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The vapor-liquid coexistence boundaries of fluids composed of particles interacting with highly
directional patchy interactions, in addition to an isotropic square well potential, are evaluated using
grand canonical Monte Carlo simulations combined with the histogram reweighting and finite size
scaling methods. We are motivated to study this more complicated model for two reasons. First, it
is established that the reduced widths of the metastable vapor-liquid coexistence curve predicted by
a model with only isotropic interparticle interactions are much too narrow when compared to the
experimental phase behavior of protein solutions. Second, interprotein interactions are well known
to be “patchy.” Our results show that at a constant total areal density of patches, the critical
temperature and the critical density increase monotonically with an increasing number of uniformly
spaced patches. The vapor-liquid coexistence curves plotted in reduced coordinates �i.e., the
temperature and the density scaled by their respective critical values� are found to be effectively
independent of the number of patches, but are much broader than those found for the isotropic
models. Our findings for the reduced width of the coexistence curve are almost in quantitative
agreement with the available experimental data for protein solutions, stressing the importance of
patchiness in this context. © 2007 American Institute of Physics. �DOI: 10.1063/1.2768056�

I. INTRODUCTION

The simplest model for describing the attraction between
colloid spheres induced by the presence of nonadsorbing
polymer1 is an isotropic square well potential. This model
has also been proposed as being useful in describing the
phase behavior of model proteins in aqueous solutions.2–4

Although the phase diagram of globular proteins is qualita-
tively well reproduced by such isotropic models, a more de-
tailed comparison shows that the predicted reduced widths of
the vapor-liquid phase boundary are much too narrow rela-
tive to experiment. �Note that the vapor-liquid coexistence
curve in these situations is metastable with respect to gas-
solid coexistence.� This has led workers to speculate that
such models should be improved since they miss, beyond the
possible long-range screened electrostatic repulsion,5 the im-
portant physical point that intermolecular interactions be-
tween two proteins are highly orientationally specific �or
patchy�. More recent work has incorporated this aspect and
modeled protein molecules as hard spheres with sticky sites
on the surface. There has been considerable analytical theory
on this simplified model for proteins.6–10 Similarly, a range
of simulation studies11–16 have studied various models for
patchy fluids. The results, in general, suggest that patchy
models might adequately describe protein phase behavior.
However, a detailed comparison to experiment is missing.
Patchy models have also been used to study the sizes and

shapes of crystal nuclei for the formation of solid phases. It
has also been found that nucleation rates are exquisitely sen-
sitive to the degree of anisotropy.17,18

While the studies discussed above appear to suggest that
patchiness has a strong effect on the predicted phase behav-
ior, it is unclear if the inclusion of this effect allows for the
proper description of protein phase behavior. Here we focus
precisely on such a model and we delineate the locus of the
metastable vapor-liquid phase boundary as the number of
patches �and their relative positions� on the sphere surface is
systematically varied. We present the results of Monte Carlo
simulations, using the histogram reweighting method, which
show the importance of the number of patches in determin-
ing the shape of the vapor-liquid coexistence curve. Their
relative placements also appear to play a role in this context.
While the number of patches does affect the location of the
phase boundary, we find that all of the data for patchy fluids
overlap when plotted in reduced coordinates �i.e., normalized
by values at the critical point�. More importantly, the widths
of these reduced plots superpose nicely on the known phase
behavior of proteins implicating protein patchiness as being
a critical player in determining their phase behavior.

II. MODEL

We simulate spheres which interact through a combina-
tion of an isotropic attraction and sticky patches. Both inter-
actions are described by square well �SW� potentials. The
isotropic part isa�Electronic mail: sk2794@columbia.edu
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� �1�

where � is the well depth for the isotropic interaction, � is
the particle diameter, �i controls the attraction range, and r is
the distance between the centers of mass of the particles. For
the patchy part, the potential has both a radial and an angular
dependence. Following Kern and Frenkel,13 we define the
interpatch interaction as a product of a square well potential
and an angular modulation

up�r,�i,� j� = uSW�r� 	 f��i,� j� . �2�

The square well part is defined analogous to Eq. �1� but with
a different well width, �p, and well depth, �p. The angular
part is defined as follows:

f��i,� j� = �1, 
i � � and 
 j � �

0 otherwise.
� �3�

Here 
i is the angle between the line joining the centers of
particles and the line connecting the center of particle i to the
center of a patch on its surface. � is the maximum bond-
forming angle, which essentially determines the size of
patches. To facilitate the comparison between different patch
geometries, the areal coverage of the patches, �, is constant
for models with different patches,

