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Self-Assembling DNA Dendrimers: A Numerical Study
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DNA is increasingly used as a specific linker to template nanostructured materials. We present a molecular dynamics
simulation study of a simple DNA-dendrimer model designed to capture the basic characteristics of the biological
interactions, where selectivity and strong cooperativity play an important role. Exploring a large set of densities and
temperatures, we follow the progressive formation of a percolating large-scale network whose connectivity can be
described by random percolation theory. We identify the relative regions of network formation and kinetic arrest versus
phase separation and show that the location of the two-phase region can be interpreted in the same framework as
reduced valency models. This correspondence provides guidelines for designing stable, equilibrium self-assembled
low-density networks. Finally, we demonstrate a relation between bonding and dynamics, by showing that the temperature
dependence of the diffusion constant is controlled by the number of fully unbonded dendrimers.

I. Introduction

The use of biological cross-linking molecules to control bond
formation between otherwise noninteracting particles offers a
novel route to designing interconnected and highly organized
materials on the molecular scale.1-5 Complementary “lock-and-
key” binding molecules, which assemble due to the biological
specificity, provide a versatile way of controlling interparticle
binding. Among the possible choices of biological molecules,
the specificity offered by complementary DNA single strands
grafted on a core particle is particularly appealing.6-9 Controlling
the length and sequence of the DNA strand makes it possible to
modulate the strength of the interaction and thereby alter the
temperature or concentration at which assembly by the formation
of double strands occurs. This is a result of the fact that DNA
adenosine-thymine (A-T) and guanine-cytosine (G-C) bases
hybridize pairwise with a Gibbs free energy change of the order
of the thermal energy per base, allowing for highly selective
thermally controlled bond formation.

The practical application of DNA to molecular design is
challenging, but significant progress has been made using DNA-
decorated colloidal particles, which are potential candidates as
building blocks for self-assembling networks or “supermolecular”

materials.1,9-19 One of the key issues in the self-assembly
paradigm is the prediction of the three-dimensional self-assembled
structure, the existence of ordered phases, the region of mechanical
instability of the material (against composition fluctuations), and
the propensity to form kinetically arrested states (gels or glasses).
Ideally, through the design of the interparticle interaction, it
should be possible to favor (or disfavor) crystallization, phase
separation, or dynamic arrest. Indeed, the ability to fully exploit
the rapid developments taking place in materials science20,21

requires not only an understanding of the equilibrium phases and
their modifications with the external fields, but also an
understanding of the regions in the phase diagram where
nonergodic arrested states can interfere with assembly.22,23

An additional valuable feature of using DNA strands for
interparticle bonds is the possibility of controlling the maximum
number of bonded neighbors, or valency. Controlling the valency
is not a trivial task, given the propensity of most attractive
spherically symmetric potentials to form highly packed structures
with up to twelve neighbors. Valency can be controlled by
decorating the surface of the particle with attractive patches, but
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the patchy attraction range must be≈ 10% (or less) of the particle
diameter. It has been suggested that, in the absence of long-
range repulsion, valency is the key ingredient to control the size
of the region (in the density-temperature plane) in which phase
separation is observed.24,25Decreasing the valency stabilizes the
system against concentration fluctuations and favors the pos-
sibility of forming, even at relatively low densities, homogeneous
states held together by the percolating network of interparticle
bonds. Moreover, patchy interactions that limit valency are also
useful for the generation of complex self-assembled structures.26,27

For a deeper understanding of the self-assembly process in
DNA-coated particles, we study the structure and the dynamics
of a minimal model recently introduced to mimic particles
composed of a central core (which could be a molecule or a
colloidal particle) to which several single-stranded DNA “arms”
have been attached.28 Specifically, we focus on the tetrameric
DNA complexes (four-armed oligonucleotide Ni(II)-cyclam-
centered complexes) recently synthesized and discussed in ref
6, but whose bulk behavior has not yet been experimentally
explored. We investigate a large window of densitiesF over the
relevant range of temperaturesT to determine the region in which
the system forms a supramolecular network, the region where
the network becomes nonergodic, and the region in which network
formation is precluded by phase separation; a schematic
representation of these regions is shown in Figure 1, and the
detailed results for this model are given in Figure 2. The details
of Figure 2 will be developed throughout the manuscript.

In this manuscript, we characterize the network structure (in
both real and reciprocal space), examine the connectivity of the
system and map it to well-known percolation results, and evaluate
the dynamical properties to elucidate the relation between bond
formation, percolation, and dynamic arrest. Our results show
that both the thermodynamic and dynamic features of this model

are analogous to the properties of other tetrahedrally coordinated
systemssindependent of their being molecular or colloidal. This
provides further evidence that materials as different as the
tetrahedral molecular fluids (like water and silica)29-33and four-
coordinated DNA-coated particles can be interpreted in the same
general framework. Ultimately, this helps provide a reference
for predicting self-assembled properties of particles with selective
bonding.

