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Colloidal systems (and protein solutions) are often characterized by attractive interactions whose ranges are
much smaller than the particle size. When this is the case and the interaction is spherical, systems obey a
generalized law of correspondent states (GLCS), first proposed by Noro and Frenkel (Noro, M. G.; Frenkel,
D. J. Chem. Phys.2000, 113, 2941). The thermodynamic properties become insensitive to the details of the
potential, depending only on the value of the second virial coefficientB2 and the densityF. The GLCS does
not generically hold for the case of nonspherical potentials. In this Letter, we suggest that when particles
interact via short-ranged small-angular amplitude patchy interactions (so that the condition of only one bond
per patch is fulfilled), it is still possible to generalize the GLCS close to the liquid-gas critical point.

In colloidal and in protein systems, the interaction potential
is often short-ranged, that is, small as compared to the particle
size. The small-range interaction brings some peculiar behavior
both to the system thermodynamics and on the dynamics. For
example, the gas-liquid phase separation becomes metastable
with respect to crystallization1 (and hence, a proper equilibrium
liquid phase is missing). In addition, for very short ranges, the
kinetic arrest (glass) line becomes reentrant, and two different
glass phases appear.2,3 The presence of short-range attractions
is also invoked to explain the so-called “crystallization slot” in
the phase diagram of globular proteins.4

A common property unifies all spherically symmetric short-
ranged attractive potentials, independently from their actual
shape. Indeed, Noro and Frenkel5 showed that the thermo-
dynamical properties of systems interacting with short-range
attractive potentials are all equivalent if scaled by the proper
variables, that is, they obey a generalized law of correspondent
stated (GLCS). They showed that the virial coefficient can be
used as a scaling variable for the strength of the interaction.
Recently, the GLCS has been shown to arise from the fact that,
due to the short range of the interaction, each interacting pair
of particles (a bond) contributes independently and equally to
the partition function.6

The above considerations are valid for centrosymmetric
potentials and cannot be straightforwardly extended to non-
spherical cases,7,8 that is, when interactions are patchy and
strongly directional. In the case of molecular fluids, patchy
interactions are relevant in network-forming systems, like
silica9,10and water11,12and in all associating fluids13,14in which
the hydrogen bond plays an important role. For colloidal
systems, this interest is justified by recent advances in the
synthesis and characterization of patchy particles15-18 or func-

tionalized colloidal particles.19 For what concerns proteins, it
is well-established that the interactions are intrinsically
directional20-22 and that their description in terms of isotropic
potentials represents only a first-order approximation.

Recent progress in understanding the thermodynamics of
patchy colloidal particles has been based on application of the
thermodynamical perturbation theory developed by Wertheim.23

The theory, which does not account for the geometry of the
patches, assumes that each patch acts as an independent
interacting unit. In addition, the theory neglects the possibility
of the closed loops of bonds. Despite these approximations,
several predictions of the theory have been numerically con-
firmed.13,24,25 It has been shown that (for the case of patchy
interactions) the number of independent interacting patches (the
valence) is the key ingredient in controlling the phase diagram
of the system. Upon lowering the valencey, the liquid-gas
critical point shifts to smaller and smaller densities so that liquid
states of vanishing density (empty liquids) become accessible.24

The Wertheim expression for the bonding free energy is a
function only of the bond probability and of the valencey. In
this respect, the theory suggests that systems with the same
valencey should behave similarly if the bond probability is the
same. Since the bond probability is related to the chemical
bonding constant13,25 and since, for large attraction strengths,
the chemical constant is proportional to the second virial
coefficient,26 the Wertheim theory suggests that universality
based on the virial scaling can be recovered also in the case of
patchy interactions when valencey is preserved.

