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We evaluate the phase diagram of the “BKS” potential[van Beest, Kramer, and van Santen, Phys. Rev. Lett.
64, 1955 (1990)], a model of silica widely used in molecular dynamics(MD) simulations. We conduct MD
simulations of the liquid, and three crystals(b-quartz, coesite, and stishovite) over wide ranges of temperature
and density, and evaluate the total Gibbs free energy of each phase. The phase boundaries are determined by
the intersection of these free energy surfaces. Not unexpectedly for a classical pair potential, our results reveal
quantitative discrepancies between the locations of the BKS and real silica phase boundaries. At the same time,
we find that the topology of the real phase diagram is reproduced, confirming that the BKS model provides a
satisfactory qualitative description of a silicalike material. We also compare the phase boundaries with the
locations of liquid-state thermodynamic anomalies identified in previous studies of the BKS model.
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I. INTRODUCTION

The melts of silica, water, and a number of other sub-
stances at ambient pressureP form so-called “tetrahedral liq-
uids,” that is, liquids with properties that are strongly influ-
enced by the occurrence of a network of tetrahedrally
arranged atoms. This class of substances includes other mo-
lecular systems ofAB2 stoichiometry(e.g., GeO2 and BeF2),
as well as atomic systems(e.g., Si and C). Such liquids dis-
play a rich spectrum of behavior, including density maxima
[1], dynamical anomalies[2], as well as the ability to form
numerous crystal polymorphs[3]. Evidence also exists that
liquid-liquid phase transitions occur in some of these sys-
tems[4–6]. Yet a detailed understanding of the commonali-
ties among these materials is hampered by our incomplete
knowledge of their properties under comparable conditions.
For example, we have extensive knowledge of liquid water
for temperaturesT near and above the melting temperature
Tm for Tù0.85Tm, but the behavior below this range remains
a subject of debate[7]. Conversely, we have detailed knowl-
edge of molten silica at ambientP for TøTm, but a much
less complete picture of the behavior at higherT andP [8].

Computer simulations have contributed to filling this
knowledge gap by providing numerical estimates of liquid
behavior outside the range of current experiments. However,
a key element has been missing from the description of many
of these model materials: their phase diagrams. In an experi-
mental study of a molecular liquid, knowledge of the phase
diagram—that is, the coexistence boundaries demarcating
the stability fields of the liquid, gas, and various crystal
phases—provides a vital reference that elucidates the ob-
served thermodynamic, dynamic, and structural properties of
the liquid phase. Simulations of molecular liquids are com-
monly based on semi-empirical classical interaction poten-
tials that cannot be expected to precisely reproduce the ex-
perimentally known phase diagrams of the real material. It is

perhaps for this reason that comprehensive phase diagrams
have not yet been developed for the simulation models used
widely to study the complexities of important molecular liq-
uids, such as water and silica. However, as a consequence, it
has not been possible to self-consistently relate the behavior
found in simulations to the relevant phase boundaries of the
model system, as would normally occur in an experimental
study.

With these motivations, we here focus on the van Beest,
Kramer, and van Santen(BKS) model of silica[9]. The BKS
model has played an important role over the last decade in
numerous studies of silica and related materials. For ex-
ample, the BKS model has been used in studies of pressure-
induced amorphization of quartz[10], the a- to b-quartz
phase transition[11,12], the fragile-to-strong dynamical
crossover in liquid silica[13–15], the possibility of liquid-
liquid phase separation in silica[5], and in the study of the
generic topological and entropic properties of random tetra-
hedral networks[16]. Despite this interest in the BKS model,
only fragments of specific crystal-crystal phase boundaries
have been located, such as thea- to b-quartz transition. To
our knowledge no data currently exist for the melting lines,
though the liquid-gas coexistence curve has been located for
a model similar to that of BKS[17]. In this paper we report
the phase diagram of the BKS model, finding the stability
fields in theP-T plane for the liquid phase, and three of the
prominent crystal phases of real silica, stishovite, coesite,
andb-quartz.