II. Model and Simulation Methods
The model we study was designed28 to mimic the general

features of the four-armed DNA dendrimer complexes that have
been synthesized experimentally.6 Each arm consists of a single
DNA strand with an even number of bases; the sequencing of
the bases is chosen such that two identical strands will bond to
each other in head-to-tail order. As a result, these dendrimers
have the potential to naturally assemble into higher-order
structures. The head-to-tail bonding is achieved by choosing a
sequence where the bases of the second half of a strand are
complementary to the bases of the first half, but in reverse order.
For example, for the 8-mer strands we study, the first four bases
in the strand are A-C-G-T. The complementary sequence to this
is T-G-C-A, and so the overall sequence for the 8-mer is A-C-
G-T-A-C-G-T. Reading the sequence backward, it is plain to see
that it is the complement of the forward sequence. With this
choice, it is also possible to have partial bonding of the outer four
base pairs of the arms, due to the repetition of the A-C-G-T
sequence.
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Figure 1. Schematic representation of the relevant thermodynamic
and dynamic properties of network-forming limited valency systems.
This schematic plot applies to tetrahedral network-forming systems,
such as silica34 and water.35 An important feature to notice is that
the system remains an equilibrium fluid in a significant region below
the percolation threshold of the network.

Figure 2. Phase diagram of the system. The boundary of the phase
separation region is estimated by bracketing the last simulated stable
state points (black circles) and the first unstable state points (red
squares) along both isochores and isotherms. The figure also shows
several other lines: (I) the percolation locus, (II) the locus where
the bond probabilitypb ) 0.5, and (III) several lines of isodiffusivity,
to provide an estimate of the shape of the arrest line. The data
confirm that arrest of the system occurs only below the percolation
line.Additionally, the figureshows that the isodiffusivity linesbecome
increasingly parallel to lines of fixed bonding fraction, expected
since the fraction of intact bonds dominates the dynamical properties.
The top axis shows the scaled densityFscaled) N/(V/d3), whereN
is the total number of tetramers,V is the volume, andd is the nearest-
neighbor separation of the tetramer centers. The phase diagram of
different tetrahedrally coordinated systems34 can be quantitatively
compared using theFscaledaxis.
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Ideally, we would use a model potential that includes all the
chemical details of DNA and which would explicitly account for
electrostatic effects in the formation of DNA pairs.36,37However,
simulating a large system and following the self-assembly process
presents significant computational challenges. Hence, we choose
to avoid an explicit description of the solvent and of the charges,
and we choose a simple, coarse-grained model of a DNA strand
that captures the salient features of assembly made possible by
the specificity of base pair interactions. The model is thus not
designed to describe in a realistic way the characteristics of the
DNA. The model has been described briefly in ref 28, which we
expand on. The essential ingredients of the model are that each
strand consists of an even number of monomers and each
monomer carries a small “sticky spot” of a specific base type
that will bond only with the complementary type. The small size
of the sticky spot relative to the overall monomer size pre-
vents a base from bonding with more than one complementary
base, necessary to reproduce the selectivity of DNA base pair
bonding.

We first describe in detail the potential we use for monomers
of the DNA strand. Each strand has eight monomers, though the
model is easily generalized to any number of monomers. All
monomers (in the same or different strands) interact via the shifted-
force potential38

whereVLJ(r) is the common Lennard-Jones (LJ) potential, and
rc is the distance at which the potential is truncated. This form
of the potential ensures that both the potential and the forces are
continuous atrc. For the monomers, we chooserc ) 21/6σ, where
σ is the LJ length parameter; thisrc value is precisely the location
of the minimum of the Lennard-Jones potential, and so the
resulting potential is purely repulsive, as in the Weeks-
Chandler-Andersen model.39 Hence, each monomer can be
considered a soft sphere of diameterσ. In the remainder of the
text, we utilize reduced units where length is given in units of
σ and energy in units ofε, the LJ energy parameter. Other derived
units will be defined as they arise.

Connectivity of neighboring monomers in a strand is main-
tained by a finitely extensible, nonlinear elastic (FENE) anhar-
monic spring potential

where the bond strengthk ) 30ε/σ2 and the maximum bond
extensionR0 ) 1.5, as used in refs 40 and 41 to study coarse-
grained polymers. We model the characteristic rigidity of the
DNA strands by a three-body “bending” potential

whereθ is the angle defined by three consecutive monomers,
and a value ofklin ) 5ε allows for moderate flexibility of the
strands. At this level of description, we have a semiflexible
polymer with only excluded-volume interactions.

The sticky spots account for base-specific attractive interac-
tions; with any noncomplementary force site, the interactions
will be purely repulsive. Each monomer carries one sticky site
with an identity of A, C, G, or T that is bonded to the center of
the monomer using the FENE potential (eq 2), with the samek
andR0. Sticky sites interact withnoncomplementarysites and
with the large monomers of the chain just described using the
LJ potential (eq 1) with a diameterσsticky ) 0.35; we choserc

) 21/6σsticky so that all noncomplementary interactions are
repulsive. This combination of the LJ and FENE potentials results
in the center of the sticky siteinsidethe diameter of the monomer,
and so the “edge” of the sticky site just protrudes from the
monomer, as illustrated in Figure 3a. This choice is important
to prevent the formation of more than one bond per sticky site.
Including attractions between complementary sites simply
requires that we change the truncation of the potential; for
complementary pairs of sticky sites, we chooserc ) 2.5σsticky.
At this level of description, the model can account for the
zipperlike transition by which double-stranded DNA is formed
(Figure 3b), as previously demonstrated.28 However, we note
that we have not included interactions to mimic the helix spiraling
of double strands.

