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Colloidal systems (and protein solutions) are often characterized by attractive interactions whose ranges are
much smaller than the particle size. When this is the case and the interaction is spherical, systems obey a
generalized law of correspondent states (GLCS), first proposed by Noro and Frenkel (Noro, M. G.; Frenkel,
D. J. Chem. Phys200Q 113 2941). The thermodynamic properties become insensitive to the details of the
potential, depending only on the value of the second virial coeffiddgraind the density. The GLCS does

not generically hold for the case of nonspherical potentials. In this Letter, we suggest that when particles
interact via short-ranged small-angular amplitude patchy interactions (so that the condition of only one bond
per patch is fulfilled), it is still possible to generalize the GLCS close to the liggak critical point.

In colloidal and in protein systems, the interaction potential tionalized colloidal particle$® For what concerns proteins, it
is often short-ranged, that is, small as compared to the particleis well-established that the interactions are intrinsically
size. The small-range interaction brings some peculiar behaviordirectionat®2? and that their description in terms of isotropic
both to the system thermodynamics and on the dynamics. Forpotentials represents only a first-order approximation.
example, the gasliquid phase separation becomes metastable  Recent progress in understanding the thermodynamics of
with respect to crystallizatidr(and hence, a proper equilibrium  patchy colloidal particles has been based on application of the
liquid phase is missing). In addition, for very short ranges, the thermodynamical perturbation theory developed by Wert&im.
kinetic arrest (glass) line becomes reentrant, and two different The theory, which does not account for the geometry of the
glass phases app€&tThe presence of short-range attractions patches, assumes that each patch acts as an independent
is also invoked to explain the so-called “crystallization slot” in  nteracting unit. In addition, the theory neglects the possibility
the phase diagram of globular proteths. of the closed loops of bonds. Despite these approximations,

A common property unifies all spherically symmetric short- several predictions of the theory have been numerically con-
ranged attractive potentials, independently from their actual firmed3.24.25|t has been shown that (for the case of patchy
shape. Indeed, Noro and Frertkahowed that the thermo-  jnteractions) the number of independent interacting patches (the
dynamical properties of systems interacting with short-range yalence) is the key ingredient in controlling the phase diagram
attractive potentials are all equivalent if scaled by the proper of the system. Upon lowering the valencey, the ligtigs
variables, that is, they obey a generalized law of correspondentcyitical point shifts to smaller and smaller densities so that liquid
stated (GLCS). They showed that the virial coefficient can be states of vanishing density (empty liquids) become acceible.
used as a scaling variable for the strength of the interaction. The Wertheim expression for the bonding free energy is a
Recently, the GLCS has been shown to arise from the fact that,fynction only of the bond probability and of the valencey. In
due to the short range of the interaction, each interacting pair thig respect, the theory suggests that systems with the same
of particles (a bond) contributes independently and equally to yajencey should behave similarly if the bond probability is the
the partition functiorf. same. Since the bond probability is related to the chemical

The above considerations are valid for centrosymmetric bonding constaA#25 and since, for large attraction strengths,
potentials and cannot be straightforwardly extended to non- the chemical constant is proportional to the second virial
spherical case%? that is, when interactions are patchy and coefficient26 the Wertheim theory suggests that universality
strongly directional. In the case of molecular fluids, patchy pased on the virial scaling can be recovered also in the case of
interactions are relevant in network-forming systems, like patchy interactions when valencey is preserved.

silica® %and watet#and in all associating fluid$*in which To address the issue of a possible generalization of the-Noro
the hydroggn _bond pl_ay_s an important role. For coII_0|daI Frenkel scaling, we have extended the investigation concerning
systems, this interest IS Ju.St'f'Ed by recent advances in thethe location of the critical point for the patchy model introduced
synthesis and characterization of patchy partiéfes or func- by Kern and Frenkélfor several values of the attraction range
* Ecole Polytechnique Ttérale de Lausanne (EPFL). and of the width of the patchy attractive region. The choice of
T Universitadi Roma La Sapienza. this potential is motivated by the fact that angular and radial
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Figure 1. Pictorial representation of the three different patch geometries

considered in this work. The solid angle of each patchifl2- cos
0), where@ is the cone semi-angle.
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TABLE 1: Critical Point Properties for All Studied Models,
Labeled by the ValuesM, A, and cos6?