II. METHODS

We use the BKS potential, modified at short range to pre-
vent unphysical “fusion” events, and at long range to reduce
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the system size dependence of measured properties and to
facilitate determination of minimum energy structures(“in-
herent structures”). Reference[15] provides a detailed speci-
fication of the modified potential, a summary of which is
provided in the Appendix of the present work. Results ob-
tained with our modified potential differ little from those
found using the original BKS potential in terms of averaged
structural and dynamical behavior. As described in Ref.[15],
the values of thermodynamic properties are slightly shifted
compared to the original BKS potential, but the qualitative
behavior is unaffected. The Coulombic contribution to the
energy is evaluated via the Ewald method, where the recip-
rocal space summation is carried out to a radius of nine times
the smallest reciprocal cell width[18]. In all cases, the time
step used in our molecular dynamics(MD) simulations is 1
fs.

We restrict our attention to the liquid phase, and the crys-
tal phases stishovite, coesite, andb-quartz. A number of
other crystal phases of silica are known. However, the sta-
bility fields of these three crystals dominate the phase dia-
gram of silica on the widest scale ofP andT, and are there-
fore natural first choices for examination[3]. These three
crystals are also representative of the main types of local
coordination structures found in silica crystals. The structure
of b-quartz is an open network of corner-shared SiO4 tetra-
hedra; coesite is a denser network of corner-shared SiO4 tet-
rahedra; and stishovite is a network of corner- and edge-
shared SiO6 octahedra. Previous work has shown that the
BKS model is appropriate for studying both low and high
density crystal structures[19]. To determine the phase dia-
gram, our approach is to evaluate numerically the Gibbs free
energyG of each of the phases as a function ofP andT, and
then seek the lines of intersection of these surface functions.

A. Liquid free energy

For the liquid phase, we use much of the equation of state
data reported in Ref.[15], plus some new simulation data
generated using the same methodology. These simulations
modeled a system of a fixed number of 444 molecular units
(1332 ions) in the liquid phase along nine isochores from
volumesV=4.6296 to 8.6804 cm3 mol−1, and ranging inT
from nearly 7000 to less than 2500 K(Fig. 1). Each of these
liquid state points was equilibrated at constantV, and using
velocity rescaling to attain a desiredT. Average values ofP
and T were evaluated from subsequent constant-NVE runs
having a duration of ten times the time required for silicon
atoms to diffuse an average of 0.2 nm. The results provide
the total energyEsTd (potential plus kinetic) andPsTd along
the specified isochores. Reference[15] also describes the de-
tails of a calculation of the entropy of the liquid phase,SR
=75.986±0.176 J mol−1 K−1, at a reference state located at
TR=4000 K andVR=8.6804 cm3 mol−1.

The value ofE at an arbitrary pointsVo,Tod on the surface
EsV,Td is evaluated as follows. Along each of the nine iso-
chores simulated, a third order polynomial inT is fitted to the
E data. The value ofE at the desiredT=To is calculated from
the polynomial found for eachV. This creates a set of points
approximating the curveEsVd at T=To. A cubic spline pass-

ing through these points is then found, creating a continuous
function representingEsVd at T=To. The value ofE at the
point sVo,Tod is evaluated from this function. The value ofP
at an arbitrary pointsVo,Tod is calculated in exactly the same
way as forE, except that a fourth order polynomial inT is
fitted to the P data along each of the nine simulated iso-
chores. Examples of the simulated and fitted values ofE and
P are shown in Fig. 2.

The value ofS at an arbitrary pointsVo,Tod is evaluated
by thermodynamic integration, using theEsV,Td andPsV,Td
surfaces constructed as described above. The integration is
given by

FIG. 2. Examples of fitted and interpolated data for the liquid
phase:(a) values ofE along theV=6.655 cm3 mol−1 isochore, fitted
with a cubic polynomial (line); (b) values of P for V
=6.655 cm3 mol−1, fitted with a quartic polynomial(line); (c) inter-
polated values ofE along theT=4000 K isotherm, fitted with a
cubic spline(line); (d) interpolated values ofP for T=4000 K, fit-
ted with a cubic spline(line).