To create four-armed dendrimer molecules, which we refer to
as tetramers, we bond one end of each strand to a tetrahedral hub
composed of four spheres of diameterσ, as illustrated in Figure
3c. Monomers of the hub interact via the same repulsive potential
as the monomers (eq 1), and bonds within the hub and between
the hub and the strand are given by the FENE potential (eq 2).
To maintain the orientation of the arms relative to the hub, we
again use the three-body bending potential (eq 3). Specifically,
for each vertex of the tetrahedral hub, we use eq 3 to prefer a
linear orientation from the attached DNA monomer, through the
vertex, and to each of the other neighboring vertices. The
superposition of these linear potentials results in the arm having
an orientation that is roughly normal to the opposing face of the
tetrahedral hub.

We simulate 200 molecules (68 sites per tetramer, a total of
13 600 force sites) at six densitiesF ) 0.01, 0.02, 0.03, 0.04,
0.06, and 0.07 at variousT in the range 0.09< T < 0.11, and
include results for a seventh density (F ) 0.05) that have been
previously reported.28 The density is defined as the number of
monomers per unit volume (each molecule has 36 monomers).
Therefore,F ) 0.01 corresponds to a molecular density of
0.000 28.T is in units ofε/kB, wherekB is Boltzmann’s constant.
The range ofT andF allow us to examine the relevant regions
of the phase diagram of this system.

In order to evaluate both the static and dynamic properties of
the system, we carry out molecular dynamics simulations.38 We
simulate individual state points at a fixedF andT; we control
T via the Nose-Hoover method. To accelerate the overall speed
of the simulations, we use a three-cycle velocity Verlet version
of the rRESPA42 multiple time step algorithm, with the forces
separated into rapidly varying bonded forces and more slowly
varying nonbonded forces. The time step for the bonded forces
is 0.002, where time is in unit ofσxm/ε. The time for
equilibration of the system varies strongly withT but is only
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weakly dependent onF. At the lowestTwe study, the simulations
extend over more than 108 steps, but these lowestT still exhibit
some aging effects. Hence, in most cases we exclude the lowest
T when analyzing the data.

III. Static Properties

A. Structure. As was shown in ref 28, tetramers spontaneously
self-assemble into a complex network at lowT. Such a structure
should play a significant role in the applications of new materials.
To characterize the network structure, we calculate the radial
distribution functiong(r) between centers of the tetrahedral hubs
and its Fourier transform, the structure factor

whererbi are the coordinates of the center of the hub of tetramer
i andqb is the wavevector, whereas thei in the argument of the
exponential is the imaginary unit. The average〈...〉 is over
equilibrium configurations.

Figure 4 showsg(r) for the centers of mass of the tetramers
for four of the seven densities studied. At high temperatures,g(r)

is characterized by a soft depletion region around the origin,
arising from the excluded volume interactions. The absence of
peaks ing(r) indicates an unstructured fluid. AsT decreases, we
observe a clear peak at a separationd ≈ 9.6, which defines the
nearest-neighbor distance. We will use such a value ofd to define
an appropriate scaled density to compare the phase diagram of
Figure 2 with other tetrahedral models.29-35 On cooling, the
first-neighbor peak becomes pronounced and a second peak
develops atr ≈ x3d, indicating that the system is forming a
tetrahedral network. However, the structure of the system remains
amorphous (noncrystalline).

To confirm the lack of crystal structure and the presence of
tetrahedral order, we turn toS(q), shown in Figure 5. Again, at
high T, S(q) is rather unstructured. On cooling, a main peak
appears atq ≈ 0.8, whoseq-location does not changes withT.
ForF g 0.3, the tetrahedral network structure at lowT observed
for g(r) manifests itself as a shoulder (“pre-peak”) atq ≈ 0.6.
For sufficiently small T, the amplitude of the pre-peak,
characteristic of the tetrahedral structure, grows. The absence of
any Bragg peaks inS(q) confirms the amorphous nature of the
network.

For F e 0.2, one observes a sharp increase inS(q) asq f 0,
an indication of an increase of the compressibility and of the
development of inhomogeneties with a length scale on the order
of the system size. The behavior ofS(q) for smallq is characteristic
of an approach to a region of thermodynamic instability, which
preempts the possibility of developing an homogeneous network
at smallF. To estimate the approximate location of the phase
coexistence, we identify pairs of adjacent-state points which
bracket the boundary between stable and unstable states. As a
criterion for distinguishing single-phase equilibrium state points
from phase-separating ones, we evaluate the value ofS(qmin)
whereqmin ) 2π/L is the smallest wavevector available in the
simulation study. State points for whichS(qmin) j 5 are considered
stable; states withS(qmin) J 10 are considered unstable. We thus
bracket the stability boundary for this model by plotting in Fig-
ure 2 the last stable and first unstable states, both along iso-
therms and along isochores. ForF ≈ 0.3, a weak increase of
S(q) at smallq is observed, butS(qmin) never goes beyond 1.
For F J 0.3, critical fluctuations are not observed at all investi-
gated temperatures. As shown in Figure 2, the phase separation
region is limited to a relatively small region of the possible
densities.

B. Potential Energy and Bonding.Since the only attractive
intermolecular interaction is the complementary base-pair

Figure 3. (a) Illustration of the model for a single DNA strand. The
large blue spheres represent the repulsive cores along the chain. The
small green spheres that protrude are the attractive “sticky” spots
that carry information about base type. (b) Two isolated strands at
low T will spontaneously “zip” to form a double-stranded unit. (c)
Single DNA tetramer, designed by joining four strands to a central
hub (the four red spheres). Arms of different tetramers can bind in
the same fashion as the two individual strands. The large blue
monomers are omitted in this image to make the sticky sites apparent.

