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Energy Landscape of a Simple Model for Strong Liquids
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We calculate the statistical properties of the energy landscape of a minimal model for strong network-
forming liquids. Dynamic and thermodynamic properties of this model can be computed with arbitrary
precision even at low temperatures. A degenerate disordered ground state and logarithmic statistics for the
local minima energy distribution are the landscape signatures of strong liquid behavior. Differences from
fragile liquid properties are attributed to the presence of a discrete energy scale, provided by the particle
bonds, and to the intrinsic degeneracy of topologically disordered networks.
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In recent years, the study of the statistical properties of
the potential energy surface (PES) or landscape [1-3]
sampled by liquids in supercooled states has received
considerable attention, in the attempt to quantify the ther-
modynamic properties of supercooled liquids and glasses
[4—7]. The PES is analyzed to estimate the number and
energy distribution (E) of the local minima and the
volume in configuration space sampled in vibrational mo-
tions around each local minimum.

According to Angell’s classification [8], a liquid is
named “‘fragile” if the temperature dependence of its
transport coefficients shows large deviations from
Arrhenius behavior. If no deviations are observed, the
liquid is named ‘‘strong.” For the case of fragile
liquids—in the region of energies sampled during low
temperature 7 equilibrium simulations with state of the
art numerical resources—{)(E) is well described by a
Gaussian distribution [5,7,9]. The validity of Gaussian
statistics in regions of the PES with energy lower than
those accessible in simulations would suggest the existence
of a finite Kauzmann temperature Tk, where the configura-
tional entropy S, vanishes, and via the Adam-Gibbs
relation [10,11], a divergence of the characteristic relaxa-
tion time at Tk. The quantification of the statistical prop-
erties of the PES for models of strong liquids is still under
debate [12,13]. It has been shown that, on lowering 7,
deviations from Gaussian statistics take place. The config-
urational entropy does not seem to extrapolate to zero at a
finite 7', but the long equilibration times and the unknown
value of the ground state energy prevent an unambiguous
determination of the ground state degeneracy. A recent
work of Heuer and co-workers [13] suggests that the break-
down of Gaussian statistics originates from the emergence
of a natural cutoff in Q)(E), related to the formation of a
fully connected network of bonds.

In this Letter, we report a study aiming to clarify the
statistical properties of the PES for a strong liquid, to
provide a useful framework for interpreting results of
realistic models, and to shed light on the differences be-
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tween fragile and strong liquids. We quantify the landscape
properties for a simple model, similar in spirit to one
previously introduced by Speedy and Debenedetti [14].
We show that, with appropriate numerical techniques,
both the dynamics and thermodynamic properties of this
model can be computed with high accuracy and that no
extrapolations are required to determine the low-T behav-
ior. The strong liquid behavior is associated with the
presence of two ingredients that are characteristic of all
network-forming liquids: a degenerate ground state and a
discrete distribution of energies above the ground state,
generated by the bond energy scale.

We investigate a maximum valency model: a square-
well model of width A with a constraint on the maximum
number of interacting particles. The interaction between
two particles i, j that each have less than N, bonds to
other particles, or between two particles already bonded to
each other, is given by a square-well potential,

00 r<o,
Vij(r)z {_MO 0'<I"<A, (1)
0 r>o+A.

When i and/or j are already bonded to N,,, neighbors,
then V;;(r) is simply a hard sphere (HS) interaction,

oo r<ag,

Vij(r) - {O r>o. 2)
The maximum number of bonds per particle is controlled
by tuning N,,.. This model is particularly suited for theo-
retical and numerical studies. First, along an isochore,
the system changes from a HS system (when kgT > u,
where kp is the Boltzmann constant) to a simple model
for network-forming liquids (when kT < u;,) with co-
ordination N,, and no angular constraints [15]. Second,
the ground state energy for a system of N particles is
known, being the energy of a fully connected network
(—uoNN./2). Third, as V(r) is simply a square-well
model, the local minima of the PES coincide with the
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bonding patterns of the system. Consequently, moving
between minima takes place via breaking and reforming
of bonds. Fourth, the volume in configuration space of each
of these bonding patterns can be calculated with no ap-
proximation, as discussed in the following. In the PES
language, it means that the basin free energy [4] can be
calculated exactly. Finally, since the energy levels of the
system are discrete by construction, the number of bonding
patterns with M << NN,,,,/2 broken bonds can be calcu-
lated by combinatorial factors. Exploiting these properties
allows us to quantify precisely the statistical properties of
the PES of this model.

