquids
consist of anharmonic vibrations about deep potential energy minima and of infrequent
visitations of different such minima, stimulating the interest in a study of the properties
of the potential energy landscape (PEL) sampled in supercooled states.

The ultimate goal of any theory for supercooled liquids is understanding the slowing
down of the dynamics and the differences between strong and fragile behaviour3, starting
from the microscopic interparticle potential. Despite this, in these notes I will focus

2 To grasp the meaning of ∆Sex, let us suppose that the liquid and the crystal have the same vibrational properties
(the same vibrational density of states). In this case, the vibrational entropy (i.e. the region of configuration space
explored during the vibrational motion) of the liquid and of the crystal would be the same and the excess entropy
would only count the number of distinct microscopic configurations available to the liquid as compared to the
unique crystalline configuration.
3 For a recent review of the connection between PEL and strong–fragile behaviour see [9].
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only on the thermodynamic side of the PEL approach. In particular I will discuss
recent developments in the study of the statistical properties of the PEL, triggered by
the enhancement of computer power available. I will show how the knowledge of the
PEL sampled in equilibrium provides important information on the thermodynamics of
glasses, when glasses can be approximated as frozen liquid configurations. In the near
future, emphasis will have to switch more and more from thermodynamics to dynamics4

with the hope that the central dogma of supercooled liquids5—i.e. the hypothesis that
dynamics is slaved to statics—will provide a stable foundation for understanding of slow
dynamics in glass forming liquids within the PEL approach.

2. The PEL

What is the PEL, or equivalently the potential energy surface (PES)6? It is a fancy word
for the potential energy V (�rN) of a system of N particles (which for simplicity here we
assume to be point-like) as a function of the 3N coordinates �rN .7 At any instant of time,
the system is described by a specific �rN value. Pictorially, the trajectory of the system
can be represented as a motion of a representative point on the V (�rN) surface. It is
important to stress that the PEL does not depend on T . It is also important to realize
that the exploration of the PEL (i.e. which parts of the surface are explored) is strongly T
dependent. As the surface is in 3N -dimensional space, the characterization of the surface
can only be performed on a statistical basis, and one of the aims of the PEL studies
is indeed to estimate the number of local minima and their distribution in energy, and
to estimate the shape of the surface around the local minimum and the hypervolume in
configuration space associated with each of these minima. The number and energy depth
of the local minima are indeed the basic ingredients of the PEL thermodynamic formalism,
put on a firm basis by the work of Stillinger and Weber [12]. Stillinger and Weber provided
a formally exact partitioning of the configurational space as a sum of distinct basins,
associating with each local minimum of the potential energy surface (named an inherent
structure, IS) all points in configuration space connected to the minimum by a steepest
descent path. This set of points is named a basin. The definition of a basin proposed
by Stillinger and Weber provides the essential ingredient for developing a thermodynamic
formalism since—except for a set of points of zero measure (the saddles and the ridges
between different basins)—all points in configuration space are associated with a local
minimum. The Stillinger and Weber definition also provides an algorithm suited for
numerical studies of the landscape properties.

4 Connections between PEL properties and dynamics in liquids already have a long history. Research has proceeded
along several parallel directions: instantaneous normal mode (INM), Adam–Gibbs (AG), inherent saddle and
barrier approaches. One reference connecting PEL properties to dynamics is [10].
5 Harrowell, in his talk at the UCGPC, Bangalore 2004, proposed naming the hypothesis that dynamics is slaved
to statics (or thermodynamics) as ‘the central dogma’. Of course, this idea lies behind most of the theories of the
glass transition (including MCT).
6 For a very good introduction to the concept of the energy landscape, see [11].
7 Ideas introducing the concept of the energy landscape and its use in statistical mechanics can be traced to the
early work of people like Briant, Burton, Etters and McGinty, to name but a few. In these notes, I will mostly
focus on the Stillinger and Weber formalization of these ideas [12] to bulk liquids. It is important to stress that
extremely relevant thermodynamic developments of the PEL ideas, not discussed here, have taken place in the
study of isolated clusters. The interested reader is referred to [11] for further details.
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3. Stillinger–Weber thermodynamics formalism

In this section I will review the PEL thermodynamic formalism. The partition function
Z of a system of N particles interacting via a two-body spherical potential is8

Z(T, V ) =
1

N !λ3N
Q(V, T ) (1)

with

Q(V, T ) =

∫
V

e−βV (�rN ) d�rN , (2)

where λ is the de Broglie wavelength, β = 1/kBT and kB is the Boltzmann constant.
The idea that the configuration space can be partitioned into basins allows us to write

the partition function as a sum over the partition functions of the individual distinct basins
Qi:

Q(T, V ) =
∑

i

′
Qi(T, V ). (3)

To model the thermodynamics of the supercooled state the sum has to exclude
(and the sign ′ in

∑
has this role) all basins which include a significant fraction of

crystalline order9. Indicating by eIS the value of the energy in the local minimum and
with ∆V (�rN) ≡ V (�rN) − eIS,

Qi(T, V ) = e−βeISi

∫
basin i

e−β∆V (�rN ) d�rN . (4)

Next we define a partition function averaged over all distinct basins with the same
eIS value as

Q(eIS, T, V ) =

∑
i δeISi

,eIS
Qi(T, V )∑

i δeISi
,eIS

(5)

and the associated average basin free energy as

−βfbasin(eIS, T, V ) ≡ ln

[
Q(eIS, T, V )

λ3N

]
. (6)

The system partition function can be written as

Z(T, V ) =
∑
eIS

Ω(eIS)e
−βfbasin(eIS,T,V ) (7)

where Ω(eIS) =
∑

i δeISi
,eIS

counts the number of basins of depth eIS. Note that the N !

term disappears since the sum is now over all distinct basins (i.e. an IS is invariant for
permutation of identical particles).

8 Symmetry is ignored in the discussion in section 3 since these notes are focused on disordered liquid
configurations, for which all the structures lack any point group symmetry elements (aside from the identity). In
the case of clusters and finite systems, the equations in section 3 need to be modified to account for the system
symmetries. Neglecting symmetries may lead to significantly erroneous free energy estimates. See [11] for a
comprehensive discussion of the role of symmetries in PEL studies of clusters.
9 The amount of crystalline order can be quantified by calculating appropriate rotational invariants or by analysing
the value of the density fluctuations at all the wavevectors close to the first peak of the structure factor.
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Figure 1. Schematic representation of a system in the PEL framework. The
energy levels indicate the possible values of eIS, bounded from below by eK,
defined as the lowest IS energy of a non-crystalline configuration. Each IS is
associated with a different basin. The potential energy of the system V (�rN ) is
expressed as sum of eIS and a vibrational component evib ≡ V (�rN ) − eIS.

Defining the configurational entropy Sconf(eIS) as

Sconf(eIS) ≡ kB ln[Ω(eIS)] (8)

a formally exact expression for Z(T, V ) can be written as

Z(T, V ) =
∑
eIS

e−β[−TSconf(eIS)+fbasin(eIS,T,V )]. (9)

All quantities appearing in the argument of the exponential scale linearly with the number
of particles N . In the thermodynamic limit, only the value of eIS which maximizes the
argument will contribute to the sum. In this saddle point approximation Z(T, V ) can be
written as

Z(T, V ) = e−β[−TSconf(〈eIS〉)+fbasin(〈eIS〉,T,V )], (10)

where 〈eIS〉, a function of T and V , is the solution of

T
∂Sconf (eIS)

∂eIS

∣∣∣∣
V

−∂fbasin(eIS, T, V )

∂eIS

∣∣∣∣
V

= 1. (11)

The resulting free energy can be written as

F (T, V ) = −TSconf(〈eIS〉) + fbasin(〈eIS〉, T, V ). (12)

This expression for F reflects the fact that the free energy of the liquid can be written as
the free energy of the liquid constrained to being in one of its characteristic basins (the
term fbasin(〈eIS〉, T, V )) plus an entropic term (−TSconf(〈eIS〉)) which counts the number
of basins explored at temperature T . As described in figure 1, the state of the system,
which is usually represented as a point �rN , is in the IS formalism represented as a point
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in a collection of energy levels, and each level labels one of the distinct PEL basins. With
each level there is associated a basin shape, which, according to T , weights in a different
way the basin probability.