Figure 4. Radial distribution function for a range of densities, at
differentT. Data have been shifted by 0.05 along they-axis to improve
clarity. The values ofT for the different densities are from top to
bottom: (a) 0.0965, 0.0970, 0.0975, 0.100, 0.105, 0.110; (b) 0.094,
0.095, 0.096, 0.0975, 0.100, 0.110; (c) 0.092, 0.094, 0.096, 0.098,
0.100, 0.120; (d) 0.095, 0.0970, 0.0975, 0.099, 0.100, 0.110.

S(qb) )
1

N
〈∑

i)1

N

∑
j)1

N

exp[iqb‚( rbi - rbj)]〉 (4)

Figure 5. Structure factor for different values ofF and severalT
in each case. AsT decreases, the peaks grow, a signal of a more
structured fluid. Only stable state points [withS(qmin) j 5] are shown.
The values ofT are those of Figure 4.
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interaction, the potential energy between base pairs provides an
indication of the number of links in the system. In Figure 6, we
show the potential energyE per base pair as a function ofT for
the different isochores studied. The energy decreases rapidly as
we decrease the temperature for all the densities studied. In a
very small interval of temperatures, roughly 2% of the energy
of a single bond, we cross from a fully unbonded system to a
nearly fully bonded system. In the present model, the ground
state energyEgs of the system can be properly defined as the
energy where all base pairs are bonded. For this model,Egs )
-0.9286;Egs * -1 due to the shifting procedure used in eq 1
to ensure continuity of energy and forces when crossing the
cutoff. Data in Figure 6 confirm that the state where all possible
bonds are formed cannot be reached within our computational
time (at allF) due to kinetic slowing down and limitations of our
computational capability. TheT-dependence ofE relative toEgs

at low T is well-described by an Arrhenius behavior (see inset
of Figure 6), with an activation energy of 1.3, suggesting that
an independent bonding process dominates the behavior ofE(T).
The Arrhenius temperature dependence of the bond energy at
low T has been also observed in models of network-forming
molecular liquids like water35 and silica.34 Since the energy can
be directly associated with the formation of bonds, we will focus
on the bonds in the remaining analysis.

To relate the connectivity of the system to its structural (and
eventually dynamical) properties, an appropriate definition of a
bond between distinct tetramers is needed. We say that a bond
betweenbase pairsof different arms is present when the pair
base-base potential energy is negative; this definition works
well, since there is a very narrow range of the attractive well.
We say that a bond between twostrandsis present when the
strands have four or more base-pair bonds formed.

We first evaluate the probabilitypb that a strand of the tetramer
is bonded. This probability is identical to the overall fraction of
intact bonds in the system (i.e., number of intact bonds normalized
by the maximum number of possible bonds). Similar to the
behavior of the energy, Figure 7 shows that an arbitrary strand
of the tetramers goes from almost zero probability of being bonded
to another strand to nearly always being bonded in a small range
of T. A similar sharp behavior has also been observed
experimentally for the melting transition of DNA-coated gold
nanoparticles.43 The sharpness of the transition calls for a
significant contribution of the entropy in the bond free energy.
This sharp behavior is found for all the studied densities and can
be rationalized, in a simple approximation, using a two-state
model, in which the difference in bond free energy from an
unbonded to a bonded state requires a change in both energy
(∆E) and entropy (∆S). This hypothesis directly leads to

Allowing both ∆E and∆S to be free, we find that∆E varies
weakly around a mean of 4.0. Since∆E can be associated with
the energy needed to break a bond between strands, this energy
should be nearly independent of density. Hence, we fix∆E )
4.0 and only allow∆S to vary, as shown in the inset of Figure
7. As expected,∆S decreases slightly with increasing density,
since the overall volume is decreasing. In the two-state model,
∆S is responsible for the abrupt change ofpb with decreasing
T. This also implies that a system with longer strands, i.e., where
the loss of entropy on bonding will be larger, will form bonds
in an evensmaller interval of T. Thus, width of the crossover
could be made arbitrarily small by increasing the DNA strand
length. The significant change in∆S/kB in the bonding process
(on the order of 5 per base pair or 2.5 per base) originates primarily
from the localization of the base site, which is free to orient on
the full solid angle in the unbonded state and is instead confined
in a small angular range in the bonded one. In the present model,
this is the main contribution, since there is no significant change
in conformation of the strand between the bonded and unbonded
states, due to our modeling of the bending energy. In real DNA,
base pairs have comparatively less freedom, and hence our model
overemphasizes this contribution to the entropy.

The two-state model also allows us to define the crossover to
the predominantly bonded state by its inflection point.44-46 In
the two-state model, the location of the inflection point coincides
with the point wherepb ) 0.5. Using eq 5 with the best fit
parameters, we directly evaluate the inflection temperature as a
function of density and plot it in the phase diagram of Figure
2. We will comment later on the relationship of this locus with
the dynamics. The line shown in the diagram indicates a fit of
the formF ≈ e-E'/T, a functional form suggested by a recently
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(44) Dudowicz, J.; Freed, K. F.; Douglas, J. F.J. Chem. Phys.1999, 111, 7116.
(45) Starr, F. W.; Douglas, J. F.; Glotzer, S. C.J. Chem. Phys.2003, 119,

1777-1788.
(46) Van Workum, K.; Douglas, J. F.Phys. ReV. E 2006, 73, 031502.