FIG. 1. Location of points in theV-T plane at which we conduct
simulations of the liquid(circles), stishovite(squares), coesite(tri-
angles), andb-quartz(crosses). The large symbols locate reference
statessVR,TRd at which the entropy of each phase is evaluated
directly.
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The definite integral overT is evaluated analytically using
the polynomial representation ofE as a function ofT, on the
reference isochore. The definite integral overV is evaluated
numerically via Simpson’s rule, using data from the cubic
spline representation ofP as a function ofV, constructed
along the desired isotherm.

We combine these numerical estimates to determine the
Gibbs free energyG at arbitrary state points usingGsV,Td
=EsV,Td+VPsV,Td−TSsV,Td. To find G at an arbitrary
sP,Td point, we find the value ofV from PsV,Td such thatP
has the desired value. In this way we can construct arbitrary
isotherms or isobars cutting through theGsP,Td surface.

B. Crystal free energy

We conduct simulations of three crystal phases: stishovite,
b-quartz, and coesite. Our simulations employ 1200 ions for
stishovite, 1536 ions for coesite, and 1350 ions forb-quartz.
We carry out simulations over a range ofV andT appropriate
for each phase, as shown in Fig. 1.

We employ the following procedure to obtain equilibrium
averages forEsTd and PsTd along the specified isochores.
The rationale underlying this procedure is to allow us to
obtain thermodynamic properties along a set of specified iso-
chores, so that we may construct theGsP,Td surface for each
phase in the same way as described above for the liquid
phase. However, obtaining isochoric data for crystals re-
quires care, as unit cell parameters may change withT, even
though the overall density remains fixed. In particular, we
must ensure that anisotropic stresses do not arise in the simu-
lation cell. The procedure, for each crystal, is as follows.

First, we create an initial configuration of stishovite,
b-quartz[20], and coesite[21]. Then for a number of speci-
fied V, we optimize theT=0 atomic coordinates and unit cell
parameters to minimize the energy and to remove anisotropic
stresses. This optimization is carried out at constant overall
V, and consists of alternating applications of the simplex
method(to optimize cell parameters) and the conjugate gra-
dient method(to optimize atomic coordinates) [22]. This op-
timization cycle is repeated until the energy converges to a
minimum value to within a tolerance of 10−10.

Then, for eachT at which we desire thermodynamic prop-
erties, we carry out the following steps.

(i) Beginning with the optimized configuration at the ap-
propriateV, we conduct a 20 ps constant-V simulation, dur-
ing which the desiredT is established via velocity rescaling
every 100 time steps.

(ii ) The configuration produced in(i) is used to initiate a
20 ps constant-NVEsimulation, to ensure that an equilibrium
state at the desiredT has been achieved.

(iii ) To relax any anisotropic stress that may have arisen
in bringing the system to nonzeroT, we carry out a 40 ps
constant-NPT simulation (during which the simulation cell
geometry is unconstrained) where we setP to the average
value from step(ii ).

(iv) Step (iii ) may have changed the overallV of the
simulation cell away from the desired isochore. We restore
the value ofV of the simulation cell by isotropically rescal-
ing the average cell lengths obtained in step(iii ), while leav-
ing the obtained average angles fixed. For all crystals, the
rescaling is never more than 0.5% of the desired volume, and
is typically 0.1%. This rescaled configuration is then used to
initiate a 30 ps constant-NVE simulation, during which the
average values ofP andT are evaluated.

We note that forb-quartz, step(iii ) is carried out for 50 ps
and step(iv) for 80 ps. These longer times are used in order
to resolve the subtle variation ofP along isochores, since
b-quartz displays a density maximum in the region of our
simulations. We also note that theb-quartz phase spontane-
ously converts toa-quartz, but only forT andV outside the
range of simulated points shown forb-quartz in Fig. 1. Our
results therefore pertain only tob-quartz and are not influ-
enced by this crystal-crystal phase transition.