In these notes I have chosen to work in the canonical ensemble, evaluating the V
and T dependence of the thermodynamic potential. In this case, the PEL is defined by
the coordinates of the system. On changing V , the PEL changes [11, 13]. Local minima
result from steepest descent minimization of the energy at constant V . An alternative
but thermodynamically equivalent formalism can be derived for the P–T ensemble, where
enthalpy replaces energy. The enthalpy landscape (which now depends on P ) requires
simultaneous minimization of the coordinates and volume. Although it is not commonly
studied numerically [14, 15], the enthalpy landscape has a direct link to experimental
studies [16]–[18]. Also, the minimization procedure, being carried out at constant P , does
not interfere with liquid–gas phase separation phenomena [19], as is the case for constant
volume minimizations at low densities [20].

3.1. A simple example

As an example of the previous derivation, we calculate the partition function Q for a one-
dimensional landscape, defined by the function V (x) = Vo cos[(2πn/L)x], defined between
0 and L. The landscape for this model is composed of n basins, each with eIS = −1 and
‘size’ L/n. The Stillinger–Weber procedure would give

Q =

∫ L

0

e−βV (x) dx =

n−1∑
i=0

Qi (13)

with

Qi =

∫ (i+1)(L/n)

i(L/n)

e−βV (x) dx. (14)

Since all basins have the same depth, Q = nQ0, and F can be written as a sum of an
entropic and a free energy term as F = −T ln[n] + fbasin, with −βfbasin = ln[Q0].

4. Simulation details

A proper analysis of equilibrium configurations, generated via molecular dynamics or
Monte Carlo techniques, if interpreted using the thermodynamic formalism discussed
before, allows us to extract information on the statistical properties of the landscape
(i.e. on the function Ω(eIS) and on the relation between the basin depth eIS and the basin
shape). Indeed F (T, V ) (the left side in equation (12)) can be calculated numerically, with
arbitrary precision, via standard thermodynamic integration techniques [21]–[25], along a
path which starts from the ideal gas (for which an exact expression for the free energy is
known) reaching the final (T, V ) liquid state point. The path can be chosen in an arbitrary
way, but must avoid any intersection with the liquid–gas coexistence curve. The basin
free energy, as discussed below, can also be evaluated numerically. The difference between
F (T, V ) and fbasin(T, V ) provides an estimate of the number of basins with energy 〈eIS〉.

The IS configurations explored at temperature T can be numerically evaluated
by a steepest descent minimization of the potential energy starting from equilibrium

doi:10.1088/1742-5468/2005/05/P05015 7
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Figure 2. Left: time dependence of eIS for the BKS model for silica in a 999-ion
system for three different temperatures. Note that at each T , a different set of
eIS values is sampled. Right: T dependence of 〈eIS〉 for the same model.

configurations. To improve numerical efficiency, the slow steepest descent algorithm is
often replaced by the conjugate-gradient algorithm. The code provided by Numerical
Recipes [26] can be quickly adapted to the case of atomic liquids. A reasonable estimate
of 〈eIS〉 for a 1000-atom system is reached with about 50 minimizations of independent
configurations. If the distribution of eIS sampled at temperature T , P (eIS, T ) [23] must
be evaluated, about 1000 configurations should be minimized.

In these notes I will show data for different model potentials, encompassing atomic
and molecular systems. Most of the data will be based on the well characterized 80–20
Lennard-Jones binary mixture developed by Stillinger [27] and optimized by Kob and
Andersen [28]10. I will also show data for a 50–50 soft sphere (SS) binary mixture [22], in
which particles interact with a self-similar repulsive r−12 potential.

I will present data for the BKS model for silica [29], as a model of a strong atomic
liquid, where O and Si are explicitly modelled as ions. For rigid molecular systems I will
show data for a simple model for ortho-terphenyl, proposed by Lewis and Wahnström [30],
and for the SPC/E model of water [31]. The OTP model is essentially a LJ-type potential,
while the SPC/E model includes electrostatic and LJ interactions.

5. eIS

Figure 2 shows the time evolution of eIS following a MD trajectory (left panel) and the
T dependence of 〈eIS〉 (right panel) for BKS silica. It is interesting to observe that
there is a characteristic depth sampled at each temperature. For a 1000-atom system,
fluctuations in eIS are already small and it is extremely rare to sample basins of depth
much different from 〈eIS〉. This clearly shows that the probability of locating deep energy
basins starting from configurations equilibrated at high T is extremely low. The low

10 Note that there are different versions of the BMLJ model in current use, differing in the cut-off and tapering
of the potential.
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Figure 3. Energy fluctuations, divided by NkBT 2, for the BMLJ system. The
total and its three contributions are shown. Here T is measured in units of the
LJ depth. When T < To ≈ 1, correlation functions start to show stretched
exponential decays and the T dependence of the 〈eIS〉 starts to drop. Note that
the low T increase in Cv arises from the fluctuations in eIS, while the vibrational
component approaches the classical (3/2)kB harmonic limit.

energy basins are not sampled, even if an extremely large number of high T equilibrium
configurations are minimized. Only for system size smaller than 50 atoms do fluctuations
in eIS become comparable to the range of possible eIS values and can all possible basins
be accessed with small but finite probability even starting from high T (even random)
configurations [32, 33]. For systems of size 100 particles or more, low energy basins are
found [34] only if the equilibrium configurations are representative of supercooled states.
Sastry et al [34] made the very important observation that the T at which the system
starts to explore low energy basins (sometimes named the onset temperature, To) coincides
with the onset of stretched exponential decay in the correlation functions. Reference [34]
suggested that at To microscopic and structural relaxation times start to separate and the
ideas behind the PEL approach acquire progressive relevance.

At the basis of the PEL approach (see figure 1) lies the separation of the potential
energy into eIS and the vibrational component evib. This separation helps us to understand
the origin of the increase in specific heat observed in supercooled states. Indeed, the excess
(over the ideal gas) specific heat Cex

V can be written in terms of fluctuations of the potential
energy E as

CV =
〈∆E2〉
kBT 2

. (15)

In the PEL approach, since E = eIS + evib,

〈∆E2〉 = 〈∆e2
IS〉 + 〈∆e2

vib〉 + 〈∆eIS∆evib〉. (16)

Figure 3 shows the three contributions to the specific heat for the BMLJ case. Below
the onset temperature (To ≈ 1 for BMLJ) the significant increase in the specific heat
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Figure 4. Autocorrelation function of the potential energy fluctuations
decomposed into eIS and evib components. Data refer to BKS silica at T = 3500 K
and ρ = 2.36 g cm−3.

arises from the fluctuations in the basin depth, while the vibrational component appears
to saturate to the harmonic limit. A small cross-term is also present, attesting to a weak
coupling between the vibrational and configurational properties.

It is also instructive to study the time dependent autocorrelation function of the
energy fluctuations. This quantity provides information on the time dependent specific
heat (or, in frequency space, on its frequency dependence [35]). As before, 〈∆E(t)∆E(0)〉
can be separated as

〈∆E(t)∆E(0)〉 = 〈∆eIS(t)∆eIS(0)〉 + 〈∆evib(t)∆evib(0)〉 + 2〈∆eIS(t)∆evib(0)〉. (17)

Figure 4 shows these three autocorrelation functions for the case of BKS silica.
The short time (high frequency) contributions to CV are originated by the vibrational
properties, and decay to zero on a microscopic timescale. The long time α relaxation
dynamics is mostly ascribed to the eIS autocorrelation function. A small, but
not negligible, slow contribution—evidence of basin dependent anharmonic effects—is
provided by the cross-term.