Figure 6. Energy per DNA base as a function ofT. The inset shows
the energy difference with respect to that of the ground stateEgs )
-0.9286. Each line corresponds to a different isochore.

Figure 7. Fraction of intact bondspb. The lines are fits to the
two-state model (eq 5), with∆E fixed to the value 4. The densities
are 0.01 (B), 0.02 (9), 0.03 ([), 0.04 (2), 0.05 (1), 0.06 (+), and
0.07 (×). The data sets are shifted by intervals of 0.05 inpb for
clarity of the figure. The inset shows the fit parameter∆S of the
two-state approximation as a function of density.

pb ) 1 - 1

1 + e(∆E-T∆S)/T
(5)
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proposed model of equilibrium polymerization.44,47We find E'
) 5.6, close to the energy needed to break a bond according to
the two-state approximation. The temperature range over which
we are able to test the equilibrium polymerization model is very
small, but the behavior of the present set of data is consistent
with this prediction. Should such a correspondence be robust,
it would suggest that association leading complex network
structures can be understood in the same framework as that of
the simpler living polymer formation.

C. Percolation. We next consider whether the connectivity
of the system can be understood in the framework of percolation
theory.48,49 In Figure 8, we show the probability for a single
DNA-dendrimer to have a specific numbern of arms bonded,
with 0 e n e 4. As expected from the energy, we find that in
a small range ofT, the tetramer goes from an almost zero

probability of having an arm bonded to a significant probability
to have all the possible bonds. We fitP(n) with the function

that corresponds to random bond percolation with coordination
4.48The agreement with eq 6 is excellent, and so we may interpret
bonding as a random percolation process.

As a further test of the correspondence with random percolation,
we examine the distributionn(s) of clusters of finite sizes. To
evaluaten(s), we examine all clusters and remove any that
percolate the system. We define a percolating cluster as a cluster
that spans the simulation box and is connected via the periodic
boundary conditions. The periodic boundary condition is checked
by replicating the simulation box in all directions of space and
checking that in the replicated system the cluster is bigger than
in the original nonreplicated system. Figure 9 shows that close
to percolationns ∼ s-τ with τ ≈ 2.2. This exponent is exactly
that expected for the random percolation process.

To locate the percolation line, we evaluate the fraction of
configurations that contain a percolating cluster. Additionally,
we evaluateP∞, the fraction of molecules belonging to the
percolating clusters, which we find to be nearly identical to the
fraction of percolating configurations (Figure 10). Since we find
that in a very small range ofT the probability of finding a
percolating cluster and the fraction of tetramers in the percolating
cluster both go from 0 to 1, we can define the percolation threshold
Tpercolation(F) as theTwhere the probability of having a percolating
cluster in an equilibrium configuration is 50%. We show the
percolation line in the phase diagram (Figure 2). We find that
the percolation locus occurs forpb values that go from∼0.42
to 0.32 as we go down in density, i.e., percolation occurs well
beforethe completion of the network structure.

If bonds were irreversible (infinitely long-lived), the percolation
line in the phase diagram would provide an indicator of a crossover
to arrest, since the system will have a finite low-frequency shear
modulus if static clusters percolate. However, our definition of
percolation does not include any information about the lifetime
of the spanning cluster. Since bonds can break and reform
continuously, the percolation line cannot be taken as an indication
of dynamical arrest. This is an important difference between
physical and chemical gels; in the latter, the percolation line
closely corresponds to the arrest line (gel line). At the same time,
this model allows us to link physical and chemical gels, since
by increasing the length of the strands we can make the percolation

(47) Stambaugh, J.; Van Workum, K.; Douglas, J. F.; Losert, W.Phys. ReV.
E 2005, 72, 031301.

(48) Stauffer, D.; Aharony, A.Introduction to percolation theory; Taylor &
Francis: London, 1994.

(49) Torquato, S.Random Heterogeneous Materials: Microstructure and
Macroscopic Properties;Springer-Verlag: New York, 2001.

Figure 8. Probability for a four-armed DNA dendrimer of having
n arms bonded. The graph corresponds to the caseF ) 0.05 where
it is very close to the optimal density for the formation of a tetrahedral
network. The points are the data for severalT, and the lines are the
predictions based on eq 6.

Figure 9. Cluster size distributionn(s) for severalF andT values.
The dashed line represents a power law with exponent-2.2 that
corresponds to random percolation. Note that upon approaching the
percolation transition the range of validity of the power law extends.
The values ofT for the different densities are (a) 0.0965, 0.0970,
0.0975, 0.100, 0.105, 0.110; (b) 0.096, 0.0975, 0.100, 0.105, 0.110;
(c) 0.095, 0.096, 0.097, 0.098, 0.099, 0.100, 0.110, 0.120; (d) 0.095,
0.097, 0.0975, 0.99, 0.100, 0.110.

Figure 10. The fraction of molecules in the percolating clusters vs
T. The transition occurs in a small interval ofT.

P(n) ) 4!
n!(4 - n)!

pb
n(1 - pb)

4-n (6)
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line arbitrarily close to the dynamical arrest, as we will examine
in the following section on dynamics.