� = M sin2��/2� , �4�

where M is the number of patches. We have varied the num-
ber of patches ranging from M =4 to 7 with the following
model parameters: �i=1.15, �p=1.05, �p=5�, and �=0.1.
The patchy interaction is thus chosen to be shorter ranged
than the isotropic one but significantly stronger. Note that
this value of � corresponds to �=0.32 rad for M =4 and �
=0.24 rad for M =7. Such small values ensure that, due to
geometric constraints, M is the maximum number of bonds
per particle, i.e., at most one patch pair can interact through
a given patch. We have used three different distributions of
patches to probe the sensitivity of our findings. The first two
are shown in Fig. 1. In the first choice, we have directly
employed the packing of a small number of spheres as a
means of spacing the patches. The second choice is more
arbitrary: it is the same as case 1 for M =4. However, for
M =5 we used a square pyramid, while for M =7 it is a poly-
hedron with a square bottom and an equilateral triangle top.
In a third case, which we shall discuss below, we utilize the
patch distribution from case 1, but randomly perturb the po-
sitions of the patches. We shall perform most of our studies
on set 1, but use the other two sets to understand the sensi-
tivity of the determined critical points to the placement of
patches. Simulation results are reported in reduced units as
T*=kT /�, 
*=N�3 /V, and L*=L /�. In what follows, we
omit the asterisk for simplicity.

III. SIMULATION TECHNIQUES

Grand canonical ensemble Monte Carlo �GCMC� simu-
lations and the histogram reweighting method are used to

locate the critical point and the phase diagram. In this en-
semble the probability of observing a system with a given
number of particles N with energy E is

f�N,E� =
��N,V,E�exp���N − �E�

	
N

	
E

��N,V,E�exp���N − �E�
, �5�

where ��N ,V ,E� is the density of states. In order to cover
the broadest range of phase space, multiple simulations are
required at various chemical potentials and temperatures. In
all cases we assure that the histograms possess sufficient
overlap. We derive the optimum density of states by using
the method proposed by Ferrenberg and Swendsen,19,20 from
which the phase diagrams can be readily estimated.

To estimate the critical point we employed the finite size
scaling method.15,21–23 According to the mixed-field theory,
the relevant ordering operator is a linear combination of the
number of particles N and energy E: X=N−sE, where s is a
field mixing parameter controlling the coupling strength be-
tween energy and density fluctuations. At the critical point,
the fluctuations of this ordering operator are well described
by the universal Ising distribution.24 Fits of our simulation
results to this well defined functional form permit for a direct
evaluation of the critical parameters for the various M mod-
els. The critical parameters are found to be L dependent be-
cause of corrections to scaling.22 The deviation of the appar-
ent critical temperature from the true critical temperature is
given by Tc�L�−Tc����L−�
+1�/�, with 
=0.54 �Ref. 25� and
�=0.629.26 A linear least-squares extrapolation of Tc at a
variety of L values can yield the critical temperature of the
infinite system. Similarly, the critical density follows the
scaling law: 
c�L�−
c����L−�d−1/��, where d is the dimen-
sionality of the system. From here the critical density of a
system in the thermodynamic limit can be derived. The simu-
lations were performed for several system sizes L=5, 6, 7,
and 8�. The simulation box is a cube with periodic boundary
conditions in all three directions. Each of the simulations is
at least 106 MC steps in length. Each MC step includes 400

FIG. 1. Schematic representation of the placement of the patchy sites �small
spheres� on the surface of the particle �big spheres�. The patch geometries
for set 1 are chosen as tetrahedron �M =4�, triangular dipyramid �M =5�,
octahedron �M =6�, and pentagonal dipyramid �M =7� �Ref. 32�. The patch
geometries for set 2 are taken as the square pyramid �M =5� and the poly-
hedron with square bottom and the equilateral triangle top �M =7�.
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random attempts of rotation/translation and 4 attempts of in-
sertion and deletion. To improve statistics, six independent
MC realizations were averaged. In this manner the phase
behavior in the thermodynamic limit is recovered.

We have never observed crystallization for M =4, 5, and
7 fluids for the conditions covered by this study. However,
the M =6 fluid with a uniform distribution of patches readily
crystallized into a simple cubic form: thus we do not focus
on this case except at the end of the paper.