The above procedure providesEsTd andPsTd along speci-
fied isochores. Using the same fitting and interpolation pro-
cedure as is used for the liquid, we can therefore evaluateE
andP at arbitrary state pointssV,Td.

Finally, we need to evaluateS for each crystal at a refer-
ence state point, in order to construct the surfaceSsV,Td via
thermodynamic integration. Our method is as follows. For
each crystal phase we select a reference volumeVR (see Fig.
1), and choose theTR=1500 K configuration obtained at the
end of step(iv) above. Using the conjugate gradient method,
we optimize the atomic positions(at fixed cell geometry) to
find the minimum energy configuration. We then evaluate the
Hessian matrix of this minimum energy configuration and
diagonalize it to find the eigenfrequency spectrum. The clas-
sical harmonic entropy is found from this eigenfrequency
spectrum.(The details of this approach are given in Ref.
[15], where the method is used to find the classical harmonic
entropy of inherent structures of the liquid state.)

To determine the total entropy, we need to evaluate the
anharmonic contribution and add it to the harmonic entropy
found above. We use the energy-optimized configuration for
which we calculate the harmonic entropy as the starting con-
figuration for 15 equally spaced simulations fromT=100 K
to TR=1500 K. We simulate each state point at constantV
using velocity scaling to maintainT at the desired value, with
fixed cell geometry, for 150 ps(400 ps for stishovite). From
these simulations we evaluate

EanhsTd = UsTd −
3

2
Rs1 − 1/NdT, s2d

whereU is the potential energy andR is the gas constant.
Using a polynomial fit,

Eanh= a0 + o
n=2

Nmax

anT
n, s3d

we evaluate
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By using different values ofNmax=2 and 3 for coesite and
b-quartz, and 3 and 4 for stishovite, we obtain error esti-
mates forSanhsTRd. Figure 3 shows the variation ofEanh with
T for each of the three crystals simulated. The resulting
reference entropies for each crystal phase atTR=1500 K at
their respective reference volumesVR are as follows:
44.982 J mol−1 K−1 at VR=8.9933 cm3 mol−1 for b-quartz;
43.682 J mol−1 K−1 at VR=7.1478 cm3 mol−1 for coesite; and
39.536 J mol−1 K−1 at VR=4.7650 cm3 mol−1 for stishovite.
The uncertainty in eachS value is approximately
0.01 J mol−1 K−1.

The above procedure providesEsV,Td , PsV,Td, and the
reference value ofS for each of the three crystal phases. The
procedure to evaluateGsP,Td from this information for each
crystal phase is the same as is used for the liquid phase.

C. Coexistence boundaries and error estimates

For every pair of phases we determine the coexistence
line as the locus of points in the plane ofP andT for which
G for the two phases is the same. Along each locus, we also
find the value ofV for each of the two coexisting phases.
Figure 4(a) shows an example of the intersection of isobars
of G (relative to coesite) for each phase atP=2 GPa.

We perform several checks on our scheme. We calculate
the change inS for a single phase around a closed path in the
V-T plane, which we find to be zero within an error of ap-
proximately 0.01 J mol−1 K−1. We also check that the rela-
tions P=−s]A/]VdT (whereA is the Helmholtz free energy)
and P−Ts]P/]TdV=−s]E/]VdT are satisfactorily met. Fur-
thermore, along the coexistence lines, we check the Clapey-
ron relationdP/dT=DS/DV, whereDS is the difference inS
between the two phases andDV is the difference inV; we
find this to be satisfied to within 0.1 MPa K−1.