To address the issue of a possible generalization of the Noro-
Frenkel scaling, we have extended the investigation concerning
the location of the critical point for the patchy model introduced
by Kern and Frenkel7 for several values of the attraction range
and of the width of the patchy attractive region. The choice of
this potential is motivated by the fact that angular and radial
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properties can be independently modified. More precisely, the
two-body potential is defined as

whereusw(rij) is an isotropic square-well term of depthu0 and
attractive rangeσ + ∆ and f({Ωij}) is a function that depends
on the orientation of the two interacting particles{Ωij}. The
diameter of the particles and the depth of the square well have
been chosen as units of length and energy respectively, that is,
σ ) 1 andu0 ) 1. Each particle is characterized byM identical
patches. A patchR is defined as the intersection of the surface
of the sphere with a cone with a half-opening angleθ that has
the vertex in the center of the particle and the axis directed
toward the directionûR. The angular functionf({Ωij}) is defined
as

wherer̂ ij is the direction of the versor that joins the centers of
the two interacting particles andR(â) some patch belonging to
the particlei(j). In practice, two particles interact attractively
if, when they are within the attractive distanceσ + ∆, two
patches are properly facing each other. When this is the case,
the two particles are considered bonded. Decreasing∆ reduces
the range of the attraction, whereas reducingθ diminishes the
angular size of the patches. In the limit∆ f 0, the model goes
toward the patchy Baxter limit. In the limit cosθ f 1, the patch
goes to the point limit.

In the present work, we focus on M) 3, 4, and 5 patches,
located on the surface of the particle, as shown in the cartoon
of Figure 1. Different from previous studies,7 we consider values

of ∆ and θ such that, due to steric reasons, each patch is
involved simultaneously in only one pair interaction, that is,
those values fulfilling the condition sinθ > σ2/[2(σ+∆)2]. Under
this single-bond-per-patch condition, the number of patches
coincides also with the maximum number of possible bonds
per particle.

The Kern-Frenkel potential possess an analytical expression
for the second virial coefficient

where ø ) M[(1 - cos(θ))/2] is the percentage of surface
covered by the attractive patches and the temperature is
measured in reduced units, that is,kB ) 1. Here,B2

HS is the
hard-sphere component of the virial coefficient. To calculate
the location of the gas-liquid critical point, we perform grand
canonical Monte Carlo (GCMC) simulations,27 complemented
with histogram reweighting techniques to match the distribution
of the order parameterF - se with the known functional
dependence expected at the Ising universality class critical
point.28 Here,e is the potential energy density,F is the number
density, ands is the mixing field parameter. We did not
performed a finite size study since we were only interested in
the trends with the range∆ and the angular size of the patches
θ. We have studied systems of sizeL ) 6 for M ) 4 and 5 and
L ) 7 for M ) 3, whereL is the side length of the cubic
simulation box. For each studiedM, using the methods described
in ref 29, we calculated the critical temperatureTc and density
Fc for values of∆ between 0.119 and 0.01 (at fixed cosθ )
0.92) and for cosθ between 0.895 and 0.99 (at fixed∆ ) 0.119).
The results are summarized in Table 1.

We start by analyzing the results as a function of∆, at fixed
cosθ ) 0.92. Figure 2 shows thatTc decreases with∆, while

Figure 1. Pictorial representation of the three different patch geometries
considered in this work. The solid angle of each patch is 2π(1 - cos
θ), whereθ is the cone semi-angle.

u(r ij) ) usw(rij)f({Ωij}) (1)

f({Ωij}) )

{1 if{r̂ ij‚ûR > cosθ some patchR on particlei
and
r̂ ij‚ûâ > cosθ some patchâ on particlej

0 else

(2)

TABLE 1: Critical Point Properties for All Studied Models,
Labeled by the ValuesM, ∆, and cosθa