M A cosf Te Pc o BY/BYS
3 0050 092 01076 0151 0.727 —23.67
3 0070 092 01113 0150 0.732 —24.92
3 0119 092 01180 0134 0721 —26.71
3 0119 0895 01252 0.136 0.737 —28.29
3 0119 092 01180 0134 0721 —26.71
3 0119 095 01069 0131 0726 —25.13
3 0119 097 00968 0129 0726 —23.92
4 0010 092 01140 0.326 0656 —4.02
4 0050 092 01392 0306 0652 —4.32
4 0070 092 01468 0.306 0.641 —4.24
4 009 092 01511 0289 0642 —4.65
4 0119 092 01573 0276 0644 —4.92
4 0119 0895 0.1682 0.267 0.635 -5.74
4 0119 092 01573 0276 0644 —4.92
4 0119 094 01484 0307 0667 -3.85
5 0010 092 01259 0.393 0567 -241
5 0050 092 01570 0.387 0588 -2.67
5 0070 092 01653 0.374 0585 -2.81
5 009 092 01723 0362 0581 -2.90
5 0119 092 01808 0.348 0577 -3.03
5 0119 0895 01959 0.333 0570 -3.53
5 0119 092 01808 0.348 0577 -3.03
5 0119 095 01601 0372 0589 -2.22

a2 The different columns indicate the critical temperatligecritical
density pc, the bond probabilityp, and the reduced value of the
second virial coefficienBY/B,> at the critical point. The estimated
errors for each of these quantities ak®.00057), £0.007pc), and
4+0.0056;). The error inB; arises from the error iff; and differs for

properties can be independently modified. More precisely, the €ach point due to the nonlinear relation betw&erandT. The field-

two-body potential is defined as
u(ry) = usw(rij)f({gij}) (1)

whereus"(rj;) is an isotropic square-well term of depit and
attractive range + A andf({ ©2;}) is a function that depends
on the orientation of the two interacting particle®;}. The

diameter of the particles and the depth of the square well have
been chosen as units of length and energy respectively, that isf0

o =1 anduy, = 1. Each particle is characterized byidentical
patches. A patch is defined as the intersection of the surface
of the sphere with a cone with a half-opening an@ithat has

the vertex in the center of the particle and the axis directed

toward the directiorll,. The angular functiof({ €2;}) is defined
as

f({ Qij}) =
f;*0, > cos® some patchw on particlei
1 iffand
F;*0; > cosf some patclB on particlej
0 else

(2)

wherefj is the direction of the versor that joins the centers of
the two interacting particles ard(3) some patch belonging to
the particlei(j). In practice, two particles interact attractively
if, when they are within the attractive distanoe+ A, two

mixing parametes is always smaller than 0.08.

of A and 6 such that, due to steric reasons, each patch is
involved simultaneously in only one pair interaction, that is,
those values fulfilling the condition s> ¢%/[2(c+A). Under

this single-bond-per-patch condition, the number of patches
coincides also with the maximum number of possible bonds
per particle.

The Kern-Frenkel potential possess an analytical expression
r the second virial coefficient

B—,fs =1-(Q+8°-1E" -1 (3)
BZ
where y = M[(1 — cos@))/2] is the percentage of surface
covered by the attractive patches and the temperature is
measured in reduced units, that ks, = 1. Here,B}® is the
hard-sphere component of the virial coefficient. To calculate
the location of the gasliquid critical point, we perform grand
canonical Monte Carlo (GCMC) simulatioAscomplemented
with histogram reweighting techniques to match the distribution
of the order parametep — se with the known functional
dependence expected at the Ising universality class critical
point28 Here,e is the potential energy density,is the number
density, ands is the mixing field parameter. We did not
performed a finite size study since we were only interested in
the trends with the rang& and the angular size of the patches

patches are properly facing each other. When this is the casef. We have studied systems of size= 6 forM =4 and 5 and

the two particles are considered bonded. Decreasirgduces
the range of the attraction, whereas redudindiminishes the
angular size of the patches. In the limit— 0, the model goes
toward the patchy Baxter limit. In the limit cés— 1, the patch
goes to the point limit.