IV. RESULTS AND DISCUSSIONS

We first focus on the M =4 model. We show the distri-
bution of the ordering operator �X� at the apparent critical
points for all system sizes studied. Consistent with expecta-
tion, this system’s phase behavior belongs to the Ising uni-
versality class �see Fig. 2�. This matching process allows us
to accurately determine the apparent critical point Tc�L� and
�c�L� and the field-mixing parameter s. The relevant param-
eters were summarized in Table I. A size-independent value
of s=0.028 allows simultaneous fit of all distributions of the

ordering operator. The fact that s is small indicates that the
extent of field mixing is small, and the distribution of density
is nearly symmetric. From estimates of the finite apparent
critical points, we can estimate the critical point for the infi-
nite volume system. We find Tc���=0.8137, �c���=−2.433,
and 
c���=0.3822 for the M =4 model.

Next, we move to the M =5 and M =7 models following
the set 1 distribution of patches. For the time being, we only
deal with the system size L=5. We present the distribution of
the ordering operator at the apparent critical point in Fig. 2.
Although the mixing-field parameter s is always small, it
increases with decreasing M, in agreement with previous
findings.15 This implies an increasing role of the mixing field
and a more asymmetric critical density distribution with a
smaller number of patches.

Then, we discuss the resulting vapor-liquid coexistence
�VLE� curves. Figure 3 shows the data for the M =4, M =5,
and M =7 models and compare it to the isotropic model27

and a primitive model for water �PMW�.16 Several trends are
transparent. Looking at the patchy fluids, it is apparent that
both the Tc and the 
c increase with increasing M �Fig. 3�.

FIG. 2. �a� Distributions of the ordering operator for all studied system sizes
at the apparent critical points for the M =4 model. The nonuniversal constant
a and the critical value of the ordering operator Mc were chosen such that
the distributions have zero mean and unit variance. The universal Ising
ordering operator distribution pM

* �x� is shown by the solid line. �b� Distri-
butions of the ordering operator for the M =4, M =5, and M =7 models at the
apparent critical point at the system size L=5, compared with the universal
ordering operator distribution pM

* �x� �solid line� of the Ising universality
class.

TABLE I. Values of the relevant parameters at the apparent critical point for
the patchy models.

L Tc�L� �c�L� 
c�L� s

M =4
5 0.811 −2.449 0.3833 0.028
6 0.8115 −2.4457 0.3838 0.028
7 0.812 −2.4449 0.3824 0.028
8 0.8133 −2.4316 0.3830 0.028
M =5
5 0.8445 −2.3845 0.4122 0.015
M =7
5 0.915 −2.126 0.5235 0.0

FIG. 3. Vapor-liquid coexistence curves for the studied patchy models M
=4 �squares�, M =5 �circles�, and M =7 �diamonds�. Data for the isotropic
SW model with �=1.15 �inverted triangles� are from Ref. 27; PMW data
�triangles� from Ref. 16. Note that while we used the well depth of the
isotropic potential to define the reduced temperature of the isotropic SW and
the patchy models studied in this work, we used the patchy interaction well
depth in the case of the PMW model since it does not include an isotropic
potential.
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This is consistent with the recent findings of Bianchi et al.,15

confirming the strong correlation between the critical density
and the effective valence of the particles. In comparison with
the purely isotropic model the critical density of the M =4
model is lower, while its Tc is higher. Since the patch inter-
actions provide an additional source of attraction, we expect
that the critical temperature, in the presence of patches, will
always be higher than the corresponding isotropic case. In
the PMW model,16 the isotropic reference state is the hard
core and the critical T is completely controlled by bonding.
In the case of the M =4 fluid we find that the critical density
is intermediate between the PMW and the isotropic case,
suggesting that both interactions play a role in the location of
the critical point.

To examine the effect of M on the width of the VLE
curves, we present the phase diagram in terms of the reduced
units in Fig. 4. We also include the simulation data of PMW
and the SW model with �=1.15, and the experimental data
for �-crystallin and lysozyme. The data for all patchy models
and the PMW collapse onto a single master curve. These
curves are much broader than that of the isotropic only
model and show an excellent agreement with the experimen-
tal results for �-crystallin28 and lysozyme.29 Thus, w we ten-
tatively conclude that patchy models represent a more real-
istic description of protein-protein interactions even in the
context of dilute solution behavior.