6. The basin free energy

6.1. The harmonic approximation

The potential energy around an IS configuration can be expanded in a quadratic form:

V (�rN) ≈ eIS +
∑

i,j,α,β

Hiαjβδr
α
i δrβ

j (18)

where the Hessian matrix H has components

Hiαjβ =
∂2V (�rN)

∂rα
i ∂rβ

j

∣∣∣∣
IS

(19)
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and δrα
i indicates the displacement from the IS configuration of atom i in direction α.

Diagonalization of the mass weighted Hessian matrix (with elements (1/
√

mimj)Hiαjβ)
provides a set of 3N independent directions (eigenvectors) and 3N curvatures (eigenvalues
ω2). In the basis of the eigenvectors, the dynamics of the system can be described as a
sum of 3N independent oscillations with frequencies ωi. In the harmonic approximation,
the partition function of a single basin i can thus be expressed as

Z(eISi
, T, V ) = e−βeISi

3N∏
j=1

[β�ωj(eISi
)]−1. (20)

The partition function averaged over all basins with the same depth eIS (equation (5))
becomes

Z(eIS, T, V ) = e−βeIS

〈 3N∏
j=1

[β�ωj(eIS)]
−1

〉
eIS

(21)

which, by going from the product to the exponential of the sum, can be written as

Z(eIS, T, V ) = e−βeIS〈e−
∑3N

j=1 ln[β�ωj(eIS)]〉eIS
. (22)

The corresponding resulting expression for the basin free energy in the harmonic
approximation is

−βfbasin(eIS, T, V ) = −βeIS − βfvib(eIS, T, V )

−βfvib(eIS, T, V ) ≡ ln[〈e−
∑3N

j=1 ln[β�ωj(eIS)]〉eIS
].

(23)

In many PEL studies, fvib has been approximated as

βfvib(eIS, T, V ) = −
〈 3N∑

j=1

ln[β�ωj(eIS)]

〉
eIS

. (24)

It is worth noting that an appropriate evaluation of fvib requires an average over
independent basins with the same depth. Numerically it is often performed over the IS
generated minimizing equilibrium configurations, which are of course sampled according
to their statistical Boltzmann weight.

In the harmonic approximation, the basin free energy can be written as a sum of a
term which is only T dependent and a term which accounts for the shape of the basin.
The shape contribution S, defined as

S(eIS) ≡
〈 3N∑

j=1

ln[ωj(eIS)/ω0]

〉
eIS

(25)

where ω0 is the unit frequency making the argument of the ln adimensional, encodes
the possible coupling between depth and shape at harmonic level. It has been found
numerically that S has a linear [36], [25, 37, 38] or weakly quadratic [11, 23, 39] dependence
on eIS. In terms of S, the harmonic vibrational free energy can be written as (see the
approximation in equation (24))

fvib(eIS, T, V ) = −3NkT ln[β�ω0] − kTS(eIS). (26)
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The harmonic approximation captures a significant part of the relation between the
shape and depth. Still, it remains an approximation which needs to be improved. An
indication of the necessity for improving on the harmonic approximation is encoded in the
non-zero value of the cross-term 〈∆eIS∆evib〉 in figures 3 and 4. Indeed, in the harmonic
approximation evib = 3

2
kBT , and thus it is uncorrelated with eIS.

While at low T the harmonic approximation offers a valuable estimate of the basin
free energy, on increasing T its validity decreases. A significant breakdown of the
approximation is observed close to the onset temperature due to an overcounting of the
configurational space volume. Indeed, the configurational space associated with each basin
explored in the harmonic approximation (or, to be more precise, the vibrational entropy)
is a growing function of T and hence there must exist a temperature at which the volumes
of different basins explored overlap.

6.2. Anharmonic basin free energy

Anharmonic corrections can be included in PEL calculations to improve the precision of
the calculation of Sconf . The anharmonic energy Uanh, defined as

Uanh(T, V ) = U(T, V ) − 〈eIS〉(T, V ) − 3
2
NkBT, (27)

can be calculated from the potential energy U and from the average inherent structure
energy.

Two possible schemes for the evaluation of the anharmonic vibrational entropy Sanh

have been proposed for bulk systems11. The two approximations are conceptually very
different.

In the first case anharmonicity is assumed to be independent of the basin depth and
hence the T dependence of Uanh can be assumed to be function only of T . The numerical
estimate of Uanh can be fitted with a polynomial in powers of T starting with T 2:

Uanh(T, V ) =
imax∑
i=2

ci(V )T i. (28)

The corresponding anharmonic entropy is

Sanh(T, V ) =
imax∑
i=2

ci(V )

i − 1
T i−1. (29)

The present approximation is expected to improve the estimate of the basin entropy if
the fit of Uanh can be achieved with a small value of imax.

In the second case [24, 40], the anharmonicity is assumed to be weak (imax=2) but the
coefficient c2 is assumed to be eIS dependent. In this case

Uanh(T, V ) = c2(eIS, V )T 2 (30)

11 A number of different schemes have been tried for including anharmonicity in the study of clusters, such as
Haarhof’s model, Chekmarev’s confinement scheme, short series expansions in T (similar to the one discussed in
section 6.2), and also more sophisticated reweighting schemes using quenching, which are related to histogram
approaches. Again, we refer the reader to the recent monograph by Wales for a complete review of this important
work [11].
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Figure 5. Anharmonic energy for the 50–50 SS binary mixture. The left panel
shows the polynomial fit to Uanh according to equation (28). The right panel
provides convincing evidence that, for the SS case, anharmonic contributions
should be handled according to equation (30).

and the corresponding anharmonic entropy is

Sanh(T, V ) = −2c2(eIS, V )T. (31)

The function c2(eIS, V ) can be calculated by equating equations (27) and (30). A check on
the quality of this approximation could in principle be achieved by studying numerically
the T dependence of the potential energy on heating an IS configuration. Unfortunately,
this test can be performed only for low eIS, since only for these deep energy basins does
the heating process not involve basin changes.

Figure 5 shows the T dependence of the anharmonic energy for a binary mixture of
soft spheres and the fit with equation (28). A large value of imax is required to fit the
T dependence, suggesting that this approximation is not appropriate. The right figure
shows eanh/T both for the equilibrium data and during heating of the T = 0.2 basin.
The observed linear dependence of eanh/T and the extrapolation to the equilibrium value
strongly support equation (31) as a route for evaluating Sanh in soft sphere systems.

6.3. Basin free energy: the square well case

An interesting model, for which the basin free energy can be exactly calculated, is the
square well model [41]. Indeed, in this model, an IS configuration is defined in terms of
the bonding pattern and the basin of a particular IS consists of all points in configuration
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Figure 6. Mean square displacement at T = 0.1 for the maximum valency square
well model [41] with Nmax = 3 as a function of λ. The full line shows the harmonic
behaviour 3

2(1/βλ).

space sampled by the liquid when no bonds are either created or destroyed. In a Monte
Carlo simulation, it is possible to reject all moves associated with bond formation or bond
breaking. Since it is not possible to evaluate the Hessian for stepwise potentials, it is
not possible to calculate fbasin as a sum of a harmonic and an anharmonic free energy.
The evaluation of the basin free energy is accomplished by a thermodynamic integration
starting from a set of 3N Einstein oscillators, i.e. from a system described by a Hamiltonian

HE(�rN) = λ
∑

i

(�ri − �ri
0)2 (32)

where �ri
0 is the IS configuration whose basin free energy needs to be evaluated.

