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Model for Reversible Colloidal Gelation
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We report a numerical study, covering a wide range of packing fraction � and temperature T, for a
system of particles interacting via a square well potential supplemented by an additional constraint on the
maximum number nmax of bonded interactions. We show that, when nmax < 6, the liquid-gas coexistence
region shrinks, giving access to regions of low � where dynamics can be followed down to low T without
an intervening phase separation. We characterize these arrested states at low densities (gel states) in terms
of structure and dynamical slowing down, pointing out features which are very different from the standard
glassy states observed at high � values.
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FIG. 1 (color online). Spinodal (dashed lines) and percolation
(solid lines) loci (with reported error bars) for nmax � 3 (circles),
4 (squares), 5 (triangles), and 12 (no symbols). Lines are a guide
to the eye.
Extensive investigations have recently focused on slow
dynamics in colloidal systems, triggered by the experimen-
tal discovery of multiple mechanisms leading to a disor-
dered arrested state. At high packing fraction �, arrest
takes place via a glass transition process, which can be
driven by jamming, as in hard-sphere (HS) systems, or by
attractive bonding between colloidal particles, generating
the so-called ‘‘attractive glass’’ [1–3]. At low �, arrest
takes place via particle clustering [4] and formation of an
amorphous state of matter—named a gel—able to support
weak stresses [5]. Clustering and gelation have no counter-
part in atomic or molecular systems, being induced by the
presence of attractive interactions between particles, with a
range of interaction much smaller than the particle size.

Recently, several studies have addressed the question of
the routes to the gel state in colloidal systems [6–12]. In
most models proposed so far, phase separation or micro-
phase separation provides the initial step of the gelation
process. For short-ranged attractive colloids, at low � and
temperature T, the phase diagram is characterized by a flat
phase-coexistence curve (e.g., see Fig. 1). A quench inside
the two-phase region induces, via spinodal decomposition,
a separation into colloid rich (liquid) and colloid poor (gas)
phases. However, in appropriate conditions, dynamical
arrest in the denser region (of the attractive glass type)
intervenes by freezing the pattern generated during the
coarsening process. The time to arrest and the structure
of the formed gel depends on � and on the interaction
strength. The connection between gelation and phase sepa-
ration [13–17] is supported by the experimental observa-
tion of a peak in the scattered intensity at small wave
vectors [4,18]. In the case of phase separation induced
gelation, the slowing down of the dynamics associated
with the formation of an arrested state cannot be continu-
ously followed through equilibrium states, since gelation
takes place only after a quench inside the coexistence
region. This is different from the slowing down of the
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dynamics on approaching the glass transition at high den-
sities, for which the � and the T dependence of the slow
dynamics can be characterized in terms of (metastable)
equilibrium states in a reproducible and reversible way.

In principle, gelation could also occur in the absence of
any phase separation, if the liquid-gas separation is sup-
pressed or if the gel line is encountered before the liquid-
gas coexistence locus [6], preventing phase separation. In
these cases, the approach to the gel state could be in
principle followed in equilibrium and reversibly. Some
experimental groups [18] do indeed favor this interpreta-
tion, explaining the increase in the scattered intensity as
intrinsically due to the inhomogeneities associated with the
gel structure, posing a challenge to theoreticians to develop
a model where arrest at low � is observed in the absence of
a phase separation mechanism and in which reversible
physical gelation can be studied in equilibrium.

In this Letter, we introduce and numerically study a
simple model showing that dynamical arrest at low � (as
low as 0.2) can indeed be generated in the absence of phase
1-1  2005 The American Physical Society
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FIG. 2 (color online). Arrhenius plot of the bond lifetime �B
for different values of nmax and �. The vertical line indicates the
lowest accessible T in the one-phase region for the unconstrained
(nmax � 12) case. Dashed lines are Arrhenius fits.
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separation. We follow, via extensive simulations, the evo-
lution in equilibrium of the density autocorrelation func-
tions to point out the differences in the dynamics of a gel
and of a glass, and to provide a way of discriminating
between the two phenomena.

