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Self-Assembling DNA Dendrimers: A Numerical Study
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DNA s increasingly used as a specific linker to template nanostructured materials. We present a molecular dynamics
simulation study of a simple DNAdendrimer model designed to capture the basic characteristics of the biological
interactions, where selectivity and strong cooperativity play an important role. Exploring a large set of densities and
temperatures, we follow the progressive formation of a percolating large-scale network whose connectivity can be
described by random percolation theory. We identify the relative regions of network formation and kinetic arrest versus
phase separation and show that the location of the two-phase region can be interpreted in the same framework as
reduced valency models. This correspondence provides guidelines for designing stable, equilibrium self-assembled
low-density networks. Finally, we demonstrate a relation between bonding and dynamics, by showing that the temperature
dependence of the diffusion constant is controlled by the number of fully unbonded dendrimers.

I. Introduction

The use of biological cross-linking molecules to control bond
formation between otherwise noninteracting particles offers a
novel route to designing interconnected and highly organized
materials on the molecular scadfe®. Complementary “lock-and-
key” binding molecules, which assemble due to the biological
specificity, provide a versatile way of controlling interparticle
binding. Among the possible choices of biological molecules,
the specificity offered by complementary DNA single strands
grafted on a core particle is particularly appeafingControlling

the length and sequence of the DNA strand makes it possible to
modulate the strength of the interaction and thereby alter the
temperature or concentration at which assembly by the formation

of double strands occurs. This is a result of the fact that DNA
adenosinethymine (A—T) and guanine cytosine (G-C) bases
hybridize pairwise with a Gibbs free energy change of the order
of the thermal energy per base, allowing for highly selective
thermally controlled bond formation.

The practical application of DNA to molecular design is

challenging, but significant progress has been made using DNA-
decorated colloidal particles, which are potential candidates as

building blocks for self-assembling networks or “supermolecular”
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materialst®-1° One of the key issues in the self-assembly
paradigm s the prediction of the three-dimensional self-assembled
structure, the existence of ordered phases, the region of mechanical
instability of the material (against composition fluctuations), and
the propensity to form kinetically arrested states (gels or glasses).
Ideally, through the design of the interparticle interaction, it
should be possible to favor (or disfavor) crystallization, phase
separation, or dynamic arrest. Indeed, the ability to fully exploit
the rapid developments taking place in materials sciétée
requires not only an understanding of the equilibrium phases and
their modifications with the external fields, but also an
understanding of the regions in the phase diagram where
nonergodic arrested states can interfere with assefiBly.

An additional valuable feature of using DNA strands for
interparticle bonds is the possibility of controlling the maximum
number of bonded neighbors, or valency. Controlling the valency
is not a trivial task, given the propensity of most attractive
spherically symmetric potentials to form highly packed structures
with up to twelve neighbors. Valency can be controlled by
decorating the surface of the particle with attractive patches, but
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Figure 1. Schematic representation of the relevant thermodynamic _. .
and dynamic properties of network-forming limited valency systems. Figure 2. Phase diagram of the system. The boundary of the phase

This schematic plot applies to tetrahedral network-forming systems, separation region is estimated by bracketing the last simulated stable
such as silic# and wateP5 An important feature to notice is that ~ Staté points (black circles) and the first unstable state points (red

the system remains an equilibrium fluid in a significant region below Sauares) along both isochores and isotherms. The figure also shows
the percolation threshold of the network. several other lines: (I) the percolation locus, (ll) the locus where

the bond probabilityp, = 0.5, and (l1l) several lines of isodiffusivity,
. . to provide an estimate of the shape of the arrest line. The data
the patchy attraction range mustd 0% (or less) of the particle  confirm that arrest of the system occurs only below the percolation

diameter. It has been suggested that, in the absence of longiine. Additionally, the figure shows that the isodiffusivity lines become
range repulsion, valency is the key ingredient to control the size increasingly parallel to lines of fixed bonding fraction, expected
of the region (in the densitytemperature plane) in which phase  since the fraction of intact bonds dominates the dyna3r11ical properties.
separation is observéd5Decreasing the valency stabilizes the The top axis shows the scaled dengifyaeq= N/(V/d®), whereN
system against concentration fluctuations and favors the pos-S the total number oftetrameléis the volume, andis the nearest-