We also determine the stishovite/coesite and
b-quartz/coesite coexistence conditions atT=0 by plotting
the potential energyU obtained for the optimized atomic
configurations used to initiate the crystal free energy calcu-
lations described in the previous section. We plotU versusV

FIG. 3. EanhsTd for (a) b-quartz,(b) coesite, and(c) stishovite
along their respective reference isochores. In(a) the solid line is the
fit to the data given by Eq.(3) with Nmax=2. The fit forNmax=3 is
not visible as it overlaps with theNmax=2 curve on the scale of this
plot. In (b) the fits for bothNmax=2 (solid) andNmax=3 (dashed) are
shown. In(c) the fits forNmax=2 (solid) andNmax=4 (dashed) are
shown, while the curve forNmax=3 is not visible as it overlaps with
the Nmax=4 curve.

FIG. 4. (a) DG, the Gibbs free energy relative to that of coesite
sCd for the liquid sLd ,b-quartz sQd, and stishovitesSd phases, at
constantP=2 GPa. The intersections locate points on the stable and
metastable coexistence lines that cross this isobar.(b) Potential en-
ergy U as function ofV at T=0 for various crystal phases. Thin
straight lines represent “common tangent constructions,” the slopes
of which yield theT=0 coexistence pressures plotted in(b).
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at T=0 in Fig. 4(b) and extract the coexistence pressures
from the slope of “common tangent constructions” bridging
coexisting phases. TheT=0 coexistence pressures are plotted
in Fig. 5(b) and serve to check that the method used to de-
termine coexistence boundaries at finiteT is consistent with
the (more straightforward) T=0 evaluation. Note that we do
not locate theb-quartz/stishovite coexistence condition at
T=0 due to the fact thatb-quartz transforms toa-quartz
beforeT=0 is reached at the relevant volume for the com-
mon tangent construction.

Throughout the evaluation scheme described above, the
largest single source of statistical error is the uncertainty
cited in Ref. [15] for SR, the entropy of the liquid at the
reference state point. We therefore create confidence limits
for our melting lines, shown in Fig. 5, by allowing the value
of SR to vary by ±0.18 J mol−1 K−1.

III. RESULTS AND DISCUSSION

Figure 5(b) plots P-T coexistence conditions, both stable
and metastable, occurring among the liquid phasesLd and the
crystalline phasesb-quartz sQd, coesitesCd, and stishovite
sSd. Figure 6 is the projection of the same boundaries onto
the plane ofV and T. This plot exposes the volume differ-
ences of coexisting phases along phase boundaries. This type
of plot is rarely constructed for real materials, due to the
challenge of determining the densities of coexisting phases,
especially at high pressure. However, it is readily constructed
from simulation data.

Comparison of the BKS and experimental phase bound-
aries[3] in Fig. 5 exposes the quantitative deficiencies of the
model. Apparent in particular is the difference between the
pressures at which corresponding features occur. For ex-
ample, theS-L-C triple point occurs at 13.4 GPa in real
silica, but at only 5.8 GPa in the model. Overall, theP range
of the crystal stability fields is substantially lower in the
model. The pressure difference between the model and real-
ity is more of a shift than a rescaling. For example, the
coesite stability field has approximately the same extent inP
(about 5 GPa) at lowT in both BKS and real silica. However,
the S-C coexistence boundary is shifted downward inP in
the model by more than 7 GPa compared to real silica. The
result is that coesite, rather than quartz, is the equilibrium
phase of BKS silica at ambientP for most of the temperature
range. Indeed, at the very lowestT, the stishovite stability
field just reaches ambientP, making stishovite theT=0
ground state of BKS silica atP=0 (filled square in Fig. 5(b)].

The correspondence of the thermal behavior is better than
that of the mechanical behavior, but significant differences
still occur. TheT of the S-L-C and C-L-Q triple points are
respectively 15% and 32% higher than their experimental
values. Also, the maximumT reached by the coesite, and
especially theb-quartz stability fields, are too high compared
to reality. However, the curvature of the crystal-liquid coex-
istence boundaries are comparable to experiment.