We study a modification of the short-range square well
(SW) potential, by adding a constraint which limits the
maximum number of bonds nmax that can be formed by the
particles [19]. Without the constraint, each particle could
in principle interact simultaneously with the maximum
number of neighbors allowed by geometrical packing
(nmax � 12). The constraint switches off the attractive
well potential when any of the two interacting particles
has already nmax bonded neighbors. In this way, the energy
difference between particles located in the interior of an
aggregate and particles at the aggregate surface can be
decreased and even suppressed. As a result, the surface
tension decreases [20], the driving force for phase separa-
tion is significantly reduced, and open structures are fa-
vored. We find that, for nmax < 6, the system can access the
� region usually dominated by phase separation and ex-
perience a dynamical slowing down by several orders of
magnitude, thus entering the gel regime. Remarkably, the
system undergoes the fluid-gel transition in equilibrium, so
that the process is fully reversible.

We perform event-driven molecular dynamics (MD)
simulations of particles interacting via a maximum valency
model [21], i.e., a SW potential, where particles can form a
maximum number of bonds nmax. We fix the depth u0 � 1
and the width 	=���	� � 0:03, with � � 1 being the
particle hard-core diameter. The square well form of the
potential unambiguously defines bonded particles when
particle centers lie within a distance �< r < �� 	
from each other. When a particle is already bonded to
nmax neighbors, the well interaction with other particles
is switched off, leaving only the HS potential. We simulate
a large system containing N � 104 particles of mass m �
1 to minimize finite size effects. Temperature is measured
in units of u0, and time t in units of ��m=u0�1=2. For all
simulated state points, we first equilibrate the system at
constant T until the potential energy and pressure P of the
system have reached a steady state, and particles have
diffused several �’s on average. Then, a production run
is performed at constant energy. An average over typically
100 different realizations is done to gather statistics. We
focus on the cases nmax � 3, 4, and 5, since nmax � 6
behaves similarly to the unconstrained case as far as
liquid-gas phase separation is concerned. We perform
MD simulations to efficiently propagate the system in
time, even if Brownian dynamics (BD) would give a
more realistic description of the short time dynamics. As
far as slow dynamics is concerned, MD and BD are
equivalent [22,23].

We report in Fig. 1 the evolution of the spinodal line for
different nmax in the ��; T� plane. We estimate the spinodal
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line by bracketing it with the last stable state point and the
first phase separating state point along each isochore. The
last stable state is characterized by a value of the structure
factor at low q of the order of 10. We confirm the location
of the spinodal by detecting the vanishing of the derivative
of P�V� along isotherms. The unstable area in the ��; T�
plane shrinks on decreasing nmax, showing that the addi-
tional constraint opens up a significant portion of phase
space, where the system can be studied in equilibrium one-
phase conditions. The � at which phase separation is not
present, at all T, can be as low as � � 0:20 for nmax � 3
[24], � � 0:30 for nmax � 4, and � � 0:35 for nmax � 5.
Figure 1 also shows the percolation lines, calculated as the
loci where 50% of independent configurations are charac-
terized by the presence of a spanning cluster of bonded
particles. The percolation loci also shift to lower T on
decreasing nmax, always ending in the spinodal on the
low � side.

As shown by the data in Fig. 1, the addition of the
constraint on the maximum number of bonds, by suppress-
ing the phase separation, makes it possible to study the
dynamics of the model at very low T, where the lifetime of
the interparticle bond increases, stabilizing for longer and
longer time intervals the percolating network [25]. When
the bond lifetime becomes of the same order as the obser-
vation time, the system will behave as a disordered solid. It
is worth stressing that in the present model there is no
thermodynamic transition associated with the onset of a gel
phase [26]. To quantify these propositions, we study in the
following the dynamics for all T in the � region where the
system is in a single phase.