Indicating by H0 the original square well potential, and performing a series of MC
simulations of the Hamiltonian

H(�rN) = H0(�rN) + λ
∑

i

(�ri − �ri
0)2 (33)

at fixed T and V (and constrained to satisfy at all steps the IS bonding pattern)
for different values of λ, the required basin free energy is provided by thermodynamic
integration (in λ) [21], [42]–[44]:

fvib(T, V ) = FHE
(T, V, λmax) −

∫ λmax

0

〈∑
i

(�ri − �ri
0)2

〉

λ

dλ (34)

where 〈
∑

i(�ri − �ri
0)2〉λ is the mean square displacement, summed over all particles, at

fixed value of λ. Numerically, simulations are performed up to values of λmax for which the
Einstein model (whose free energy FHE

(T, V, λmax) is analytically known) is recovered. An
example of such a calculation is reported in figure 6. At large λ values, the mean square
displacement per particle approaches the theoretically expected limit 3

2
(1/βλ).

In principle, this technique can be used also for evaluating the basin free energy in
continuous potentials [43, 44]. Unfortunately, in these cases, there is no unique way to
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constrain the system to explore only the configuration space associated with the starting
IS. For small values of λ the system is free to change basin. For this reason, an arbitrary
criterion must be selected as the low λmin cut-off. Reasonable choices of λmin can be made
by picking the value of λ at which the mean square displacement becomes identical to the
plateau location in the unconstrained 〈r2〉.

7. Modelling the statistical properties of the PEL: the Gaussian landscape

The goal of the PEL formalism is to provide a thermodynamic description of supercooled
liquid states in terms of statistical properties of the potential energy surface, i.e. the
number of basins of different depths and their volume in configuration space. With the
technique described above, both types of information become accessible: Sconf , a measure
of the number of basins of depth eIS, is calculated as the difference between the liquid
entropy and the basin entropy, while the relation between the basin depth and basin
volume is estimated via the evaluation of the density of states and, when possible, via
the evaluation of the anharmonic contributions. The quality of these estimates makes
it possible to compare the numerical results with theoretical models for the statistical
properties of the landscape12.

The model which has been explored most up to the present is the random energy
model (REM) [45, 46], which appears to be consistent with the numerical evidence for
fragile liquids [36, 39, 47, 48]. The REM is based on the hypothesis that the number
Ω(eIS) deIS of distinct basins of depth between eIS and eIS + deIS in a system of N atoms
or molecules is described by a Gaussian distribution, i.e.,

Ω(eIS) deIS = eαN e−(eIS−E0)2/2σ2

(2πσ2)1/2
deIS. (35)

Here the amplitude eαN accounts for the total number of basins, E0 has the role of the
energy scale and σ2 measures the width of the distribution. One can understand the origin
of such a distribution by invoking the central limit theorem. Indeed, in the absence of a
diverging correlation length, in the thermodynamic limit, each IS can be decomposed into
a sum of independent subsystems, each of them characterized by its own value of eIS. The
system IS energy, in this case, will be distributed according to equation (35). Note that
this hypothesis will break down in the very low energy tail, where differences between
the Gaussian distribution and the actual distribution become relevant. As discussed
in [47], the system Gaussian behaviour reflects also the Gaussianity of the independent
subsystems.

Within the assumptions of equation (35)—Gaussian distribution of basin depths—
and the assumption of a quadratic dependence of the basin free energy on eIS, an exact
evaluation of the partition function can be carried out. The corresponding Helmholtz free
energy can be found in [24]. Here, for didactic reasons, I limit myself to the case of linear
dependence of the basin free energy on eIS, in the harmonic approximation. The partition
function for the Gaussian model is

Z(T, V ) =

∫
Ω(eIS) deISe

−βeIS+fvib(eIS,T,V ). (36)

12 It is worth noting that the PES has been visualized directly using disconnectivity graphs in the region of the
global minimum for various bulk models, including LJ, BMLJ and Stillinger–Weber silicon ones [11].
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The assumption of linear dependence of fvib(eIS, T, V ) on eIS in the harmonic
approximation corresponds to the case (see equation (26))

S(eIS) = a(V ) + b(V )eIS. (37)

The coefficients a and b can be calculated numerically, for each model, by fitting
S(eIS). The resulting vibrational free energy can be written as

fvib(eIS, T, V ) = fvib(E0, T, V ) − kBTb(V )(eIS − E0) (38)

and the Helmholtz free energy as

F (T, V ) = −TSconf(T, V ) + 〈eIS(T, V )〉 + fvib(E0, T, V )

− kBTb(V )(〈eIS(T, V )〉 − E0(V )). (39)

The corresponding T dependences of 〈eIS(T, V )〉 and Sconf are

〈eIS(T, V )〉 = E0(V ) − b(V )σ2 − βσ2(V ) (40)

and

Sconf(T, V )/kB = α(V )N − (〈eIS(T, V )〉 − E0(V ))2

2σ2(V )
. (41)

The Gaussian PEL predicts the existence of a finite T , named TK in honour of
Kauzmann [6], at which Sconf = 0. Below TK the system remains trapped in this low
energy basin with energy eK and its free energy coincides with the basin free energy. In
terms of Gaussian PEL parameters, TK and eK are given by

eK = E0 −
√

2αNσ

kTK =

(√
2αN

σ2
− b

)−1

.
(42)

Note that, in the harmonic Gaussian approximation, from a plot of 〈eIS(T )〉 versus
1/T , two of the parameters of the Gaussian distribution, σ2 (from the slope) and E0

(from the intercept), can be evaluated. Similarly, from fitting Sconf(T ) according to
equation (41), one can evaluate the parameter α.

The fitting parameters α(V ), E0(V ) and σ2(V ) depend in general on the volume. A
study of the volume dependence of these parameters, associated with the V dependence of
the shape indicators (a(V ) and b(V ) in equation (37)), provides a full characterization of
the volume dependence of the landscape properties of a model, and offers the possibility
of developing a full equation of state based on statistical properties of the landscape.

When comparing numerical simulation data and theoretical predictions—
equations (40) and (41)—the range of temperatures must be chosen with great care.
Indeed, at high T , the harmonic approximation will overestimate the volume in configu-
ration space associated with an inherent structure. While in the harmonic approximation
such a quantity is unbounded, the real basin volume is not. Indeed, the sum of all basin
volumes is equal to the volume of the system in configuration space. Anharmonic correc-
tions, if properly handled, should compensate such overestimate, but at the present time,
no model has been developed for correctly describing the high T limit of the anharmonic
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Figure 7. Temperature dependence of the IS energy for the LW-OTP model for
five different densities. In all cases, a 1/T dependence, consistent with a Gaussian
landscape, is observed.

component. Numerical studies have shown that the range of validity of the present esti-
mates of the anharmonic correction does not extend beyond the temperatures at which the
system already shows a clear two-step relaxation behaviour in the dynamics. Indeed, the
presence of a two-step relaxation is a signature of the system spending a time larger than
the microscopic characteristic time around a well defined local minimum. Support for the
harmonic Gaussian approximation comes from a series of studies based on fragile liquids.
Figure 7 shows the T dependence of 〈eIS(T, V )〉 for the case of the LW-OTP model. Sim-
ilar results have been obtained for SPC/E water and BMLJ cases. Less convincing is the
case of SS, where anharmonic corrections play a relevant role (see figure 5).

