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We study the dynamics of monodisperse hard ellipsoids via a new event-driven molecular dynamics
algorithm as a function of volume fraction � and aspect ratio X0. We evaluate the translational Dtrans and
the rotational Drot diffusion coefficients and the associated isodiffusivity lines in the �� X0 plane. We
observe a decoupling of the translational and rotational dynamics which generates an almost perpen-
dicular crossing of the Dtrans and Drot isodiffusivity lines. While the self-intermediate scattering function
exhibits stretched relaxation, i.e., glassy dynamics, only for large � and X0 � 1, the second order
orientational correlator C2�t� shows stretching only for large and small X0 values. We discuss these
findings in the context of a possible prenematic order driven glass transition.
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Particles interacting with only excluded volume interac-
tion may exhibit a rich phase diagram, despite the absence
of any attraction. Spherical objects, in equilibrium, present
only a fluid and a crystal phase, while simple nonspherical
hard-core particles can form either crystalline or liquid
crystalline ordered phases [1], as first shown analytically
by Onsager [2] for rodlike particles. Successive works have
established detailed phase diagrams for several hard-body
shapes [3–6] and have clarified the role of the entropy in
the transition between different phases. Less detailed in-
formation is available concerning the dynamic properties
of hard-core bodies and their kinetically arrested states. In
the case of the hard-sphere system, dynamics slows down
significantly on increasing the packing fraction �, and,
when crystallization is avoided (mostly due to intrinsic
sample polydispersity), a dynamic arrested state (a glass)
with an extremely long lifetime can be generated. The
slowing down of the dynamics is well described by mode
coupling theory (MCT) [7]. When going from spheres to
nonspherical particles, nontrivial phenomena arise, due to
the interplay between translational and rotational degrees
of freedom. The slowing down of the dynamics can indeed
appear in both translational and rotational properties or in
just one of the two.

Hard ellipsoids (HE) of revolution [1,8] are one of the
most prominent systems composed by hard-body aniso-
tropic particles. HE are characterized by the aspect ratio
X0 � a=b (where a is the length of the revolution axis, b is
the length of the two other axes) and by the packing
fraction � � �X0b3N=6V, where N is the number of
particles and V is the volume. The equilibrium phase
diagram, evaluated numerically two decades ago [9] and
more recently [10,11], shows an isotropic fluid phase (I)
and several ordered phases (plastic solid, solid, nematic N).
The coexistence lines show a swallowlike dependence with
a minimum at the spherical limit X0 � 1 and a maximum at
X0 � 0:5 andX0 � 2 (cf. Fig. 1). Application to HE [12] of
the molecular MCT (MMCT) [13,14] predicts also a swal-

lowlike glass-transition line. In addition, the theory sug-
gests that for X0 & 0:5 and X0 * 2, the glass transition is
driven by a precursor of nematic order, resulting in an
orientational glass where the translational density fluctua-
tions are quasiergodic, except for very small wave vectors
q. Within MCT, dynamic slowing down associated with a
glass transition is driven by the amplitude of the static
correlations. Since the approach of the nematic transition
line is accompanied by an increase of the nematic order
correlation function at q � 0, the nonlinear feedback
mechanism of MCT results in a glass transition before
macroscopic nematic order occurs [12]. In the arrested
state, rotational motions become hindered.
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FIG. 1 (color online). Grid of state points simulated (crosses
and red-filled circles) and relevant boundary lines of coexistence
regions. Long-dashed curves are coexistence curves of all first
order phase transitions in the phase diagram of HE evaluated by
Frenkel and Mulder (FM) [9]. Solid lines are coexistence curves
for the I-N transition of oblate and prolate ellipsoids, obtained
analytically by Tijpto-Margo and Evans (TME) [6]. Dotted lines
(TME-2) are coexistence curves of prolate ellipsoids for the I-N
transition, taken from [6].
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The recently evaluated random close packing line [15]
for HE also exhibits a swallowlike shape. Although Kerr
effect measurements in the isotropic phase of liquid crys-
tals have given some evidence for the existence of two
types of glass transitions [16] (related to nematic phase
formation and to cage effect, respectively), almost nothing
is known about the glassy dynamics of system forming
liquid crystals, in general, and for HE, in particular.

We perform an extended study of molecular dynamics
(MD) of monodisperse HE in a wide window of � and X0

values, extending the range of X0 previously studied [17].
We specifically focus on establishing the trends leading to
dynamic slowing down in both translations and rotations
by evaluating the loci of constant translational and rota-
tional diffusion. These lines, in the limit of vanishing
diffusivities, approach the glass-transition lines. We also
study translational and rotational correlation functions, to
search for the onset of slowing down and stretching in the
decay of the correlation. We perform event-driven molecu-
lar dynamics simulations, using a new algorithm [18],
which, unlike previous algorithms [17,19], relies on evalu-
ations of distance between objects of arbitrary shape. We
simulate a system of N � 512 ellipsoids at various vol-
umes V � L3 in a cubic box of edge L with periodic
boundary conditions. We chose the geometric mean of
the axis l �

��������
ab23
p

as the unit of distance, the mass m of
the particle as the unit of mass (m � 1), and kBT � 1
(where kB is the Boltzmann constant and T is the tempera-
ture), and hence the corresponding unit of time is�������������������
ml2=kBT

p
. The inertia tensor is chosen as Ix � Iy �

2mr2=5, where r � minfa; bg. The value of the Iz compo-
nent is irrelevant [20] since the angular velocity along the
symmetry (z) axis of the HE is conserved. We simulate a
grid of more than 500 state points at different X0 and �, as
shown in Fig. 1. To create the starting configuration at a
desired �, we generate a random distribution of ellipsoids
at very low � and then we progressively decrease L up to
the desired �. We then equilibrate the configuration by
propagating the trajectory for times such that both angular
and translational correlation functions have decayed to
zero. Finally, we perform a production run at least 30 times
longer than the time needed to equilibrate. For the points
close to the I-N transition we check the nematic order by
evaluating the largest eigenvalue S of the order tensor Q
[21], whose components are

 Q�� �
3

2

1

N

X
i

h�ui���ui��i �
1

2
��;�; (1)

where �� 2 fx; y; zg, and the unit vector �ui�t��� is the
component � of the orientation (i.e., the symmetry axis) of
ellipsoid i at time t. The largest eigenvalue S is nonzero if
the system is nematic and 0 if it is isotropic. In the follow-
ing, we choose the value S � 0:3 as criteria to separate
isotropic from nematic states. From the grid of simulated
state points we build a corresponding grid of translational

(Dtrans) and diffusional (Drot) coefficients, defined as

 Dtrans � lim
t!�1

1
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X
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hkxi�t� � xi�0�k2i
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 Drot � lim
t!�1
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N

X
i

hk��ik
2i

4t
; (3)

where ��i �
R
t
0 !idt, xi is the position of the center of

mass, and !i is the angular velocity of ellipsoid i. By
proper interpolation, we evaluate the isodiffusivity lines,
shown in Fig. 2. Results show a striking decoupling of the
translational and rotational dynamics. While the transla-
tional isodiffusivity lines mimic the swallowlike shape of
the coexistence between the isotropic liquid and the crys-
talline phases (as well as the MMCT prediction for the
glass transition [12]), rotational isodiffusivity lines repro-
duce qualitatively the shape of the I-N coexistence. As a
consequence of the swallowlike shape, at large fixed �,
Dtrans increases by increasing the particle’s anisotropy,
reaching its maximum at X0 � 0:5 and X0 � 2. Further
increase of the anisotropy results in a decrease of Dtrans.
For all X0, an increase of � at constant X0 leads to a
significant suppression of Dtrans, demonstrating that Dtrans

is controlled by packing. The isorotational lines are instead
mostly controlled by X0, showing a progressive slowing
down of the rotational dynamics independently from the
translational behavior. This suggests that on moving along
a path of constant Dtrans, it is possible to progressively
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FIG. 2 (color online). Isodiffusivity lines. Solid lines are iso-
diffusivity lines from translational diffusion coefficients Dtrans

and dashed lines are isodiffusivities lines from rotational diffu-
sion coefficients Drot. Arrows indicate decreasing diffusivities.
Left and right arrows refer to rotational diffusion coefficients.
Diffusivities along left arrow are 1.5, 0.75, 0.45, 0.3, 0.15.
Diffusivities along right arrow are 1.5, 0.75, 0.45, 0.3, 0.15,
0.075, 0.045. Central arrow refers to translational diffusion
coefficients, whose values are 0.5, 0.3, 0.2, 0.1, 0.04, 0.02.
Thick long-dashed lines are FM and TME coexistence lines
from Fig. 1.
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decrease the rotational dynamics, up to the point where
rotational diffusion arrests and all rotational motions be-
come hindered. Unfortunately, in the case of monodisperse
HE, a nematic transition intervenes well before this point is
reached. It is thus stimulating to think about the possibility
of designing a system of hard particles in which the ne-
matic transition is inhibited by a proper choice of the
disorder in the particle’s shape or elongations. We note
that the slowing down of the rotational dynamics is con-
sistent with MMCT predictions of a nematic glass for large
X0 HE [12], in which orientational degrees of freedom start
to freeze approaching the isotropic-nematic transition line,
while translational degrees of freedom mostly remain er-
godic. To support the possibility that the slowing down of
the dynamics on approaching the nematic phase originates
from a close-by glass transition, we evaluate the self part of
the intermediate scattering function Fself ,

 Fself�q; t� �
1

N

�X
j

eiq��xj�t��xj�0��
�
; (4)

and the second order orientational correlation function
C2�t� defined as [17] C2�t� � hP2� cos��t��i, where
P2�x� � �3x

2 � 1�=2 and ��t� is the angle between the
symmetry axis at time t and at time 0. The C2�t� rotational
isochrones are found to be very similar to rotational iso-
diffusivity lines.