In the present work, we focus on M 3, 4, and 5 patches,

L =7 for M = 3, wherelL is the side length of the cubic
simulation box. For each studidd, using the methods described
in ref 29, we calculated the critical temperatdieand density
pc for values ofA between 0.119 and 0.01 (at fixed cés=
0.92) and for co® between 0.895 and 0.99 (at fix&d= 0.119).
The results are summarized in Table 1.

located on the surface of the particle, as shown in the cartoon We start by analyzing the results as a functiom\oft fixed

of Figure 1. Different from previous studiésye consider values

cosO = 0.92. Figure 2 shows thdi; decreases with, while
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Figure 2. Critical temperaturd (a) and critical density. (b) as a
function of the range\, at fixed patch angular size c6s= 0.92. Lines
in (a) correspond to constant values Bf, specifically leB'z"S =
—3.03 forM = 5, By/BYS = —4.92 forM = 4, andB,/B}> = —26.71
for M = 3. Lines in (b) arep(A) = pc(0)/(1 + 0.5A)3, where pc(0)
(shaded point) is a fitting parameter. The fit values gf@) = 0.41
for M =5, p(0) = 0.33 forM = 4, andpc(0) = 0.16 forM = 3. Open
symbols are simulation results.

pc increases. The\ dependence op. can be conveniently
described by(A) = p(0)/(1+ 0.5A)3, a functional form which
suggests thai; would be constant if measured using the average
distance between two bonded particles{1.5A) as the unit

of length. The resulting(0)-extrapolated value provides an
estimate of the corresponding patchy Baxter mqogeFigure

2a shows also that th&: dependences are apparently well
described by isd3; lines. EachMV is characterized by a different

B, value, enforcing the existence of a GLCS for each valence.

As a confirmation, we evaluate the values BFB,° at the
critical point for the patchy particle model studied in ref 24.
The resulting values foM = 3, 4, and 5 are respectively
BY/B,S = —28.12, —4.95, and—2.78, very similar to the
values reported in the present study. We also note thaBihe
differences between differeM values are much larger than
the variation withA at constantM. Hence at a zeroth-order
approximation, when the repulsive part of the potential is
complemented by localized patchy interactiom, can be

considered as a scaling variable of a GLCS in the single-bond-

per-patch condition.

A closer look at the actudB, values (see Table 1) shows
that a small trend in th&, values is present, which is hidden
in the logarithmic transformation relating, to T (see eq 3).
Still, the B, differences between differei values are much
larger than the variation witlh at constantM. This suggests
that, at a zeroth-order approximatid®, can be considered as
a scaling variable of a GLCS in the single-bond-per-patch
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Figure 3. Critical temperaturdl; (a) and critical density. (b) as a
function of the angular patch size éysat fixed rangeA = 0.119.
Lines in (a) correspond to constant valuengfspecificaIlszlB;'S =
—3.53 forM = 5, By/BYS = —5.74 forM = 4, andB,/B}° = —28.29
for M = 3. Open symbols are simulation results.

under an isotropic scaling (to change the interparticle distances
preserving the same bonding pattern) and a simultaneous change
of both A andT such thaBB, remains constant. It is interesting

to observe that the GLCS for the isotropic square well is fulfilled
for values of the range smaller than 09%,whereas for the
three models discussed here, GLCS appears to hold for longer
ranges.

Figure 3 showd; andp, this time atA = 0.119, as a function
of cos@. For values of co# larger than the one reported in the
figure, crystallization is observed within the simulation time,
preventing the possibility of evaluating the critical parameters.
This effect suggests that the liquidas critical point is
metastable, as in the case of spherical short-range potentials.
The observation of crystallization informs us already that upon
reducingd, some bonding patterns acquire a larger statistical
weight. Indeed, different from the previous case, small devia-
tions from a GLCS are observed Th(see lines Figure 3a) and
not only inB5. We attribute these deviations to the fact that by
changing the angular part of the potential, the statistical
relevance of specific bonding patterns varies. In other words, it
is not possible to vary the orientation of the particles to preserve
the bonding upon changirg that is, it is not possible to perform
the operation equivalent to rescaling the distances to preserve
the bonding pattern upon changing We expect that the
breaking of the scaling will be enhanced at state points far from
the critical region where an extensive bonding pattern is present,
that is, lowT and largep. Concerning thé dependence o,
we note that it increases with cédor the cased! =5 and 4,

condition. Thus, provided that the geometry of the patches is while it weakly decreases foM = 3. We have no clear

such that their number coincides with the maximum valencey,
B, carries the information on the valencey of the patchy

arguments for interpreting the(6) trends, except for the fact
that the observed dependence (more significanMer 4 and

interaction potential. These results suggest that, statistically, 5) suggests a nontrivial coupling between the angular correlation
configurations with the same Boltzmann weight are generated induced by bonding and the density. For these Mi@alues,
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small bonding angles appear to require smaller average distances (2) Sciortino, F.Nat. Mater.2002 1, 145.
between next-nearest neighbor particles, implying larger densi-  (3) Dawson, K. A.; Foffi, G.; Fuchs, M.; Gotze, W.; Sciortino, F.; Sperl,
ties M.; Tartaglia, P.; Voigtmann, T.; Zaccarelli, Phys. Re. E 2001, 63,

The argument behind the quasi-validity of the GLCS for each 114?41)' ten Wolde, P. R.: Frenkel, 5ciencel997 277, 1975.