Figure 8 shows the comparison of the Gaussian prediction for the configurational
entropy, both in eIS and in T , for the BMLJ case. If the Gaussian model were to hold
even beyond the region of T or eIS where numerical equilibrium data are available, Sconf

would vanish at a finite T , which defines TK and eK for the model.
Another test of the harmonic Gaussian model can be carried out when a large number

of IS have been generated for each T . In this case, it becomes possible to study the
distribution P (eIS, T ) [23, 39, 51] of energies sampled at a given temperature. In the
Gaussian harmonic approximation, this distribution is a Gaussian, with a T independent
variance [52]. Indeed,

P (eIS, T ) =
Ω(eIS)e

−βeIS+fvib(eIS,T )

Z(T, V )
. (43)

In the harmonic approximation βfvib can be written as

βfvib(eIS, V ) = −3N ln(β) −
〈 3N∑

j

ln[�ωj]

〉
eIS

= −3N ln(β) − 3N(a + beIS) (44)
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Figure 8. IS energy (left) and temperature (right) dependences of the
configurational entropy for the BMLJ model. The full lines extrapolate to
Sconf = 0 at the Kauzmann energy eK and the Kauzmann temperature TK. The
arrow indicates the range of energy values of the crystal [49, 50].

where use has been made of equation (37). Hence, P (eIS, T ) results in [52]

P (eIS, T ) =
exp

(
−(eIS − 〈eIS(T, V )〉)2/2σ2

)
√

2πσ2
. (45)

The evaluation of P (eIS, T ) offers also an alternative procedure for estimating
Sconf(eIS) for the harmonic vibrational free energies [53]. Indeed, the quantity
ln[P (eIS, T )]+βeIS is only a function of eIS times an unknown multiplicative T dependent
factor. Curves obtained at different T can be superimposed according to the histogram
reweighting techniques to generate a vibrationally weighted Ω(eIS), as shown in figure 9.
In the case of equal shape basins (b = 0 in equation (37)) the resulting histogram coincides
with Sconf(eIS).

7.1. Potential energy landscape equation of state: the Gaussian harmonic landscape

In the case of the Gaussian harmonic landscape it is possible to derive an expression for
the equation of state P (T, V ) fully based on PEL properties [48]. Indeed, P (T, V ) =
−(∂F (T, V )/∂V )|T . The volume derivative of equation (12) involves only the landscape
parameters α, σ2, E0 and b. The resulting expression for P can be written as

P (T, V ) = Pconst + TPT + T−1P1/T , (46)
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Figure 9. Evaluation of the (vibrationally weighted [53, 54]) configurational
entropy for the BMLJ model. Note that for T < 0.8, curves for different T can
be scaled onto a master plot, which provides an estimate of the eIS dependence
of the configurational entropy (redrawn from [23, 53]).

where

Pconst(V ) = − d

dV
[E0 − bσ2]

PT (V ) = R
d

dV
[α − a − bE0 + b2σ2/2]

P1/T (V ) =
d

dV
[σ2/2R].

(47)

Stability at high T implies that PT must be positive. The case b = 0 helps in clarifying
the landscape origin of the three contributions. The T independent constant term Pconst
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originates from the volume dependence of the energy scale of the system E0. The linear
term TPT arises from the entropic contribution encoded in the V derivative of the total
number of states per particle α and the vibrational contribution associated with the change
of the density of states with V . Finally, the low T dominant P1/T /T term has an entropic
origin, related to changes in the numbers of states explored.

Along an isochore, the high T behaviour is fixed by the linear term TPT > 0, while
the low T behaviour is controlled by the T−1 term T−1P1/T . From equation (46) one can
also conclude that in the harmonic Gaussian landscape the pressure along an isochore
either is monotonically increasing with T (if P1/T ≤ 0) or has a minimum (as found in

the case of liquids with density anomalies [38]) at T =
√
P1/T (V )/PT (V ) (if P1/T > 0).

Equation (46) offers the possibility of understanding the landscape parameters
responsible for density anomalies [38]. Indeed, a Maxwell relation states that a density
maximum state point (i.e. a point where ∂V/∂T |P = 0) is simultaneously a point at which
the T dependence of the pressure along an isochore has a minimum (∂P/∂T |V = 0). Hence,
the condition for the existence of density maxima, from equation (46), is that P1/T (V ) > 0
which, in the PEL formalism, corresponds to dσ2/dV > 0. Thus, the landscape property
which determines the anomalous density behaviour is the V dependence of σ2. Anomalous
behaviour can be found only within a region of volumes where σ2 increases with V ,
delimited by the V at which dσ2/dV = 0. In passing, we also note that the structure of
equation (46) suggests that, in the harmonic Gaussian landscape, density minima (maxima
in isochoric P (T )) cannot be present.

7.2. Gaussian landscape in soft spheres

The volume dependence of the landscape parameters, under the assumption of a Gaussian
PEL, can be calculated analytically for the case of the soft sphere potential [55]–[58]. The
self-similar nature of the potential V (r) ∼ ε(σ/r)n implies that βF ex, the free energy in
excess of the ideal gas free energy, is a function of the scaling variable γ ≡ TV n/3 [59]. In
the landscape formalism, this means that β〈eIS〉 and Sconf must be functions of γ, as well
as the excess basin free energy. Looking at equations (40) and (41) one immediately sees
that in the case of a Gaussian PEL,

E0 ∼ V −n/3

σ2 ∼ V −2n/3

α ∼ V 0.

(48)

Similar calculations show that, in the harmonic approximation, normal model
frequencies scale as

ω2
i ∼ V −(n+2)/3. (49)

For the case of SS, some other interesting relations can be derived from the self-
similarity of the potential. In particular, isotropic compression of an IS SS configuration
always leaves the system in a minimum. The energy of the minimum scales with volume as
eIS ∼ V −n/3 and, hence, the pressure experienced in the IS configuration is simply given by

PIS = −deIS

dV
=

n

3

eIS

V
. (50)
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Figure 10. Volume dependence of the parameters α, E0 and σ2 for SPC/E, LW-
OTP and SS cases. Note that in the case of SPC/E water, a region of volumes
exists where ∂σ2/∂V > 0, the PEL indicator of density anomalies [38].

The contribution to P arising from the harmonic vibrational degrees of freedom can also
be estimated from the scaling relation in equation (49). Indeed,

Pvib = −∂fvib

∂V
= kT

∂
∑3N

i ln[β�ωi]

∂V
= 3N

n + 2

6

kT

V
. (51)

As a result, for the soft sphere case, in the harmonic approximation, the EOS can be
written as13

P = PIS + Pvib =
n

3

eIS

V
+

n + 2

2

NkT

V
. (52)

13 The same relation can be derived in a standard approach by remembering that in self-similar potential, the
excess pressure P ex and potential energy E are related by P = (n/3)E/V . This expression can be read as the fact
that isotropic compression changes only the potential energy and does not touch the excess entropy of the system.
By adding the ideal gas contribution to the pressure and writing, in the harmonic approximation, E = eIS+ 3

2
NkT ,

one recovers PV = (n/3)eIS + ((n + 2)/2)NkT .
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Figure 11. Temperature dependence of 〈eIS〉 for BKS silica. The 1/T law
characteristic of Gaussian landscapes is observed only in a restricted region of
temperatures. Redrawn from [62].

7.3. Volume dependence of α, E0, σ2

The volume dependences of the landscape parameters have been studied numerically for
the BMLJ [39], SPC/E [38] and LW-OTP [19, 48] models. In the case of soft spheres
(see equation (48)) the self-similar nature of the interaction potential fixes the volume
dependence of the landscape parameters.

Figure 10 shows the V dependence of the Gaussian PEL parameters for LW-OTP,
SPCE/E and SS cases. For these continuous potentials, the total number of states per
particle α is weakly dependent on V , slightly increasing with increasing V . The energy
scale E0, which is monotonically decreasing in SS, has a minimum in both SPC/E and
LW-OTP cases, as expected from the balance between attractive and repulsive energies.
The variance σ2 is monotonically decreasing in SS and LW-OTP cases. In the SPC/E
case it shows the expected range of volumes where dσ2/d2V > 0, the harmonic Gaussian
landscape signature of density anomalies.