These two correlation functions never show a clear two-
step relaxation decay in the entire studied region, even
where the isotropic phase is metastable, since the system
cannot be significantly overcompressed. As for the well-
known hard-sphere case, the amount of overcompress-
ing achievable in a monodisperse system is rather lim-
ited. This notwithstanding, a comparison of the rotational
and translational correlation functions reveals that the
onset of dynamic slowing down and glassy dynamics can
be detected by the appearance of stretching. Figure 3
contrasts the shape of Fself , evaluated at q � qmax,
where qmax is the q corresponding to the first maxi-
mum of the center-of-mass static structure factor, and
C2�t� at� � 0:50 for different X0 values with best fit based
on an exponential (� exp	�t=�
) and a stretched exponen-
tial [� exp	��t=���
] decay. As a criteria to avoid includ-
ing in the fit the short-time ballistic contribution, we limit
the time window to times larger than t�, defined for Fself

and C2 as the time at which the autocorrelation function of
the center-of-mass velocity v [�vv�t� �

1
N

P
ihvi�t�vi�0�i]

and of the angular velocity [�!!�t� �
1
N

P
ih!i�t�!i�0�i]

reaches 1=e of its initial value. We note that Fself shows an
exponential behavior close to the I-N transition (X0 �
3:2; 0:3448) on the prolate and oblate side, in agreement
with the fact that translational isodiffusivity lines do not
exhibit any peculiar behavior close to the I-N line. Only
when X0 � 1, Fself develops a small stretching, consistent
with the minimum of the swallowlike curve observed in the
fluid-crystal line [22,23], in the jamming locus as well as in

the predicted behavior of the glass line for HE [12] and for
small elongation dumbbells [24,25]. Opposite behavior is
seen for the case of the orientational correlators. C2 shows
stretching at large anisotropy, i.e., at small and large X0

values, but decays within the microscopic time for almost
spherical particles. In this quasispherical limit, the decay is
well represented by the decay of a free rotator [26].
Previous studies of the rotational dynamics of HE [17]
did not report stretching in C2, probably due to the smaller
values of X0 previously investigated and to the present
increased statistic which allows us to follow the full decay
of the correlation functions.

Figure 3 clearly shows that C2 becomes stretched ap-
proaching the I-N transition while Fself remains exponen-
tial on approaching the transition. To quantify the amount
of stretching in C2 we show in Fig. 4 the X0 dependence of
� and� for three different values of�. In all cases, slowing
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FIG. 3 (color online). Shape of Fself and C2 at � � 0:50 for
different X0. Symbols are data from MD simulations. Solid lines
are fits to exponential functions, while long-dashed lines are fits
to stretched exponentials (� is the stretching parameter). t� is the
time at which correlation functions �vv and �!!, for Fself and
C2, respectively, reach 1=e of their initial values. Top: Prolate
ellipsoids with X0 � 3:2, C2 shows a significant stretching while
Fself decays exponentially. Middle: X0 � 1:0 for Fself and X0 �
1:1 for C2, the dashed line is the theoretical decay of a free
rotator Cf2 [Cf2�t� � 1� 3

2 �t=�f� exp	�t2=�2
f


~��t=�f�, where
�2
f � 1=�!!�0� and ~��t� �

R
t
0 exp	x2
dx]. Bottom: Oblate el-

lipsoids with X0 � 0:348.
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down of the characteristic time and stretching increases
progressively on approaching the I-N transition. It is in-
teresting to observe that the amount of stretching appears
to be more pronounced in the case of oblate HE compared
to prolate ones. A similar (slight) asymmetry between
oblate and prolate HE can be observed in the lines reported
in Fig. 2.

In summary, we have shown that clear precursors of
dynamic slowing down and stretching can be observed in
the region of the phase diagram where a (meta)stable
isotropic phase can be studied. The monodisperse charac-
ter of the present system prevents the possibility of observ-
ing a clear glassy dynamics. This notwithstanding, our data
suggest that a slowing down in the orientation degree of
freedom—driven by the elongation of the particles—is in
action. The main effect of this shape-dependent slowing
down is a decoupling of the translational and rotational
dynamics which generates an almost perpendicular cross-
ing of the Dtrans and Drot isodiffusivity lines. This behavior
is in accordance with MMCT predictions, suggesting two
glass-transition mechanisms, related, respectively, to cage
effect (active for 0:5 & X0 & 2) and to prenematic order
(X0 & 0:5, X0 * 2) [12]. It remains to be answered if it is
possible to find a suitable model, for example, polydisperse
in size and elongation, for which nematization can be
sufficiently destabilized, in analogy to the destabilization
of crystallization induced by polydispersity in hard
spheres.
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[26] C. Renner, H. Löwen, and J. L. Barrat, Phys. Rev. E 52,
5091 (1995).

0.25 0.5
X

0

0.7

0.8

0.9

1

β C
2

Φ = 0.40
Φ = 0.45
Φ = 0.50

10
-1

10
0

τ C
2

2 4
X

0

FIG. 4 (color online). �C2
and �C2

are obtained from fits of C2

to a stretched exponential for � � 0:40, 0.45, and 0.50. Top: �C2

as a function of X0. Bottom: �C2
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window used for the fits is chosen in such a way as to exclude the
microscopic short times ballistic relaxation (see text for details).
For 0:588<X0 < 1:7 the orientational relaxation is exponential.
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