We perform Monte Carlo (MC) and event driven mo-
lecular dynamics simulations by using A/(o + A) = 0.03,
uy =1, 0 =1, and N, = 4. Entropy, S, is measured in
units of kp. Setting kz = 1, energy E and temperature T are
measured in units of u,. We study a system of N = 10*
particles of equal mass m = 1, implementing periodic
boundary conditions, at a fixed packing fraction ¢ =
0.30 [16] from temperature T = 100 (where the HS limit
is recovered) down to 7 = 0.04, where an almost fully
connected network of bonds is obtained [17]. No evidence
of phase separation is observed [20]. Figure 1(a) shows the
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FIG. 1 (color online). Temperature dependence of the potential
energy per particle E (top) and of  [in units of (mug)'/2/a?], D
[in units of o (uy/m)'/?], and the product Dy /T (bottom). D is
calculated from the long time limit of 8r%(¢)/6¢, with 8r2(z) the
mean squared displacement, and 7 as explained in [32]. In the
top panel, the dashed line shows the 1/T behavior expected for a
Gaussian landscape [5,21]. The inset shows the same data in a
semilog representation to highlight the validity of the low-T
behavior In[E — E, ] = In[2.56] — ﬁ indicated by the continu-
ous line (see text). In the bottom panel, the dashed lines are the
best-fit Arrhenius behavior for  and D. The continuous line
corresponds to the expected value from the Stokes-Einstein
relation (see text).

T dependence of the potential energy per particle E as a
function of 1/T. For a Gaussian PES [5,21], E should be
linear in 1/7. Deviations from the 1/T law are clearly seen
at low T, when the energy approaches the ground state
energy E,, = —2, with a striking similarity with the T
dependence of the energy of the sampled minima evaluated
in landscape analyses of atomistic models for silica
[12,13]. The approach to E, is well described by E —
Ey ~ e~ '/, providing an unambiguous way of calculat-
ing all thermodynamic properties down to 7 = 0.

Next we provide evidence that the present model is a
simple and satisfactory one for strong glass-forming
liquids, by showing several features that are commonly
observed in real systems. Figure 1(b) shows the T depen-
dence of 7 and D [22]. Both quantities display Arrhenius
behavior at low T, as expected for strong liquids, with an
activation energy controlled by the bond energy. The prod-
uct D—T" ~ ﬁ as expected from the Stokes-Einstein rela-
tion. We also evaluate the exponent B of the stretched
exponential function that describes the long time decay
of density autocorrelation functions, finding values 8 >
0.85 for all the wave vectors. Such a large S value is in
agreement with the experimentally observed direct corre-
lation between [ and strong behavior [23]. Finally, since at
the investigated low T the potential energy has already
approached the ground state value [Fig. 1(a)], no signifi-
cant drop in the specific heat will take place at the glass
transition temperature. This feature is often found in strong
liquids [18,24].

Next we evaluate the statistical properties of the PES. In
the landscape approach, configuration space is partitioned
into basins around the local minima of the PES. For the
present model, different local minima can be unambigu-
ously identified as different bonding patterns and the en-
ergy of the minimum coincides with the potential energy of
the configuration, i.e., with the number of bonds. The
partition function can be written as a sum over all bonding
patterns. Atlow 7, it is convenient to write the sum over the
number of M broken bonds, associating with each energy
level E the number of distinct network configurations with
M = (E — E4)N broken bonds (the degeneracy of the
energy level) times the volume in configuration space
that can be sampled by the network without breaking or
forming any bond (i.e., preserving the bonding pattern).
The logarithm of the number of distinct networks with the
same number of bonds defines S,.,¢(E), while the loga-
rithm of the sampled volume defines the basin vibrational
entropy S,;,- The sum S.,¢ + S,;, defines the total entropy
of the model.

In the present model, S,; can be calculated without
approximation by thermodynamic integration from a ref-
erence Einstein crystal [25]. In this technique, a series of
MC simulations are performed adding to the original
Hamiltonian H, a harmonic perturbation Hg(#V;A) =
ASN (7 — )2, where (7), ..., 7%) is a typical configura-
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tion of energy E whose basin free energy needs to be
evaluated, and the parameter A is the elastic constant of
the harmonic perturbation. The system described by the
Hamiltonian H(#V;A) = Hy(#) + Hg(#;A) is then simu-
lated at fixed T and V with a MC technique, rejecting all
moves altering the bonding pattern. We study several val-
ues of A running from A = O up to a value A,,,, whereupon
the behavior of a system composed of 3N independent
harmonic springs of elastic constant A, is recovered. In
this limit, the free energy is known analytically. The vibra-
tional free energy f,i, (A = 0) of the basin to which 7
belongs is given by

] /X
Fal D)= P (i) = [ A3 (6= 7P ainl)
- i=1 A
(3)

where ¥ ,;(7; — 7)? is the sum of the square displacements
of all particles at a fixed value of A, brackets denote
ensemble average, and Fy (T; A,y is the free energy of
the 3N Einstein oscillators. Figure 2 shows the A depen-
dence of A(Y;(7; — #)%),/N for one specific state point.
At large A values, the mean square displacement per par-
ticle approaches the theoretically expected limit % % It
must be noted that in the present model, since no energy
changes are involved in sampling the configuration space
volume at fixed bonding pattern, for each specific basin the
basin free energy is purely entropic.