M ∆ cosθ Tc Fc pb
c B2

c/B2
HS

3 0.050 0.92 0.1076 0.151 0.727 -23.67
3 0.070 0.92 0.1113 0.150 0.732 -24.92
3 0.119 0.92 0.1180 0.134 0.721 -26.71
3 0.119 0.895 0.1252 0.136 0.737 -28.29
3 0.119 0.92 0.1180 0.134 0.721 -26.71
3 0.119 0.95 0.1069 0.131 0.726 -25.13
3 0.119 0.97 0.0968 0.129 0.726 -23.92
4 0.010 0.92 0.1140 0.326 0.656 -4.02
4 0.050 0.92 0.1392 0.306 0.652 -4.32
4 0.070 0.92 0.1468 0.306 0.641 -4.24
4 0.090 0.92 0.1511 0.289 0.642 -4.65
4 0.119 0.92 0.1573 0.276 0.644 -4.92
4 0.119 0.895 0.1682 0.267 0.635 -5.74
4 0.119 0.92 0.1573 0.276 0.644 -4.92
4 0.119 0.94 0.1484 0.307 0.667 -3.85
5 0.010 0.92 0.1259 0.393 0.567 -2.41
5 0.050 0.92 0.1570 0.387 0.588 -2.67
5 0.070 0.92 0.1653 0.374 0.585 -2.81
5 0.090 0.92 0.1723 0.362 0.581 -2.90
5 0.119 0.92 0.1808 0.348 0.577 -3.03
5 0.119 0.895 0.1959 0.333 0.570 -3.53
5 0.119 0.92 0.1808 0.348 0.577 -3.03
5 0.119 0.95 0.1601 0.372 0.589 -2.22

a The different columns indicate the critical temperatureTc, critical
density Fc, the bond probabilitypb

c, and the reduced value of the
second virial coefficientB2

c/B2
HS at the critical point. The estimated

errors for each of these quantities are(0.0005(Tc), (0.007(Fc), and
(0.005(pb

c). The error inB2 arises from the error inTc and differs for
each point due to the nonlinear relation betweenB2 andT. The field-
mixing parameters is always smaller than 0.08.

B2

B2
HS

) 1 - ø2((1 + ∆)3 - 1)(e1/T - 1) (3)
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Fc increases. The∆ dependence ofFc can be conveniently
described byFc(∆) ) Fc(0)/(1+ 0.5∆)3, a functional form which
suggests thatFc would be constant if measured using the average
distance between two bonded particles (1+ 0.5∆) as the unit
of length. The resultingFc(0)-extrapolated value provides an
estimate of the corresponding patchy Baxter modelFc. Figure
2a shows also that theTc dependences are apparently well
described by iso-B2 lines. EachM is characterized by a different
B2 value, enforcing the existence of a GLCS for each valence.
As a confirmation, we evaluate the values ofB2

c/B2
HS at the

critical point for the patchy particle model studied in ref 24.
The resulting values forM ) 3, 4, and 5 are respectively
B2

c/B2
HS ) -28.12, -4.95, and-2.78, very similar to the

values reported in the present study. We also note that theB2
c

differences between differentM values are much larger than
the variation with∆ at constantM. Hence at a zeroth-order
approximation, when the repulsive part of the potential is
complemented by localized patchy interactions,B2 can be
considered as a scaling variable of a GLCS in the single-bond-
per-patch condition.

A closer look at the actualB2 values (see Table 1) shows
that a small trend in theB2 values is present, which is hidden
in the logarithmic transformation relatingB2 to T (see eq 3).
Still, the B2 differences between differentM values are much
larger than the variation with∆ at constantM. This suggests
that, at a zeroth-order approximation,B2 can be considered as
a scaling variable of a GLCS in the single-bond-per-patch
condition. Thus, provided that the geometry of the patches is
such that their number coincides with the maximum valencey,
B2 carries the information on the valencey of the patchy
interaction potential. These results suggest that, statistically,
configurations with the same Boltzmann weight are generated

under an isotropic scaling (to change the interparticle distances
preserving the same bonding pattern) and a simultaneous change
of both∆ andT such thatB2 remains constant. It is interesting
to observe that the GLCS for the isotropic square well is fulfilled
for values of the range smaller than 0.05,6,30 whereas for the
three models discussed here, GLCS appears to hold for longer
ranges.