8. Landscape of strong liquids

The statistical properties of a landscape for strong liquids are a topic of current
investigation. In the case of BKS silica, whose PEL properties have been investigated [60]–
[65], there is clear evidence that at low T , the distribution of IS energies significantly
deviates from the Gaussian one [62]. The breakdown of the Gaussian approximation is
extremely clear in the T dependence of 〈eIS(T, V )〉 (figure 11) which approaches a constant
value at low T and from the analogous effect in Sconf (figure 12) [62, 64]. Sconf does not
appear to extrapolate to zero at a finite T , suggesting the absence of a finite Kauzmann
T in this model. The deviation from Gaussian behaviour has been recently connected
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Figure 12. T dependence of Sconf for BKS silica at ρ = 2.36 and 3.01 g cm−3.
Note that in this model, at the lowest density, Sconf does not appear to vanish at
a finite T . Dashed lines represent possible extrapolations. Redrawn from [62].

to the progressive formation of a defect free tetrahedral network which acts as a ground
state for the system [65]. Support for this interpretation has recently been provided from
the landscape analysis of a maximum valency model [41], which identifies in the finite
degeneracy of the ground state and in the logarithmic distribution of Ω(eIS) close to the
ground state the key ingredients of the landscape of strong liquids. It is also interesting to
observe that the breakdown of the 1/T dependence in 〈eIS〉(T, V ) takes place at T which
the dynamics of BKS silica crosses from super-Arrhenius to Arrhenius [66]. The search
for an accurate model for the landscape of strong liquids is a current topic of research and
we expect significant developments in the next few years.

9. Ageing in the PEL formalism: thermodynamics with one additional effective
parameter

The PEL framework is particularly suited for describing out-of-equilibrium conditions.
As seen previously, the system is represented by its eIS energy, independently from
thermodynamic conditions. The system is said to be in equilibrium at T if eIS is,
within fluctuations, equal to 〈eIS〉(T ). If eIS is different from 〈eIS〉(T ), a time evolution
of eIS takes places. I will call this process an out-of-equilibrium (ageing) dynamics.
I will not discriminate between conditions where thermal equilibrium can never be
reached (a liquid to glass transformation) and conditions where, within our observation
time window, final equilibration can be achieved (liquid to liquid, glass to liquid
transformations)14.

14 In theoretical studies of out-of-equilibrium conditions, asymptotic results are often derived for tw → ∞. The
word ageing is limited to use in cases in which, even at infinite time, the system is out of equilibrium. Hence, in
some studies glass to liquid and liquid to liquid transformations do not qualify for the description of ‘ageing’.
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Figure 13. Schematic representation of the ageing process in the PEL framework.
Before the T quench, the system is in equilibrium, exploring basins of the
landscape with appropriate energy (left panel). At short times after the quench
(middle panel), the vibrational degrees of freedom thermalize to Tf , but the
system has not changed basin. For longer times (right panel), the system explores
deeper and deeper basins, but with his vibration properties fixed by Tf .

Consider a system in equilibrium at a starting Ti which is suddenly coupled to a
thermostat with a final temperature Tf . The hypothesis of a clear separation between
fast intrabasin dynamics and slow interbasin dynamics is equivalent to stating that after
the T change the vibrational degrees of freedom thermalize immediately to the new
bath temperature Tf . At short times, the system is confined in the original basin but
the exploration of the basin (the vibrational component) is now controlled by Tf . If
Tf < Ti, during the ageing dynamics, the system explores progressively deeper and deeper
basins until it reaches basins with depth consistent with the equilibrium expected value
〈eIS(Tf)〉. During ageing, the vibrational component is always fixed by Tf . A schematic
representation of ageing on the PEL is provided in figure 13, where the location of
the system on the landscape is represented before the T quench (left), a short time
after the T quench (middle) and for longer time (right) when the exploration of the
landscape is taking place. It is important to point out that this idea of interpreting the
ageing dynamics in terms of motion of the landscape requires an apparently inoffensive
hidden hypothesis, i.e. the fact that the distribution of levels, rebuilt from the analysis of
equilibrium configurations, is identical to the one explored during the ageing dynamics.
In other words, the basins explored in the ageing dynamics are assumed to be identical
to the ones explored in equilibrium, not only in their average properties but also in their
intrinsic inhomogeneities (fluctuations).

Figure 14 shows, for the BMLJ case, the evolution of 〈eIS(tw)〉 as a function of the
time tw elapsed from the T quench. One can see that 〈eIS(tw)〉 decreases with a logarithmic
time dependence. Following the theoretical work developed for the ageing of disordered
p-spin models [67]–[69], one can attempt to develop a thermodynamic description of the
ageing system within the PEL framework. The idea is to evaluate the partition function
of the system, from the known distribution of IS basins, under the constraint that the
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Figure 14. Left: equilibrium T dependence of eIS for the BMLJ model. Right:
waiting time dependence of eIS following a T quench from T = 0.55 to 0.3.

basin free energy is fixed by the bath temperature (which we call T in the following).
With this hypothesis, we can write the system partition function as

Z(Teff , T, V ) =
∑
eIS

Ω(eIS)e
−βefffbasin(eIS,T,V ) (53)

where an unknown βeff ≡ 1/kTeff is introduced to account for the out-of-equilibrium
conditions. When βeff = β, equilibrium conditions are restored. The resulting free energy
can be calculated by finding the solution of the equation

Teff
∂Sconf (eIS)

∂eIS
− ∂fbasin(eIS, T, V )

∂eIS
= 1. (54)

Differently from the equilibrium case, where T and V are fixed and eIS(T, V ) is
unknown, in the case of ageing, we assume that we know, beside the bath T and V ,
also the basin in which the system is located at tw (i.e. the eIS value) and we search for
the Teff solution of the above equation15. The resulting expression for Teff is

Teff =
∂fbasin(eIS, T, V )/∂eIS

∂Sconf (eIS)/∂eIS
(55)

or, by using the equilibrium expression for ∂Sconf (eIS)/∂eIS from equation (11),

Teff =
∂fbasin(eIS, T )/∂eIS

∂fbasin(eIS, Teq)/∂eIS

Teq (56)

15 It may help to think of the thermodynamic approach to OOE systems in terms of the microcanonical ensemble.
Indeed, if we neglect for a moment the vibrational contributions, what we are doing is assuming knowledge of
the energy of the system (eIS) and assuming that the system cannot change its energy (due to the fact that
relaxation processes are extremely slow) but it can equilibrate among different basins with the same eIS. Under
these assumptions, what we are essentially writing out are the microcanonical expressions for T at fixed energy.
The presence of non-zero vibrational contributions only makes the formalism a little bit more complicated; it does
not change the basic meaning.
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where we have indicated by Teq the temperature at which, in equilibrium, the basin eIS is
explored. To get a better grasp of the meaning of Teff one can consider the simple case of
a PEL where all basins have identical volume (i.e. basin shape independent from the basin
depth). In this simple case, the only basin free energy difference arises from the basin
depth and ∂fbasin(eIS, T )/∂eIS = ∂eIS/∂eIS = 1. Hence Teff = Teq. In this simple case, the
effective temperature coincides with the temperature at which in equilibrium the basin of
depth eIS is explored, providing a direct meaning for the concept of effective temperature.

According to the approach outlined, in out-of-equilibrium conditions the system free
energy can be written as

F (Teff , T, V ) = −TeffSconf(eIS) + fbasin(eIS, T, V ). (57)

The additional parameter Teff provides an indication of the region of configuration space
explored by the ageing system. During the ageing dynamics, the system will slowly explore
regions of the landscape of lower and lower depth.