IV. Dynamics

A. Bond Lifetime. In this section, we examine the dynamical
properties of the system and how they are related to the
connectivity of the network. As we discussed at the end of the
previous section, the lifetime of the bonds is of particular interest,
since this will determine to what degree we expect the percolation
line to coincide with the arrest or gelation of the system. There
are two ways one might evaluate the lifetime of a bond: (i) the
mean time that an intact bond survives (mean first breaking
time) or (ii) the characteristic time which an initially intact bond
is permanently broken. The first measure is less relevant to the
question of percolation, since bonds could potentially flicker on
and off in a very short time scale but yet still be likely intact at
some long time in the future. The second measure is more relevant,
since it relates to the probability that an initially intact bond is
intact at some later time, regardless of whether there were
intervening intervals in which the bond was broken. Hence, we
focus on this second measure.

To evaluate this measure, we consider the fraction of bonds
f(t ) 0) that are present at some arbitrary initial time; note that
f(t ) 0) ) pb. We then evaluatef(t), the fraction of that same
initial set that are also bonded at some later timet. Formally, we
can define a bond function

and the associated correlation function

where the average is taken over all strand pairs and time origins.
In Figure 11, we showf(t), which demonstrates that the increase

in the instantaneous fraction of bondsf(0) (already seen in Figure
7) is accompanied by an increase in the overall lifetime of the
bond. The characteristic bond lifetime can be defined in several
wayssfor example, as the time at whichf(0) has been reduced
by one-half. To evaluate a characteristic time, we fitf(t) with a
stretched exponential

and define the characteristic bond lifetime

whereΓ(â) is the EulerΓ function. We find thatâ is a weak
function ofT, and for all state points,â ≈ 0.7( 0.1. The bond
lifetime is almostF-independent, compared to the influence of
T, as shown in Figure 12. In other words,F only affects the
number of bonds, but not the change in the rate of creation/
destruction of these bonds withT. The finite values of the bond
lifetime, even for temperatures well below the percolation
threshold, emphasizes that the network is transient and that bonds
break and reform continuously. In this respect, percolation does
not coincide with structural arrest in the system.

B. Diffusion and Isodiffusivity Lines. To better appreciate
the correlation between the structural properties and the eventual
dynamic arrest of the system, we next evaluate the mobility of
tetramers by evaluating the diffusion coefficient as a function
of T andF. This will also allow us to extract lines of constant
diffusion, or “isodiffusivity” lines;50,52the location of these lines
in the phase diagram indicates the eventual location of arrest and
demonstrates some correlation with the percolation line and
inflection of the two-state model.

To determine the diffusion coefficientD, we calculate the
mean-squared displacement〈r2(t)〉 of the centers of mass of the
tetramers (Figure 13). At short times,〈r2(t)〉 is proportional to
t2, the so-called ballistic regime where the proportionality constant
is the thermal velocity〈VT

2〉 ∝ kBT. At very long times,〈r2(t)〉
is linear in time, the so-called diffusive regime. At lowT, there
is caging between the two regimes that results in an intermediate
time window in which〈r2(t)〉 is almost constant. Here, particles
are confined by the bonds in anenergeticcage (like the energetic
cages of liquid water51,52), with a localization length that can be
inferred by the value of〈r2(t)〉 at the plateau. As observed in
glass-forming systems, this localization length is small compared
to the first-neighbor distance. The anomalous oscillation peak
observed in Figure 13c at lowT is due to finite size effects which
introduce a low-frequency cutoff in the vibrational density of
states. The effect of cutting off the density of states shows up

(50) Foffi, G.; Dawson, K. A.; Buldyrev, S. V.; Sciortino, F.; Zaccarelli, E.;
Tartaglia, P.Phys. ReV. E 2002, 65, 050802.

(51) Sciortino, F.; Gallo, P.; Tartaglia, P.; Chen, S. H.Phys. ReV. E 1996, 54,
6331-6342.

(52) Starr, F. W.; Sciortino, F.; Stanley, H. E.Phys. ReV. E 1999, 60, 6757-
6769.

Figure 11. Bond correlation functionf(t). The temperatures plotted
are those of Figure 4. The symbols are the numerical data, and the
lines are the fit using the stretched exponential of eq 9. The lowest
Twere not fit, sincef(t) does not decay sufficiently to obtain reliable
parameters.

hij(t) ) {1 : strandsi andj are bonded
0 : strandsi andj are not bonded

(7)

f(t) ≡ 〈hij(t)hij(0)〉 (8)

f(t) ≈ A e-(t/τ0)â
(9)

Figure 12. The bond lifetimeτ vs T. While τ has very strongT
dependence, the behavior of different densities is nearly identical,
resulting in an approximate master curve forτ.

τ ≡ ∫0

∞
f(t) dt ) τ0Γ(1/â)/â
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only when the time scale for diffusion has significantly increased
and the system behaves in a solidlike manner for short time
scales.51,53The diffusion coefficientD is defined asD ) 〈r2〉/6t
in the limit t f ∞. Figure 14 shows the dependence ofD for all
the densities simulated along both isochoric and isothermal paths,
demonstrating thatT dominates the dependence ofD, similar to
the behavior ofτ. At high T, where the number of bonds is≈0,
the tetramers are able to diffuse with little hindrance. In this high
T limit, diffusion is slowed down progressively by increasing
density, but only by about 1 order of magnitude in the investigated
range. A small decrease inT in the region where the network
forms has a dramatic effect in the slowing down of the dynamics.
Network formation results in a decrease ofD by several orders
of magnitude. Figure 14 also shows that, when the network forms,
D is compatible with an Arrhenius dependence, i.e.,D ∼ e-ED/T,
whereED is the activation energy for diffusion. The origin of this
dependence and the value ofED will become clear when we
examine the direct relationship betweenD and the fraction of
bonds in the system.