A - . o neighbor separation of the tetramer centers. The phase diagram of
sibility of forming, even atrelatively low densities, homogeneous  jitterent tetrahedrally coordinated systéfhsan be quantitatively
states held together by the percolating network of interparticle compared using thpseaeqaxis.
bonds. Moreover, patchy interactions that limit valency are also gre analogous to the properties of other tetrahedrally coordinated
useful for the generation of complex self-assembled structi®s. gy stems-independent of their being molecular or coiloidal. This

For a deeper understanding of the self-assembly process inprovides further evidence that materials as different as the
DNA-coated particles, we study the structure and the dynamics tetrahedral molecular fluids (like water and siléa$3 and four-
of a minimal model recently introduced to mimic particles coordinated DNA-coated particles can be interpreted in the same
composed of a central core (which could be a molecule or a general framework. Ultimately, this helps provide a reference

colloidal particle) to which several single-stranded DNA “arms”  for predicting self-assembled properties of particles with selective
have been attaché Specifically, we focus on the tetrameric bonding.

DNA complexes (four-armed oligonucleotide Ni(ll)-cyclam- . )
centered complexes) recently synthesized and discussed in ref II. Model and Simulation Methods
6, but whose bulk behavior has not yet been experimentally ~The model we study was desig#&do mimic the general
explored. We investigate a large window of densitieser the features of the four-armed DNA dendrimer complexes that have
relevant range of temperaturE® determine the regioninwhich ~ been synthesized experimentdligzach arm consists of a single
the system forms a supramolecular network, the region where DNA strand with an even number of bases; the sequencing of
the network becomes nonergodic, and the region in which network the bases is chosen such that two identical strands will bond to
formation is precluded by phase separation; a schematiceach other in head-to-tail order. As a result, these dendrimers
representation of these regions is shown in Figure 1, and thehave the potential to naturally assemble into higher-order
detailed results for this model are given in Figure 2. The details structures. The head-to-tail bonding is achieved by choosing a
of Figure 2 will be developed throughout the manuscript. sequence where the bases of the second half of a strand are
In thls manuscript’ we Characterize the network structure (ln Comp|emental'y to the baseS Of the fiI’St half, but in reverse Order.
both real and reciprocal space), examine the connectivity of the For example, for the 8-mer strands we study, the first four bases
system and map itto well-known percolation results, and evaluatein the strand are A-C-G-T. The complementary sequence to this
the dynamical properties to elucidate the relation between bondiS T-G-C-A, and so the overall sequence for the 8-mer is A-C-
formation, percolation, and dynamic arrest. Our results show G-T-A-C-G-T. Reading the sequence backward, itis plain to see

that both the thermodynamic and dynamic features of this model that it is the complement of the forward sequence. With this
choice, itis also possible to have partial bonding of the outer four
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Ideally, we would use a model potential that includes all the Vi = ki, (1 — cosb) 3)
chemical details of DNA and which would explicitly account for

simulating a large system and following the self-assembly processgng a value okin = 5¢ allows for moderate flexibility of the
presents significant computational challenges. Hence, we choosestrands. At this level of description, we have a semiflexible
to avoid an explicit plescription ofthe §olvent and of the charges, polymer with only excluded-volume interactions.
and we choose a simple, coarse-grained model of a DNA strand The sticky spots account for base-specific attractive interac-
that captures the salient features of assembly made possible byjgns: with any noncomplementary force site, the interactions
the specificity of base pair interactions. The model is thus not i pe purely repulsive. Each monomer carries one sticky site
designed to describe in a realistic way the characteristics of theith an identity of A, C, G, or T that is bonded to the center of
DNA. The model has been described briefly in ref 28, which we  the monomer using the FENE potential (eq 2), with the skme
expand on. 'I_'he essential ingredients of the model are that eachyng R, Sticky sites interact witmoncomplementargites and
strand consists of an even number of monomers and eachyjith the large monomers of the chain just described using the
monomer carries a small “sticky spot” of a specific base type | j potential (eq 1) with a diametexkycky = 0.35; we chose.
that will b_ond only with the complementary type. The srr_1a|| size — 2V SO that all noncomplementary interactions are
of the sticky spot relative to the overall monomer size pre- yepylsive. This combination of the LJ and FENE potentials results
vents a base from bonding with more than one complementary i, the center of the sticky sitesidethe diameter of the monomer,
base,l necessary to reproduce the selectivity of DNA base pairgnd so the “edge” of the sticky site just protrudes from the
bonding. monomer, as illustrated in Figure 3a. This choice is important
We first describe in detail the potential we use for monomers to prevent the formation of more than one bond per sticky site.
of the DNA strand. Each strand has eight monomers, though theincluding attractions between complementary sites simply
model is easily generalized to any number of monomers. All requires that we change the truncation of the potential; for
monomers (inthe same or different strands) interact via the shifted-complementary pairs of sticky sites, we choose= 2.505sicky-