M class is based on the fact that the relevant role is played by 5y Noro, M.; Frenkel, D.J. Chem. Phys200q 113 2941.

the bonding patterh,which is supposed to be statistically (6) Foffi, G.; Sciortino, F.Phys. Re. E 2006 74, 050401.
identical for all members of the class along corresponding states. 7y kern, N.: Frenkel, DJ. Chem. Phys2003 118 9882.

Hence, the number of bonds at the critical point should be (8) Charbonneau, P.; Frenkel, D. Chem. Phys2007, 126, 196101.
similar. To double check this statement, we also reportin Table  (9) vega, C.; Monson, Rl. Chem. Phys1998 109, 9938.

1 the bond probability;, defined as the potential energy at the (10) De Michele, C.; Gabrielli, S.; Tartaglia, P.; Sciortino,J= Phys.
critical point normalized by the energy of the fully bonded Chem. B2006 110 8064.

system. Such a quantity is indeed constant for édakalue, in (11) Kolafa, J.; Nezbeda, Mol. Phys.1987, 61, 161.

agreement with (and strongly supporting) the possibility of (12) De Michele, C.; Tartaglia, P.; Sciortino, . Chem. Phys2006

S . 125, 204710.
defining a different GLCS for each valencey class. We also note (13) Chapman, W.; Jackson, G.; GubbinsMol. Phys.1988 65, 1057.

that, within eachM class, the variations qf; are smaller than (14) Sear, R.; Jackson, G. Chem. Phys1996 105, 1113.

the one ofB,, suggesting that the bond probability may result  (15) Manoharan, V.; Elsesser, M.; Pine, Science2003 301, 483.

in a better scaling variable that of th&. A small trend inp;, (16) Cho, Y.-S.; Yi, G.-R; Lim, J.-M.; Kim, S.-H.; Manoharan, V.; Pine,
is only observed in th& dependence. We also note that this D. Yang, S.-M.J. Am. Chem. So@005 127, 15968.

observation is in agreement with the Wertheim théband c _(izglzg;rlgg':gn&'?: Rg‘iﬁgbgg'B‘?geﬁgfigﬁnsgor’#uﬁ-éo%%“gfzy-;?-; Goubault,
W|th_the |de_nt|f|cat|on of the bo_nd free energy as the appropriate (18) Zhang, G. Wang, D.: Kowald, H. Angew. Chem., Int. E€005
scaling variable for the spherical cese. 44, 1.

In summary, we have provided evidence that different short-  (19) wmirkin, C.; Letsinger, R.: Mucic, R.; Storhoff, Blature 1996 382,
ranged nonspherical potentials, but with the same number of607.
single-bond patches, essentially obey a GLCS. The condition (20) Sear, R. PJ. Chem. Phy4999 111, 4800.
of a single-bond-per-patch requires that both the attraction range (21) Lomakin, A.; Asherie, N.; Benedek, G. Broc. Natl. Acad. Sci.
and the angular size of the patches are small. Breakdowns ofY-S-A-1999 96, 9465. o
the GLCS can be expected for potentials which differ in their (22) Liu, H.; Kumar, S. K.; Sciortino, K. Chem. Physin press.
angular part, especially for very small angular sizes @es (22) \Q./e”hﬁ'mé MLJ Stat'J ?r}ysigsf 3‘;’; 13 I £ Sciortino. F
1) since, in conditions of extensive bondin_g, 'ghe statistical weight Ph§,s_)Re_'aLn§t_"zodé 5;?268'3’01_6“ agia, 7., caccarell, £ sciortin,
of the closed loops of bonds becomes significantly effected by  (25) sciortino, F.; Bianchi, E.; Douglas, J. F.: Tartaglia,JPChem.
the angular patch size. Phys.2007, 126, 194903.
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