FIG. 5. (a) Experimentally determined coexistence lines of silica
in the P-T plane. Stability fields for the stishovitesSd, coesite
sCd , b-quartz sQd, and liquid sLd phases are shown. Both stable
(solid) and metastable(dashed) coexistence lines are shown. The
inset shows the stability fields of cristobalite and tridymite, not
considered in this work. Adapted from Ref.[3]. (b) Phase diagram
of BKS silica in theP-T plane. Solid lines are stable coexistence
lines. Dotted lines show error estimates for the crystal-liquid coex-
istence lines, as described in the text. Metastable coexistence lines
(dashed) are also shown that meet at the metastableS-L-Q triple
point. The locations of theS-C (filled square) andC-Q (filled circle)
coexistence boundaries atT=0, determined from Fig. 4(b), are also
shown.

FIG. 6. Phase diagram of BKS silica in theV-T plane. The
notation and symbols used have the same meaning as in Fig. 5.
Note that in this projection, both one-phase stability fields as well as
two-phase coexistence regions are located. The projections of the
metastable coexistence lines(dashed) shown in Fig. 5 are also
presented.
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Despite the quantitative deficiencies of the BKS model, it
is noteworthy that the topology of the real silica phase dia-
gram is reproduced in the simulations. All three studied crys-
tals have large stability fields, which increase in extent asP
increases. More subtle features, notably the melting line
maxima in both theQ-L andC-L coexistence lines, are also
reproduced. Also, the occurrence of a metastableS-Q-L
triple point in the stability field of coesite, suggested by an
extrapolation of the experimental boundaries, is observed in
the model. Thus, while acknowledging its deficiencies, the
BKS model is appropriate for studying the qualitative behav-
ior of a substance with a silicalike phase diagram.

The phase information given in Figs. 5 and 6 allows pre-
vious (and future) observations of the behavior of BKS silica
to be considered within the context of the phase behavior of
the model itself. For example, several studies of BKS silica
have identified the location of a density maximum in the
liquid phase[5,13]. A thermal anomaly, a line of maxima of
the isochoric specific heatCV, has also been located in simu-
lations of the liquid[14,15]. Both of these features have been
related to the early stages of the formation of a structured
tetrahedral network in the liquid state. This structural evolu-
tion also is believed to underlie a crossover from non-
Arrhenian (“fragile” ) to Arrhenian (“strong”) dynamics in
the liquid [13–15].

We show in Fig. 7 the location of the line of density and
CV maxima in both theP-T and V-T planes. These lines
approximately separate the liquid behavior into a “tetrahedral
network influenced” region at lowT and largeV (low P ),
and a “normal liquid” region at highT and smallV (high P).
Consistent with this, the stability fields ofb-quartz and
coesite(both of which have four-coordinated silicon atoms)
occur within the network influenced region, while the stabil-
ity field of stishovite(with six-coordinated silicons) falls out-
side.

We also show in Fig. 7 the location of the state point at
which evidence of liquid-liquid phase separation was re-
ported in Ref.[5]. This point occurs at a density just above
that of the high density edge of the one-phase stability field
of coesite. This is a plausible density at which the open tet-
rahedral network structure of the(one-phase) supercooled
liquid state begins to collapse to a higher density, perhaps via
a discontinuous phase transition.

We can use the comparison of the real and simulated
phase diagrams to assess the potential for finding a liquid-
liquid phase transition in real silica. To be observable, the
critical temperatureTc of the liquid-liquid phase transition
must occur above the glass transition temperatureTg of the
supercooled liquid. Choosing a common point of reference in
both the BKS and real silica phase diagrams is one way to
facilitate such an assessment. Here we choose theS-L-C
triple point, since evidence for a liquid-liquid phase separa-
tion in BKS silica was found at about the sameP as this
feature. Evidence of a liquid-liquid transition in BKS silica
occurs at 56% of theT of the BKS S-L-C triple point; see
Fig. 7(a). TheS-L-C triple point occurs in real silica at about
3100 K, 56% of which is 1730 K. This temperature is higher
than Tg=1450 K, the glass transition temperature for real
silica at ambientP. Furthermore,Tg should initially decrease
in value asP increases above ambient. Although not yet