force potentia® At this level of description, the model can account for the
zipperlike transition by which double-stranded DNA is formed

dv,(r) (Figure 3b), as previously demonstratéddowever, we note
Velr) = Vio(r) = Viu(rd) = (F = r)—5,— (1) thatwe have notincluded interactions to mimic the helix spiraling

e of double strands.

To create four-armed dendrimer molecules, which we refer to
as tetramers, we bond one end of each strand to a tetrahedral hub
composed of four spheres of diameateas illustrated in Figure

€3¢. Monomers of the hub interact via the same repulsive potential
as the monomers (eq 1), and bonds within the hub and between
the hub and the strand are given by the FENE potential (eq 2).
To maintain the orientation of the arms relative to the hub, we
again use the three-body bending potential (eq 3). Specifically,
for each vertex of the tetrahedral hub, we use eq 3 to prefer a
linear orientation from the attached DNA monomer, through the

. . . vertex, and to each of the other neighboring vertices. The

oand energy in units & the LJ energy parameter. Other derived superposition of these linear potentials results in the arm having

units wil b_e _defmed .as the_y arise. ) ] _anorientation that is roughly normal to the opposing face of the
Connectivity of neighboring monomers in a strand is main- tetrahedral hub.

taingd by a finitely extensible, nonlinear elastic (FENE) anhar-  \ye simulate 200 molecules (68 sites per tetramer, a total of
monic spring potential 13 600 force sites) at six densitips= 0.01, 0.02, 0.03, 0.04,
0.06, and 0.07 at variouBin the range 0.0%< T < 0.11, and
2 5 include results for a seventh densig/=€ 0.05) that have been
Veene= — R In[1 — (r/Ry)’] 2) previously reported® The density is defined as the number of
monomers per unit volume (each molecule has 36 monomers).
Therefore,p = 0.01 corresponds to a molecular density of
0.000 28T is in units ofe/ks, wherekg is Boltzmann'’s constant.
The range ofl andp allow us to examine the relevant regions
of the phase diagram of this system.
In order to evaluate both the static and dynamic properties of
- ) S, the system, we carry out molecular dynamics simulati§ige
20},37’1)0!36 Michele, C.; Tartaglia, P.; Sciortino, F. Chem. Phys2006 125 simulate individual state points at a fixgdand T; we control
(35) De Michele, C.; Gabrielli, S.; Tartaglia, P.; Sciortino JFPhys. Chem. Tvia the Nose-Hoover method. To accelerate the overall speed

B 2006 110, 8064. . . . g
(36) Nikakhtar, A.; Nasehzadeh, A.; Naghibi-Beidokhti, H.; Mansoori, G. A. of the S|mulat|ons, We use a three'cyde velocny Verlet version

whereV,,(r) is the common Lennard-Jones (LJ) potential, and
rc is the distance at which the potential is truncated. This form

continuous at.. For the monomers, we choose= 265, where
oisthe LJlength parameter; thigvalue is precisely the location

of the minimum of the Lennard-Jones potential, and so the
resulting potential is purely repulsive, as in the Weeks
Chandler-Andersen modet? Hence, each monomer can be
considered a soft sphere of diametein the remainder of the
text, we utilize reduced units where length is given in units of

where the bond strength = 30¢/0? and the maximum bond
extensionRy = 1.5, as used in refs 40 and 41 to study coarse-
grained polymers. We model the characteristic rigidity of the
DNA strands by a three-body “bending” potential