Next, we investigate the effect of patch placements on
the critical point. The first question we would like to address
is if the critical point tolerates small perturbations of patch
positions. We chose the set 1 patch design as the starting
point, and made small random movement of patches on the
surface of particle. The magnitude of the random movement
is proportional to the patch size and is set to � /5. The final
location of the patches is identical for all particles. The re-
sults demonstrate that such small perturbation cause no
changes to the critical point within simulation uncertainty.

We also studied the models in set 2, which have a patch
distribution which is quite different from those in set 1. We
found that the estimated critical temperatures are different
from the counterparts in set 1. The M =5 model in set 2
shows an increase in Tc by 0.01 and an increase in 
c of 0.02,
while Tc of the M =7 model in set 2 decreases by 0.07 and 
c

decreases by 
0.1. Since the Tc and 
c values appear to be
shifted in either direction depending on the specific patch
placements, we conclude that patch placement is also playing
a role in determining the critical point.

In addition to the understanding that is obtained for the
role of patchiness on phase behavior, the results presented
here can be used to predict the critical behavior of the M
=6 model, which has been excluded by our study. Indeed, we
have not focused on M =6, since this is the only one that
crystallizes easily. In all our calculations we found that the
M =6 system crystallizes so readily that we have to perform
histogram reweighting calculations at high temperatures to
suppress crystallization. Extrapolations of histograms from
this high temperature do not yield meaningful estimates of
the phase diagram. To circumvent this problem and to esti-
mate the phase behavior of this interesting patch model we
have estimated its critical temperatures and densities by in-
terpolation of Fig. 5�a�. We find Tc=0.879 and 
c=0.4685.
Then, by assuming that the phase diagram of the M =6 model
falls onto the same master curve shown in Fig. 4 we can
estimate the vapor-liquid coexistence curve for this fluid
�Fig. 5�b��.

V. CONCLUSION

We have used Monte Carlo simulations to investigate the
vapor-liquid coexistence curves for several patchy models,
prototype models for describing interaction between pro-
teins. In the models studied, the isotropic square well attrac-
tive potential is complemented by M independent patch in-
teractions, modeled as in Ref. 13. All studied models are
characterized by the same �small� overall patch coverage.
The critical density and temperature are found to monotoni-
cally decrease as the number of patches decreases, favoring

FIG. 4. Vapor-liquid coexistence curves in terms of the reduced tempera-
tures T /Tc and the reduced density 
 /
c for the studied patchy models: M
=4 �open squares�, M =5 �open circles�, and M =7 �open diamonds�. The
isotropic only �Ref. 27� �inverted open triangles� and PMW �Ref. 16� �open
triangles� data are shown for comparison. The experimental data for
�-crystallin �full circles� and lysozyme �full squares� are taken from Refs.
28 and 29, respectively. The lines are the fit to the standard critical scaling
law used to describe coexistence curves.

FIG. 5. �a� The dependence of the critical points for patchy models with a
variable number of patches. Interpolation �asterisks� yields an estimate for
the M =6 model: Tc=0.879 and 
c=0.4685. �b� The estimated vapor-liquid
coexistence curve for the M =6 model assuming that all patchy models fall
on the master VLE curve in terms of the reduced temperature and density.
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the establishment of a homogeneous liquid state at interme-
diate densities,31 a phenomenon which could favor the for-
mation of disordered arrested states �protein gels�. We have
observed that these results are less sensitive to the placement
of patches than to the number of patches themselves, con-
firming the important role of the effective valence in ratio-
nalizing the resulting phase diagram.

We have shown that the phase diagrams of all patchy
models studied fall, in reduced units, onto the same master
curve, which also appears to coincide with the experimental
measures of the metastable vapor-liquid lines for two model
proteins. This result stresses the importance of patchy inter-
actions in describing the behavior of proteins, a conclusion
that is consistent with the known patchy nature of protein
surfaces �and hence interactions�. In this respect, the shape of
the phase diagram in reduced units can provide an indication
of the importance of patchy interactions. The specific values
of the critical density can even provide information on the
actual number of patches.

Finally, we note that results presented in this article refer
to a specific value of the coverage and to a specific ratio of
the isotropic to patchy interaction strength. Future studies
will address the role of these quantities on the phase diagram
of patchy particles.
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