By making “cuts” at fixed values ofD in Figure 14, we obtain
various loci in theT-F plane of constantD, or isodiffusivity
lines (Figure 2). The progression of the isodiffusivity lines to
smallerD values provides an indication of the position and shape
of the eventual arrest line in the phase diagram. Figure 2 shows
that there is no significant change in the isodiffusivity lines when
they intersect the percolation line. Thus, the percolation line is
not directly related with dynamical arrest for this system, and
similar behavior has been found for other systems with finite
bond lifetimes.54,55Additionally, there is no change in behavior
crossing the inflection point of the two-state model. Indeed, given
the Arrhenius behavior ofD, in a strict sense the system will only
arrest atT) 0; in a more practical sense,D will become extremely
small compared with experimental time scales forT > 0, but
lower than the lowestT we study. In either case, it is clear from
Figure 2 that the shape of the isodiffusivity lines is highly
correlated with the formation of the network as defined by either
of the static loci. Hence, these loci do provide useful estimates
of where the dynamics become influenced by the formation of
the network.

The phase diagram shown in Figure 2 provides a coherent
view of the behavior of the model in a large region ofT andF.

As alluded to before, recent studies of simple models of network-
forming liquids suggest the possibility of auniVersal scenario
controlled by the valency of the particles, in the absence of
isotropic attractive interactions. In this respect, all particles with
valency of 4 should be characterized by similar thermodynamic
and dynamic properties. A comparison of Figure 2 with Figure
9 of ref 34 shows that this is indeed the case. In all models for
tetrahedral particles studied, the region of thermodynamic
instability is observed only at low densities, delimited by the
density at which an unstrained network of fully bonded particles
can formsthe optimal density of the network. In scaled density
(top axis in Figure 2), phase separation is encountered (in all the
models) only belowFscaled≈ 0.65. Above this value, no phase
separation is encountered on cooling, and the system can access
equilibrium states up to densities where the formation of a glass
due to packing constraints prevents equilibrium. In this window
of intermediate densities, kinetic arrest driven by the Arrhenius
increase of the bond lifetime provides the ultimate fate for the
system. In contrast, systems with simple isotropic attractions
(where the average number of bonded neighbors can go up to
twelve) have no such density window, and the fate of the fluid
state at lowT is either phase separation or glass formation.56

C. Quantitative Relation of Diffusion and Network For-
mation. The previous study of this model28 found that, at the
preferred density for network formation,D appears to be
controlled by the fraction of completely unbonded tetramers.

(53) Horbach, J.; Kob, W.; Binder, K.; Angell, C. A.Phys. ReV. E 1996, 54,
R5897.

(54) Kumar, S. K.; Douglas, J. F.Phys. ReV. Lett. 2001, 87, 188301.
(55) Zaccarelli, E.; Buldyrev, S. V.; La Nave, E.; Moreno, A. J.; Saika-Voivod,

I.; Sciortino, F.; Tartaglia, P.Phys. ReV. E 2005, 94, 218301. (56) Sastry, S.Phys. ReV. Lett. 2000, 85, 590-593.

Figure 13. Mean square displacement〈r2(t)〉 vs timet for several
densities and temperatures.

Figure 14. Diffusion coefficientsD (a) along isochores and (b)
along isotherms. The lowT behavior of (a) can be described by an
Arrhenius expression.
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Quantitatively, it was found that

provides an accurate description of the diffusion coefficient.
Since 1- pb is the probability that a bond is broken, (1- pb)4

is the probability that all four bonds are broken, which corresponds
to a completely free tetramer under the assumption of random
bonding. Additionally, works with simple models of tetrahedral
coordinated particles have shown the validity of the same
relationship.35

A possible model for the relationship between diffusion and
bonding is thatD can be formally expressed as a sum over the
contributions of particles with different numbers of bonds, that
is

whereP(n) is the probability that an arbitrary dendrimer hasn
bonds andDn(T) the diffusion coefficient for ann-bonded
dendrimer. The strong assumption that only free particles (n )
0) are free to diffuse is equivalent to theD ) D0(1- pb)4 isochoric
law, with the additional assumption thatD0 is weakly dependent
on T. Figure 15 shows the relation betweenD and 1- pb for
the present model at all densities. With the exception ofF )
0.01, we see that theT dependence ofD is very satisfactorily
described by eq 10. Finally, we point out that, sincepb can be
described by a two-state model, by combining eqs 5 and 10, we
have

asTbecomes small, which explains the observed low-temperature
Arrhenius behavior ofD. In this respect,ED is four times the
bonding energy∆E. We also note that the prefactor of the
Arrhenius law incorporate a large contribution arising from∆S.
Additionally, since we knowD0, ∆E, and∆S from numerical
fits, we can use eq 12 to estimateD at arbitrarily lowT. Inverting
the relation, we estimate the temperature at whichD ) 10-20,
a value that would be small by experimental standards. We find
thatD reaches this value atT ≈ 0.077,≈15% below the lowest
Tstudied and weakly dependent on densitysproviding an estimate
of the practical bound for arrest of the system.