J. Comput. Theor. Nanos@005 2, 378-384. of the rRESPA? multiple time step algorithm, with the forces
2953(;7) Long, H.; Kudlay, A.; Schatz, G. Q. Phys. Chem. BOOG 110 2918~ separated into rapidly varying bonded forces and more slowly

(3é) Frenkel, D.; Smit, BUnderstanding Molecular Simulationdcademic varying nonbonded forces. The time step for the bonded forces
Press: San Diego, 2002. is 0.002, where time is in unit obv/nm/e. The time for
52598)5‘4‘297‘?"3' J. D.; Chandler, D.; Andersen, H.JCChem. Physi971, 54, equilibration of the system varies strongly withbut is only

(40) Grest, G. S.; Kremer, KPhys. Re. A 1986 33, 3628.

(41) Bennemann, C.; Paul, W.; Binder, K.;'Duveg, B.Phys. Re. E 1986 (42) Tuckerman, M.; Berne, B. J.; Martyna, G.JJ.Chem. Phys1992 97,

57, 843. 1990.
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Figure 3. () lllustration of the model for a single DNA strand. The
large blue spheres represent the repulsive cores along the chain. Th
small green spheres that protrude are the attractive “sticky” spots
that carry information about base type. (b) Two isolated strands at )
low T will spontaneously “zip” to form a double-stranded unit. (c) Figure 5. Structure factor for different values pfand several
Single DNA tetramer, designed by joining four strands to a central in each case. A3 decreases, the peaks grow, a signal of a more
hub (the four red spheres). Arms of different tetramers can bind in structured fluid. Only stable state points [Wi{timin) < 5] are shown.
the same fashion as the two individual strands. The large blue The values ofT are those of Figure 4.

monomers are omitted in this image to make the sticky sites apparent., . ) . o
is characterized by a soft depletion region around the origin,

arising from the excluded volume interactions. The absence of
peaks ing(r) indicates an unstructured fluid. A-decreases, we
observe a clear peak at a separation 9.6, which defines the
nearest-neighbor distance. We will use such a valdemfiefine
an appropriate scaled density to compare the phase diagram of
Figure 2 with other tetrahedral modé&fs3> On cooling, the
first-neighbor peak becomes pronounced and a second peak
develops at ~ V3d, indicating that the system is forming a
tetrahedral network. However, the structure of the system remains
amorphous (noncrystalline).
- To confirm the lack of crystal structure and the presence of
- tetrahedral order, we turn ®q), shown in Figure 5. Again, at
C high T, Sq) is rather unstructured. On cooling, a main peak
| _ [ [T 0 appears af] ~ 0.8, whoseg-location does not changes wilh
3 1,-0 15 200 3 1,0 15 2 Forp = 0.3, the tetrahedral network structure at [dwbserved
Figure 4. Radial distribution function for a range of densities, at or 9(r) manifests itself as a shoulder (“pre-peak”)aat 0.6.
differentT. Data have been shifted by 0.05 alongytkeis to improve For sufficiently small T, the amplitude of the pre-peak,
clarity. The values off for the different densities are from top to  characteristic of the tetrahedral structure, grows. The absence of

bottom: (&) 0.0965, 0.0970, 0.0975, 0.100, 0.105, 0.110; (b) 0.094, any Bragg peaks i(q) confirms the amorphous nature of the
0.095, 0.096, 0.0975, 0.100, 0.110; (c) 0.092, 0.094, 0.096, 0.098, network.