It is instructive to look at the energetic and entropic balance during ageing. For
simplicity, I focus on the case of basins of identical shape (i.e. ∂fbasin/∂eIS = 1). From
an energetic point of view, during ageing the system evolves from eIS to eIS − deIS, with
deIS > 0. From an entropic point of view, the system decreases its entropy, going from
Sconf(eIS) to Sconf(eIS − deIS), which from the definition of Teff (equation (55)) can be
written as

dSconf = −∂Sconf

∂eIS
deIS = −deIS

Teff
. (58)

The reservoir, at bath temperature T , absorbs the energy deIS, giving rise to a positive
entropy change dSreservoir = deIS/T . The reservoir + liquid entropy change in the
elementary ageing process is the positive quantity −(deIS/Teff) + deIS/T , in agreement
with the second law of thermodynamics [70].

This ageing dynamics is associated with a progressive decrease of Teff . A complete
understanding of the ageing dynamics requires the prediction of Teff(tw), a goal far beyond
the current state of the art. As the landscape analysis discussed before for the equilibrium
case does not provide an indication of the T dependence of the dynamics, here the
thermodynamic formalism for out-of-equilibrium liquids does not allow us to predict
dynamic information—only static properties at a fixed tw value, once eIS or equivalently
Teff is known.

9.1. An example: ‘classical’ para-hydrogen and ortho-hydrogen

A simple case to study for obtaining a better grasp of the concept of Teff is offered by
a classical version of para-hydrogen and ortho-hydrogen, viewed here as a model of a
system composed of two different basins. To do this, we condense the combination of
nuclear spin statistics with the rotational partition function and the allowed rotational
quantum numbers which generate the two hydrogen configurations into differences in
basin shapes. In equilibrium, at each T , there is a precise ratio between the two possible
configurations of hydrogen. In reality, conversion from para-hydrogen to ortho-hydrogen
or vice versa—which we model as the change of basin—is extremely slow and requires the
presence of a catalyst. Out-of-equilibrium conditions may last for extremely long times.

doi:10.1088/1742-5468/2005/05/P05015 26

http://dx.doi.org/10.1088/1742-5468/2005/05/P05015


J.S
tat.M

ech.
(2005)

P
05015

Potential energy landscape description of supercooled liquids and glasses

In this example, we model this system (classically!) with two basins, one for the ortho-
hydrogen and one for the para-hydrogen configurations. We assume that each basin has
its own depth and its own curvature.

The partition function Z for the system can be written as Z = Zpara+Zortho, summing
the partition functions of the two configurations. Assuming classical harmonic basin
free energies, indicating by eISpara the IS energy and ω2

jpara
the curvature along the jth

eigenmode, one can write

Zpara =
e−βeISpara∏
j β�ωjpara

(59)

and a similar expression for Zortho. The probability P of finding, in equilibrium, hydrogen
in the para-configuration or ortho-configuration is given by

Ppara

Portho
=

Zpara

Zortho
= e−β(eISpara−eISortho

)(1−kBTb) (60)

where we have defined

b =

∑
j ln[ωjpara/ωjortho

]

eISpara − eISortho

. (61)

Note that 1 − kBTb plays the role of discrete version of ∂fbasin(eIS, T )/∂eIS.
Next we change the bath temperature to Tbath and assume that, while collisions are

not very effective for converting configurations, they succeed in thermalizing vibration.
We can then ask ourselves which is the effective temperature we have to use if, with the
vibrational statistical weight controlled by Tbath, the ratio Ppara/Portho is the same as the
one in equilibrium at temperature Teq, just before the quench.

To predict the same ratio Ppara/Portho one has to impose that

βeff(1 − kBTbathb) = βeq(1 − kBTeqb) (62)

which gives

Teff =
(1 − kBTbathb)

(1 − kBTeqb)
Teq (63)

in agreement with the general expression in equation (55).

10. OOE equation of state

If the thermodynamic generalization of equation (57) is meaningful, its volume derivative
must provide a measure of the pressure experienced by the ageing system. Since the free
energy is now a function of T, V and Teff , the EOS can be formally written as

P (Teff , T, V ) = −∂F (Teff , T, V )

∂V

∣∣∣∣
T,Teff

(64)

or

P (Teff , T, V ) = Teff
∂Sconf (eIS)

∂V

∣∣∣∣
T,Teff

−∂fbasin(eIS, T, V )

∂V

∣∣∣∣
T,Teff

. (65)
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This expression, providing a formal link between P and Teff , T, V , shows also that,
by inversion of the expression, it is possible to define Teff as Teff(P, T, V ). In equilibrium,
the EOS can be inverted providing a relation T (P, V ) which allows us to predict that two
systems with the same P and V are two realizations of the same thermodynamic state
point, having the same T . The OOE EOS can also be inverted to predict that two OOE
systems, with the same P, T and V , have the same Teff and hence are thermodynamically
identical. The history dependence is coded in just one parameter, Teff . In the present
formalism, two systems, under the same external conditions (same T , V and P ), even if
they have different thermal histories, have the same Teff and hence are identical.

10.1. Inherent structure pressure

An additional insight into the expression for the free energy of an OOE system is provided
by the concept of IS pressure, PIS, i.e. of the pressure experienced by the system in the
IS configuration. Generally, PIS can always be calculated by evaluating the change in
potential energy with volume, on performing an infinitesimal isotropic scaling of the
coordinates. This definition of pressure of a configuration is equivalent to the virial
expression, commonly used in simulations, and it is not limited to configurations which
are local minima of the landscape. In most models for liquid, an infinitesimal compression
of an IS configuration moves the system out from the minimum and hence the change in
potential energy does not coincide with the change in eIS.

To provide an expression for PIS within the PEL approach, we recall that an IS can be
considered as the T = 0 K glass associated with a liquid state configuration. Interpreting
the steepest descent path as a quench to T = 0 K, PIS can be identified with the expression
provided in equation (65), setting the bath T to zero, i.e. PIS = P (Teff , 0, V ). Using the
OOE thermodynamic formalism derived above, it is possible to show that PIS is given
by [55, 56]

PIS(V, eIS) = −∂eIS

∂V

∣∣∣∣
Sconf

. (66)

It is interesting to note that the calculation of PIS requires an infinitesimal change of V
at constant configurational entropy, confirming that PIS does not coincide with −∂eIS/∂V
on an isotropic scaling of the system.

In the case of the soft sphere model, the validity of equation (66) can be satisfactorily
tested. Indeed, for this model an isotropic scaling of the coordinates applied to an IS
configuration leaves the scaled system in an IS configuration, due to the self-similarity
of the interaction potential. Minima remain minima under isotropic scaling. In all other
potentials, minima disappear or appear under coordinate scaling [13]. The self-similar
properties of the potential are also responsible for the self-similar nature of the PEL. As a
consequence, isotropic compression is, by construction, a constant configurational entropy
path. These two properties prove that equation (65), derived from the OOE formalism,
is the correct expression, at least for the soft sphere potential.

11. Numerical test of the OOE approach

The quantification of the statistical properties of the PEL sampled by the equilibrium
liquid at different volumes is the key feature for developing a landscape thermodynamic
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Figure 15. Representation of the numerical experimental protocol. The full
black lines indicate the equilibrium equation of state for the LW-OTP model.
The dashed line indicates the fast, steepest descent, constant volume quench.
The green arrow indicates the heating of the glass at constant pressure, up to the
liquid state.

approach and for generalizing it to out-of-equilibrium states. As long as a configuration is a
typical equilibrium configuration (which properly indicates that there exists a T such that
the chosen configuration is a representative equilibrium configuration), then the volume
and the eIS values are the only information required to predict other thermodynamic
properties of the system (basin shape, PIS and so on). Of course, a strong hypothesis,
which lies at the basis of the validity of the OOE EOS landscape approach, is that the
chosen configuration is indeed explored in equilibrium. Breakdown of such a hypothesis
will be discussed in the next section.