Repeating the thermodynamic integration procedure for
several different equilibrium configurations at different 7,
S.ib(E) can be precisely calculated. Figure 3(a) shows that
the excess quantity, S$, (E), over the ideal gas contribution,
depends linearly on the basin depth E, a feature shared with
previously investigated models for supercooled liquids
[1,5,7]. S, (E) is well represented by the best-fit function:

S, = —8.8 + 4.27(E — Ey). 4)

Complementing these data with the calculation of the
excess total entropy over the ideal gas contribution, Sty
by integration of the T dependence of the specific heat over
T from the known HS high T reference state [25] allows us
to evaluate S.,,¢ = Sty — S5, Figure 3(b) shows that,
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FIG. 2 (color online). Mean squared displacement per particle
times A as a function of In[A] for a typical basin explored at T =
0.04. The continuous line shows the harmonic behavior %kBT.

close to the ground state, the E dependence of S, is
well described by a logarithmic combinatorial function:

Sconf(E) = Sconf(Egs) - 2(E - Egs) 111[2(E - Egs)]
+ (E — Ey). (5)

The logarithmic term results from the number of distinct
ways (E — E,)N bonds can be broken among N particles.
A one-parameter fit [see Fig. 3(b)] suggests Sonr(E,s) =
2.1 [26]. Equations (4) and (5) fully define the statisti-
cal properties of the PES. All thermodynamic functions
can be evaluated from them. Indeed, solving d(S.u +
SX)/dE = 1/T, the T dependence of E is found to be
E(T) — E4 = 2.56e /2T, providing the continuous line in
the inset of Fig. 1(a), and parametrically, the continuous
lines for S*X(T), S (T) and S.o¢(T), compared with the
numerical estimates in Figs. 3(c) and 3(d).

According to the picture emerging from this study,
strong liquid behavior is connected to the existence of an
energy scale (provided by the bond energy) which is dis-
crete and dominant as compared to the energetic contribu-
tions coming from nonbonded next-nearest neighbor
interactions [28]. It is also intimately connected to the
existence of a significantly degenerate ground state, favor-
ing the formation of highly bonded states which can still
entropically rearrange to form different bonding patterns
with the same energy [29]. The presence of the bond
energy scale [30] also determines a distribution of energy
levels above the disordered ground state which are loga-
rithmically spaced. These results help rationalize previous
landscape analysis of realistic models of network-forming
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FIG. 3 (color online). Energy E [panels (a) and (b)] and T
[panels (c) and (d)] dependence of Sg, S5, and S.,,¢. A typical
error bar is shown in panel (b). Dashed lines for S .(E) and
S (E) are fits to Egs. (4) and (5) (see text). The continuous line
for Sty is the result of summing the obtained fit functions. The
continuous lines for S{x(7), SX,(T), and S ,¢(T) are calculated

from the T dependence of E (see text).
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liquids [12] and the recent observation by Heuer and co-
workers that the breakdown of Gaussian landscape statis-
tics is associated with the formation of a fully connected
defect-free network [13]. While in realistic models the
ground state energy is not known, and the very long
equilibration times needed prevent an unambiguous deter-
mination of the ground state degeneracy, both these quan-
tities can be calculated for the present model.

In this model, the discrete energy states provide a truly
degenerate ground state. In real systems, small differences
in energy exist, e.g., resulting from second neighbor inter-
actions, between configurations that in our model would
correspond to the same energy state. Hence, in real systems
the “ground state” energy is smeared out, singling out a
unique lowest energy state. Consequently, for k3T values
smaller than this spread in energy, S..,,; approaches zero.
Therefore, our classical model is strictly applicable at
temperatures where quantum effects are negligible [31],
and for values of kzT much larger than the spread in energy
of the ground state.

The simplicity of the model and the possibility of cal-
culating accurately the relevant thermodynamic properties
at all 7 makes this model a relevant candidate for deep-
ening our understanding of the differences between strong
and fragile liquids. Results reported here suggest that
strong and fragile liquids are characterized by significant
differences in their PES properties. In a simplified picture,
a nondegenerate disordered ground state and Gaussian
statistics characterize fragile liquids, while a degenerate
disordered ground state and logarithmic statistics are asso-
ciated with strong liquids. The origin of this difference is
traced to the presence of a discrete energy scale, provided
by particle bonds, and to the intrinsic degeneracy of topo-
logically disordered networks.
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FIRB, DIPC-Spain, NSF, and NSERC-Canada.