V. Conclusions

We have presented a detailed study of the structure and
dynamics of an off-lattice model of DNA-functionalized particles
to provide an insight into their self-assembly. The model retains
the essential ingredients of the DNA double-strand bonding (most
importantly, the base-pair selectivity intrinsic in the specific A-T/
G-C pairing). To facilitate computational study, the model coarse-
grains most chemical details of DNA molecules. The DNA strands
are modeled as a polymer whose beads are decorated by labeled
sites mimicking the four different bases, with attractive interac-
tions only with complementary bases. While the model is not
designed to be chemically accurate, it captures the basic physics
of the self-assembly process in these materials.

We have focused on an arbitrary choice of an eight-base DNA
sequence, specifically the (A-C-G-T-A-C-G-T) sequence, which
has the property of being complementary to the same sequence
read backward (T-G-C-A-T-G-C-A). This makes it possible for
pairs of strands grafted on different particles to selectively bind,
promoting the formation of a three-dimensional network on
cooling. More specifically, we have chosen to model a four-
armed dendrimer complex, which has been synthesized experi-
mentally, in which the “hub” of the macromolecule is small
compared to the DNA strands. Despite this specific choice, our
results should be general to other DNA-derivatized particles,
including gold and PMMA particles.

We have analyzed the structure of the fluid. In a small
temperature interval, base pairing becomes favorable and the
system crosses from an high-temperature fluid state (characterized
by nearly all monomers) to a fully connected network of four-
coordinated particles. At low densities, the driving force for
bonding generates a phase-separation process, and the system
separates into two coexisting phases (a gaslike phase and a
connected liquidlike phase), as detected by the progressive growth
of the density fluctuations and confirmed by visual inspection
of the configurations.

For intermediate densities, the system does not phase-separate
at any of the studiedT. The driving force for phase separation
is suppressed by the possibility of forming an unstressed network
of four-coordinated particles. The thermodynamic behavior of
the present model is analogous to the behavior observed in
previously studied simple models of four-coordinated patchy
particles,34,35confirming that the reduced valency opens a region
of densities where the system remains stable against phase
separation to very lowT.24,25,55,57

The structure of the system (analyzed via the radial distribution
function or the static structure factor) shows the clear pattern of
tetrahedral coordinated systems, including the presence of a pre-
peak inS(q) and a ratio between the location of the first- and
second-neighbor peaks ofg(r) significantly different from two.
The process of network formation is well-described by random
percolation theory. Close to percolation, the cluster size distribu-
tion is well-described by a power law with exponent 2.2. On
further cooling, a spanning cluster appears, which progressively
incorporates all molecules in the system. Despite the presence
of a percolating cluster, dynamics do not arrest, since the bond
lifetime is finite, and hence the percolating structure is transient.
We find that diffusion is mostly controlled by the particles that
completely detach from the network and whose concentration
is proportional to (1- pb)4, in agreement with random percolation
theory. This relation between diffusion and free particles has
also been observed in other models of limited valence,35

(57) Sciortino, F.; Buldyrev, S. V.; De Michele, C.; Foffi, G.; Ghofraniha, N.;
La Nave, E.; Moreno, A. J.; Mossa, S.; Saika-Voivod, I.; Tartaglia, P.; Zaccarelli,
E. Comput. Phys. Commun.2005, 169, 166-171.

Figure 15. Diffusion coefficient vs 1- pb. The dashed line is a
line with slope 4, plotted as a guide line. This demonstrates thatD
is dominated by tetramers which are unbonded.

D ) D0(1 - pb)
4 (10)

D ) ∑
n)0

4

Dn(T)P(n) (11)

D ) D0{1 + exp[(∆E - T∆S)/T]}-4 ≈ D0 e4∆S e-4∆E/T

(12)
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suggesting that the mechanisms of dynamics in network-forming
materials have some common aspects. It is important to stress
that, since the bond probability follows an Arrhenius law at low
T, the T dependence of the diffusional times also becomes
Arrhenius on cooling. While this suggests that dynamics formally
arrest only atT ) 0 K, the significant contribution of the bond-
formation entropy, amplified by the fourth power, gives rise to
a significant prefactor in the Arrhenius law. As a consequence,
in a very smallT interval, dynamics decreases by an order of
magnitude of ten or greater, giving rise to an effective arrest
transition at a finite temperature, which (in the present system)
is not far from the percolation line. In this respect, while the
low-temperature dynamics remains Arrhenius, the relative
distance (inT) between percolation and dynamic arrest is
significantly reduced as compared to simple tetrahedral models
in which the bond formation has no significant entropy
contribution.

By comparing the phase diagram of the model with that of
simple tetrahedral patchy particles, we note a clear analogy
between them. The location of the phase-separation region in
scaled density, the shape of the percolation line, the shape of the
isodiffusivity lines, and theT and density dependence of the

potential energy are identical in both models. The only significant
difference between these two models is the width of theT range
over whichpb crosses from 0 to 1. The large entropic contribution
due to the collective nature of the bonding in the DNA strands
causes the transition from independent units to a fully connected
network in a very smallT window. In systems composed of
tetravalent particles, it is possible to closely approach the fully
bonded ground state without the interference of phase separation
in a wide region of density. It is conceivable that, in this region,
the slowing down of the dynamics is so pronounced that the
system becomes stuck in a kinetically trapped nonergodic state,
preempting the possibility of generating ordered structuressthe
analog of crystal states in atomic systems. Finally, the present
study and previous work on models for tetrahedral interacting
simple particles call attention to the role of the maximum number
of bonds per particle as the key ingredient in the classification
of the collective behavior of interacting systems and their
self-assembly.
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