A series of works based on the OTP potential have focused on the possibility
of modelling the thermodynamics of out-of-equilibrium liquids within the landscape
approach. The interested reader can refer to [71, 72]. Here I review the case of constant P
heating of a glass, generated via constant V quenching of equilibrium liquid configurations.
The experimental protocol (the history of the sample) is shown in figure 15. It is
important to observe that the constant volume steepest descent minimization (instant
quench) guarantees that the starting glass at T = 0 K is a frozen liquid configuration.

The OOE EOS does not provide indications of the dynamic evolution of the system,
in the same way as the equilibrium thermodynamic approach does not provide information
on the equilibrium dynamics. On the other hand, if information on the t dependence of the
eIS explored (which is equivalent to information on the t dependence of the effective T ) is
provided, then using the OOE EOS, the t dependence of the volume can be predicted and
compared with the simulation results. Figure 16 shows the t dependence of the eIS, during
the heating at constant pressure for the LW-OTP model. This set of eIS data, together
with the T (t) and P (t) values, is used to predict the t dependence of V , PIS and any
other property of the system, for example the average basin curvature. The comparisons
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Figure 16. Evolution of thermodynamic quantities during constant pressure
heating of a glass for the LW-OTP model. From top to bottom: eIS, V , PIS

and 〈
∑6N−3

j=1 ln(ωj/ω0)〉/N . The symbols are MD data; the lines in the bottom
three panels are predictions based on the landscape OOE EOS.

between the theoretical predictions and the corresponding numerical data are also shown
in figure 16.

Similar agreement has been observed for constant T compression and for constant
V heating. In all cases, the starting glass has been generated with steepest descent
procedures and hence the starting glass structure is by construction well represented by
an equilibrium liquid configuration.

12. Ageing in the PEL formalism: breakdown of the one-fictive-parameter
description

The possibility of associating a glass configuration with a liquid state point via one
effective temperature is the basic assumption of the landscape EOS. The results reviewed
in the previous section show that when the out-of-equilibrium process does proceed via
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Figure 17. Basin depth dependence of the shape factor S calculated from
equilibrium configurations at different temperatures (full line) and from ageing
configurations at different times (symbols). In all cases, the ageing simulations
refer to instantaneous temperature quenches from T = 5 to the T indicated in
the label. Redrawn from [73].

states which can be connected to equilibrium configurations, the OOE thermodynamics
is successful in interpreting the thermodynamic evolution of the system.

Ageing phenomena at finite T provide a case where the basic landscape assumption
breaks and the OOE EOS cannot be properly used. In these cases, one additional
parameter is not sufficient any longer.

Simple evidence of the breaking of the basic landscape hypothesis is provided by a
comparative study of the shape of the basin explored in equilibrium and in the ageing
dynamics following a T jump, at constant V for the BMLJ model. Figure 17 shows S,
defined in equation (25), calculated from IS configurations extracted from equilibrium
configurations, and contrasts its eIS dependence with the same quantity evaluated from
configurations extracted in the ageing runs. At very short times, when the ageing liquid
has a configuration not very different from the starting equilibrium configuration, the
relation S versus eIS in ageing is identical to the equilibrium one. On increasing tw, the
ageing curves separate more and more from the equilibrium curve, proportionally to the
bath T . For extremely deep quenches (like the T = 0.1 one in the figure) the decrease on
the landscape takes place at almost constant S. Only when the bath T is close to the mode
coupling temperature (which for the BMLJ model has been estimated at T ≈ 0.43 [28])
do equilibrium and ageing curves coincide.

Results shown in figure 17 suggest that only when the change of external parameters
is small, or when the system is close to equilibrium, does the evolution of the equilibrating
system proceed along a sequence of states which are explored in equilibrium. Under these
circumstances, the location of the ageing system can be traced back to an equivalent
equilibrium state, and a fictive temperature can be defined. In this approximation,
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a thermodynamic description of the ageing system based on one additional parameter
can be provided. When the external perturbation is significant, like in hyperquenching
experiments [74], the ageing dynamics propagates the system along a path which is not
explored in equilibrium [37, 75]. In this case it becomes impossible to associate the ageing
system with a corresponding liquid configuration.

A more convincing evidence of the breakdown of the one-fictive-parameter description
under ageing is provided by the so-called crossover experiment. In the previous sections, I
have discussed the fact that in the case of glasses, systems in out-of-equilibrium conditions,
the T and V values are not sufficient for predicting P , since the state of the system depends
on its previous thermal and mechanical history. Different glasses, at the same T and V , are
characterized by different P values. When it is possible to encode the previous history of
the system in only one additional parameter, then two glasses with identical composition
having not only the same T and V but also the same P are the same glass. If this is
the case, the two glasses should respond to an external perturbation in the same way and
should age with similar dynamics.

In the 1960s, Kovacs and co-workers designed an experimental protocol [76]–[78] for
generating distinct glasses with different thermal and mechanical histories but with the
same T , V and P values. Polyvinyl acetate was equilibrated at high temperature Th

and then quenched at low temperature Tl, where it was allowed to relax isothermally for
a waiting time tw insufficient for reaching equilibrium. The material was then reheated
to an intermediate temperature T , and allowed to relax. The entire experiment was
performed at constant pressure P . The observed dynamics of the volume relaxation
toward equilibrium—in the last step at constant T and P—was striking; the volume
crosses over the equilibrium value, passes through a maximum, which depends upon the
actual thermal history of the system, and then relaxes to the equilibrium value. The
existence of a maximum clearly indicates that there are states with the same V (to the
left and to the right of the maximum) which, although T , V and P are the same, evolve
differently. Thus, this experiment strongly supports the idea that one additional effective
variable is not sufficient for uniquely predicting the state of the glass.

Recently, the Kovacs experiment (also known as the crossover experiment) has been
reproduced numerically (see figure 18), to develop intuition as regards the differences
between states with the same T , V and P and the conditions under which out-of-
equilibrium thermodynamics may be used to describe glass states. It has been found that
for sufficiently deep quenching temperatures, and long ageing times, following the protocol
proposed by Kovacs, it is indeed possible to identify two distinct states with the same
T , V and P which evolve in different ways. When the system is forced to age following
large amplitude T jumps, i.e., at low Tl, it starts to explore regions of the landscape which
are never explored in equilibrium. Under these conditions, it is not possible any longer
to associate a glass with a ‘frozen’ liquid configuration via the introduction of a fictive
temperature or pressure.

It is a challenge for future studies to find whether a thermodynamic description
can be recovered by decomposing the ageing system into a collection of substates, each
of them associated with a different fictive temperature—a picture somehow encoded
in the phenomenological approaches of Tool and co-workers [79] and Kovacs and co-
workers [80]—or whether the glass, produced under extreme perturbations, freezes in some
highly stressed configuration which can never be associated with a liquid state. Studies of
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Figure 18. Volume relaxation showing the crossover effect in a molecular system.
Top: a system of 343 OTP molecules at constant P = 16 MPa is equilibriated at
Th = 400 K, quenched at several low temperatures Tl and left to age for te = 50 ns,
a time insufficient for reaching equilibrium at Tl. The system is then heated at the
intermediate temperature T = 280 K and the V relaxation dynamics is recorded
(symbols). For the case Tl = T , the system is directly brought from Th = 400 to
T = 280 K and hence tw = 0. For time shorter than 20 ps, T and P have not
yet equilibrated to the final values. Bottom: volume relaxation at T = 280 K, at
fixed Tl = 150 K for different tw values.

the fluctuations around the mean values [52] will help in understanding differences between
the landscapes explored by the system in equilibrium and in ageing; the hope is that some
of you will be able to formulate a thermodynamic approach of wider applicability.
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