[1] D. Wales, Energy Landscapes (Cambridge University
Press, Cambridge, 2004).

[2] P.G. Debenedetti and F.H. Stillinger, Nature (London)
410, 259 (2001).

[31 C.A. Angell, Science 267, 1924 (1995).

[4] F.H. Stillinger and T.A. Weber, Phys. Rev. A 25, 978
(1982); Science 225, 983 (1984); F.H. Stillinger, ibid.
267, 1935 (1995); E. Sciortino, J. Stat. Mech. (2005)
P05015.

[5] S. Sastry, Nature (London) 409, 164 (2001).

[6] F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999).

[7]1 E. La Nave et al., Phys. Rev. Lett. 88, 225701 (2002).

[8] C.A. Angell, J. Non-Cryst. Solids 73, 1 (1985).

[9]1 A. Heuer and S. Buchner, J. Phys. Condens. Matter 12,
6535 (2000).

[10] G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

[11]

[12]
[13]

[14]
[15]

[16]

[18]
[19]
(20]
[21]
(22]

(23]
[24]

[25]

[26]

(27]

(28]
[29]

(30]

(31]

(32]

157802-4

X. Xia and P.G. Wolynes, Phys. Rev. Lett. 86, 5526
(2001).

I. Saika-Voivod et al., Nature (London) 412, 514 (2001).
A. Saksaengwijit et al., Phys. Rev. Lett. 93, 235701
(2004).

R.J. Speedy and P.G. Debenedetti, Mol. Phys. 81, 237
(1994); 86, 1375 (1995); 88, 1293 (1996).

In Ref. [14] an angular constraint is imposed by avoiding
three particle bonding loops.

Note that a diamond structure of touching hard spheres has
¢ =~ 0.34, a value compatible with the one we study here.
The diamond structure is characteristic of tetrahedral
network-forming strong liquids such as water and silica.
In the effort to capture the basic ingredients of a strong
liquid, angular correlations are completely neglected. Still,
the investigated low-T regime qualitatively corresponds to
typical experimental values. From SiO, and GeO, vis-
cosity data above the glass transition temperature [18,19],
we estimate Arrhenius activation energies E4(SiO,) =
62000 K and E,(GeO,) = 31000 K. Assuming u, =~
E,, the investigated T range in our simulations roughly
corresponds to T > 2500 K for SiO, and T > 1200 K for
GeQO,, values in the experimental accessible 7 range
[18,19].

P. Richet, Geochim. Cosmochim. Acta 48, 471 (1984).
A. Sipp et al., J. Non-Cryst. Solids 288, 166 (2001).

E. Zaccarelli et al., Phys. Rev. Lett. 94, 218301 (2005).
B. Derrida, Phys. Rev. B 24, 2613 (1981).

Note that in simulations it is today possible to follow
changes in dynamic properties covering up to 6 orders of
magnitude, to be compared to changes in experimental
quantities covering about 12 decades.

R. Bohmer et al., J. Chem. Phys. 99, 4201 (1993).

L.M. Martinez and C. A. Angell, Nature (London) 410,
663 (2001).

D. Frenkel and B. Smit, Understanding Molecular
Simulation (Academic Press, San Diego, 1996).

The value found here should be considered an upper
bound value for tetrahedral networks [14,27], due to the
absence of angular constraints in the bonding geometry.
M.G. Sceats et al., J. Chem. Phys. 70, 3927 (1979);
R.L.C. Vink and G.T. Barkema, Phys. Rev. B 67,
245201 (2003); N. Rivier and F. Wooten, MATCH
Commun. Math. Comput. Chem. 48, 145 (2003).

C. A. Angell and K. Rao, J. Chem. Phys. 57, 470 (1972).
Note that the presence of a residual value of S¢o,s at 7 — 0
is not in conflict with the third law of thermodynamics;
see, e.g., F. Schwabl, Statistical Mechanics (Springer-
Verlag, Berlin, 2000).

Impure network-forming liquids as mixed alkali silicates
[18,23] show deviations from strong behavior. Such devi-
ations could originate from the interplay between different
bond energies, strongly smearing out the discrete energy
scale.

In a first approximation, quantum effects take place below
the temperature where the de Broglie wavelength becomes
comparable to nearest neighbor distances.

B.J. Alder et al., J. Chem. Phys. 53, 3813 (1970).