Figure 3 showsTc andFc, this time at∆ ) 0.119, as a function
of cosθ. For values of cosθ larger than the one reported in the
figure, crystallization is observed within the simulation time,
preventing the possibility of evaluating the critical parameters.
This effect suggests that the liquid-gas critical point is
metastable, as in the case of spherical short-range potentials.
The observation of crystallization informs us already that upon
reducingθ, some bonding patterns acquire a larger statistical
weight. Indeed, different from the previous case, small devia-
tions from a GLCS are observed inT (see lines Figure 3a) and
not only inB2

c. We attribute these deviations to the fact that by
changing the angular part of the potential, the statistical
relevance of specific bonding patterns varies. In other words, it
is not possible to vary the orientation of the particles to preserve
the bonding upon changingθ, that is, it is not possible to perform
the operation equivalent to rescaling the distances to preserve
the bonding pattern upon changing∆. We expect that the
breaking of the scaling will be enhanced at state points far from
the critical region where an extensive bonding pattern is present,
that is, lowT and largeF. Concerning theθ dependence ofFc,
we note that it increases with cosθ for the casesM ) 5 and 4,
while it weakly decreases forM ) 3. We have no clear
arguments for interpreting theFc(θ) trends, except for the fact
that the observed dependence (more significant forM ) 4 and
5) suggests a nontrivial coupling between the angular correlation
induced by bonding and the density. For these twoM values,

Figure 2. Critical temperatureTc (a) and critical densityFc (b) as a
function of the range∆, at fixed patch angular size cosθ ) 0.92. Lines
in (a) correspond to constant values ofB2, specifically B2/B2

HS )
-3.03 forM ) 5, B2/B2

HS ) -4.92 forM ) 4, andB2/B2
HS ) -26.71

for M ) 3. Lines in (b) areFc(∆) ) Fc(0)/(1 + 0.5∆)3, whereFc(0)
(shaded point) is a fitting parameter. The fit values areFc(0) ) 0.41
for M ) 5, Fc(0) ) 0.33 forM ) 4, andFc(0) ) 0.16 forM ) 3. Open
symbols are simulation results.

Figure 3. Critical temperatureTc (a) and critical densityFc (b) as a
function of the angular patch size cosθ, at fixed range∆ ) 0.119.
Lines in (a) correspond to constant values ofB2, specificallyB2/B2

HS )
-3.53 forM ) 5, B2/B2

HS ) -5.74 forM ) 4, andB2/B2
HS ) -28.29

for M ) 3. Open symbols are simulation results.
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small bonding angles appear to require smaller average distances
between next-nearest neighbor particles, implying larger densi-
ties.

The argument behind the quasi-validity of the GLCS for each
M class is based on the fact that the relevant role is played by
the bonding pattern,6 which is supposed to be statistically
identical for all members of the class along corresponding states.
Hence, the number of bonds at the critical point should be
similar. To double check this statement, we also report in Table
1 the bond probabilitypb

c, defined as the potential energy at the
critical point normalized by the energy of the fully bonded
system. Such a quantity is indeed constant for eachM value, in
agreement with (and strongly supporting) the possibility of
defining a different GLCS for each valencey class. We also note
that, within eachM class, the variations ofpb

c are smaller than
the one ofB2, suggesting that the bond probability may result
in a better scaling variable that of thanB2. A small trend inpb

c

is only observed in theθ dependence. We also note that this
observation is in agreement with the Wertheim theory23 and
with the identification of the bond free energy as the appropriate
scaling variable for the spherical case.6

In summary, we have provided evidence that different short-
ranged nonspherical potentials, but with the same number of
single-bond patches, essentially obey a GLCS. The condition
of a single-bond-per-patch requires that both the attraction range
and the angular size of the patches are small. Breakdowns of
the GLCS can be expected for potentials which differ in their
angular part, especially for very small angular sizes (cosθ f
1) since, in conditions of extensive bonding, the statistical weight
of the closed loops of bonds becomes significantly effected by
the angular patch size.
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