Figure 2 shows the T dependence of the bond lifetime
�B, defined as the time at which the bond autocorrelation
function decays to 0.1, along different isochores for nmax �
3, 4, and 5. The bond lifetime follows an Arrhenius behav-
ior at low T, with an activation energy slightly increasing
with nmax, of the order of the bond energy, suggesting that
breaking of one single bond is the elementary process. We
do not observe any significant � dependence, suggesting
1-2
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FIG. 3 (color online). hr2i for nmax � 3 and � � 0:20 as a
function of T. From left to right, T’s are 1.0, 0.5, 0.3, 0.2, 0.15,
0.125, 0.1, 0.09, and 0.08. The arrow signals the typical plateau
value for the HS glass.
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FIG. 4 (color online). Density autocorrelation functions �q�t�
for nmax � 3 and � � 0:20 as a function of T (sequence of
values as in Fig. 3), respectively, for q�� 2� (left panel) and
q�� 1 (right panel). Note the difference in the T dependence of
�� in the two cases.
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FIG. 5 (color online). Left panel: Plateau height fq for nmax �
3 and � � 0:20 as a function of T, for different values of q�. At
a given T, fq � 0 at small q. At larger q, though q� is still
smaller than 2� (nearest-neighbor length scale), fq � 0 within
the accuracy of the data. Right panel: fq at T � 0:09, � � 0:20,
nmax � 3, compared with fq of attractive and HS glass [30].
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that the bond breaking depends mostly on T [28] as well as
on nmax. All curves, for all reported nmax and �, super-
impose onto each other for high T, recovering the HS limit.
The vertical line in Fig. 2 indicates the lowest T that can be
reached before encountering the coexistence region for the
unconstrained case. It is interesting to note that the intro-
duction of a small nmax makes it possible to explore states
with dynamics at least 4 orders of magnitude slower than
without the constraint, allowing for an approach to arrested
states from equilibrium conditions.

Figure 3 shows the T dependence of the mean squared
displacement hr2i. A T-independent plateau develops on
cooling, indicating the presence of a localization length of
order �, much larger than the corresponding value typical
of glass forming systems (hr2i � 0:01�2). The localization
length decreases on increasing �. Caging in the gel is thus
induced neither by the bond length (	) nor by the nearest-
neighbor distance, and hence it is significantly different
from the case of attractive and repulsive glasses [1,3]. This
feature signals the crucial role of connectivity in the gel
transition.

To quantify the dynamical slowing down on approach-
ing the gel transition, we study the normalized density
autocorrelation functions �q�t� 	 h�q�t��
q�0�i=S�q�.
Figure 4 shows the behavior of �q�t� on decreasing T. A
striking dependence on q is observed, a feature missing in
the slow dynamics close to the glass transition. If we focus,
as typically done in glass transition studies, on the q value
of the first peak of S�q�, corresponding to the inverse
average nearest-neighbor distance, we observe no sign of
a plateau in �q�t�, within the precision of our calculations
(left panel of Fig. 4). However, at smaller q values, a clear
plateau, named fq, in analogy with its counterpart for the
glass transition, where it is usually named the nonergodic-
ity factor, emerges at a T that varies with q. This behavior
is profoundly different from what is observed in a standard
glass transition, but closely resembles what is observed at a
percolation transition in the presence of chemical (infinite
lifetime) bonds [12,29]. We find that the T dependence of
the relaxation time �� [defined as the time at which �q�t�
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reaches the value 0.1] crosses over from �� � 1=
����

T
p

at
nearest-neighbor distances to �� � e1=T at large length
scales. For small q, �� is coupled to the bond lifetime,
while at larger q, �� is controlled by the microscopic time
scale (proportional to the thermal velocity). Figure 5 shows
the T dependence of the plateau value fq (calculated as the
amplitude of a stretched exponential fit to the slow relaxa-
tion) for various q’s (left panel), and compares its q
dependence with fq’s typical of HS and attractive glasses
[30] (right panel). While in the case of glasses (either HS or
attractive) fq is significantly different from zero at all
physically relevant q values, in the present case fq is
significantly different from zero only at very small wave
vectors. It is also interesting to observe that, while in the
case of glasses fq jumps from zero to a finite value at the
glass transition, in the present case fq appears to grow
smoothly from zero.

In summary, we have proposed an off-lattice model
which allows the study of dynamical arrest at low �
1-3
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(physical gelation) in the absence of macrophase or micro-
phase separation, effectively decoupling the effects of
phase separation from the dynamical slowing down. The
process of arrest can be followed in equilibrium. This
condition offers the possibility of studying the behavior
of the density correlators and of the mean squared dis-
placement close to the gel transition, which is strongly
coupled to the bond dynamics. We discover significant
differences between glasses and gels in terms of the decay
of the density correlation functions and of the localization
length, which could be studied experimentally to discrimi-
nate between the phase separation route and the single
phase reversible gelation case.
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