confirmed experimentally in real silica, this is expected from
the fact that the disruption of the tetrahedral network with
increasingP facilitates molecular mobility, and so suppresses
Tg. Ultimately the trend will reverse as packing effects begin
to dominate at higherP. Based on simulation results for the
diffusion coefficient of liquid BKS silica[15], the minimum
value ofTg as a function ofP should approximately coincide
with the line of density maxima, which at lowT occurs atP
slightly higher than theS-L-C triple point. Hence, in BKS
silica, Tg continues to decrease withP throughout the region
between ambientP and that at which evidence of a liquid-
liquid transition is observed. This particular assessment
therefore suggests that if a liquid-liquid transition occurs in
real silica, thenTc may be greater thanTg, potentially expos-
ing the transition to direct observation.

To conclude, we note that important low pressure phases
of silica, especially tridymite and cristobalite, while not ad-
dressed here, are also stable crystal phases of the BKS
model. We choose not to include these phases in the present
study because we want to study BKS silica over a very large
range ofP and T, focusing on the principal stability fields
that dominate the phase diagram. That said, and in light of
the results presented here, the phase behavior of these low
pressure polymorphs merits attention in future work. The
BKS model has been widely used to study the open network
structure of silica glass. Examining its ability to reproduce

FIG. 7. BKS phase boundaries in(a) the P-T plane and(b) the
V-T plane, in relation to density maxima(filled circles) and CV

maxima(squares) in the liquid phase. Also located is the state point
(star) at which evidence of liquid-liquid phase separation was re-
ported in Ref.[5].
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the thermodynamic relationships among all the crystal poly-
morphs having an open network structure would be a severe
test, and would further elucidate the strengths and weak-
nesses of the BKS model.
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APPENDIX

Our model of atomic interactions in silica, denoted here as
FBKS, is based on the original BKS potential, modified in
two ways. First, the BKS potential energy for both the Si-O
and O-O interactions diverges unphysically to negative infin-
ity at sufficiently small distances. To prevent this,FBKS con-
sists of the standard BKS potential plus a short range term
given by

4emnFSsmn

r ij
D30

− Ssmn

r ij
D6G sA1d

wherer ij is the interatomic separation between an atomi of
speciesm, and an atomj of speciesn. The values of the
parametersemn andsmn are given in Table I, and the method
by which they are chosen is described in Ref.[15].

The second modification to the standard BKS potential
included inFBKS relates to the treatment of long range inter-
actions. As is common in implementations of the BKS po-
tential, we calculate the long range contributions to the Cou-
lombic potential energy using the Ewald summation
technique. The reciprocal space summation is carried out
here to a radius of nine reciprocal lattice cell widths. For the
real space summation, instead of discontinuously cutting off
the potential, as is often done, we introduce a switching
function. At a fixed distanceRs=0.774 76 nm the real space
terms of the standard BKS potential are replaced by a fifth

degree polynomial that tapers smoothly to zero over the
rangeRs, r ij ,Rc, whereRc=1 nm. The values of the poly-
nomial coefficients are given in Table I, and the method by
which they are chosen is described in Ref.[15]. The Ewald
parameter is assigned the valuea=2.5 nm−1.

The real space contribution toFBKS, denoted here asf, is
therefore a piecewise defined function of the form

fsr ij ø Rsd =
qmqn

4p«

erfcsar ijd
r ij

+ Amne
−Bmn ri j +

Cmn

r ij
6

+ 4emnFSsmn

r ij
D30

− Ssmn

r ij
D6G , sA2d

fsRs , r ij , Rcd = Dmnsr ij − Rcd5 + Emnsr ij − Rcd4

+ Fmnsr ij − Rcd3, sA3d

fsr ij ù Rcd=0, sA4d

where erfcsxd is the complementary error function and« is
the permittivity constant.
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