0.100, 0.120; (d) 0.095, 0.0970, 0.0975, 0.099, 0.100, 0.110. For p < 0.2, one observes a sharp increas&(i) asq— 0,

an indication of an increase of the compressibility and of the
development of inhomogeneties with a length scale on the order
pfthe system size. The behavioi3jf)) for smallgis characteristic
of an approach to a region of thermodynamic instability, which
preempts the possibility of developing an homogeneous network
lIl. Static Properties at smallp. To estimate the approximate location of the phase
coexistence, we identify pairs of adjacent-state points which
bracket the boundary between stable and unstable states. As a
criterion for distinguishing single-phase equilibrium state points
from phase-separating ones, we evaluate the valug{dpf)
wheregmin = 27/L is the smallest wavevector available in the
simulation study. State points for whi§gmin) < 5 are considered
stable; states witB(gmin) = 10 are considered unstable. We thus

1 NN bracket the stability boundary for this model by plotting in Fig-
q) = _QZZ explig-(T, — )]0 (4) ure 2 the last stable and first unstable states, both along iso-

N & &

0.3

0

weakly dependent gn At the lowesTT we study, the simulations
extend over more than 8teps, but these loweststill exhibit
some aging effects. Hence, in most cases we exclude the lowes
T when analyzing the data.

A. Structure. As was shown in ref 28, tetramers spontaneously
self-assemble into a complex network at [dwSuch a structure
should play a significant role in the applications of new materials.
To characterize the network structure, we calculate the radial
distribution functiorg(r) between centers of the tetrahedral hubs
and its Fourier transform, the structure factor

therms and along isochores. Forr~ 0.3, a weak increase of
S(g) at smallq is observed, bu§(gmin) never goes beyond 1.
wherer; are the coordinates of the center of the hub of tetramer Forp 2 0.3, critical fluctuations are not observed at all investi-
i andg is the wavevector, whereas tha the argument of the  gated temperatures. As shown in Figure 2, the phase separation
exponential is the imaginary unit. The averagellis over region is limited to a relatively small region of the possible
equilibrium configurations. densities.
Figure 4 showg(r) for the centers of mass of the tetramers B. Potential Energy and Bonding.Since the only attractive
for four of the seven densities studied. At high temperatgye, intermolecular interaction is the complementary base-pair
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0 . To relate the connectivity of the system to its structural (and
o8 =001 eventually dynamical) properties, an appropriate definition of a
| wmp=002 s bond between distinct tetramers is needed. We say that a bond
02k :ﬁ:g'gi ol betweenbase pairsof different arms is present when the pair
=005 ) / " base-base potential energy is negative; this definition works
F o+ p=006 well, since there is a very narrow range of the attractive well.
p=0.07 [ =3 We say that a bond between twtrandsis present when the
R-0.41 9 e strands have four or more base-pair bonds formed.
L We first evaluate the probabilify, that a strand of the tetramer
is bonded. This probability is identical to the overall fraction of
0.6 intact bonds in the system (i.e., number of intact bonds normalized
Lo 1l 1 1| by the maximum number of possible bonds). Similar to the
L 9 9.5 0 105 11 . . .
Ur behavior of the energy, Figure 7 shows that an arbitrary strand
ogl , | , | , | , ! of the tetramers goes from almost zero probability of being bonded
0.09 0.095 01-} 0.105 0.11 to another strand to nearly always being bonded in a small range

] ] ) of T. A similar sharp behavior has also been observed

Figure 6. Energy per DNA base as a functionfThe insetshows  ayperimentally for the melting transition of DNA-coated gold

I Soerojifrence Wi respect o atof e WSS nanopartled? The sharpness of the transiton cals for a
significant contribution of the entropy in the bond free energy.

25, iR R TR SO This sharp behavior is found for all the studied densities and can

L ] be rationalized, in a simple approximation, using a two-state

. model, in which the difference in bond free energy from an

' unbonded to a bonded state requires a change in both energy

(AE) and entropy AS). This hypothesis directly leads to

™ 1
il R S
el EI Py 1+ e(AEfTAS)/T

(5)

04 — Allowing both AE and ASto be free, we find thaAE varies

1 weakly around a mean of 4.0. Sind& can be associated with
s | the energy needed to break a bond between strands, this energy
& . should be nearly independent of density. Hence, we\lix=

Qo9 00005 |7 0L T .15 s ST S 4.0 and only allowASto vary, as shown in the inset of Figure

T 7. As expectedAS decreases slightly with increasing density,
Figure 7. Fraction of intact bondg,. The lines are fits to the  since the overall volume is decreasing. In the two-state model,
two-state model (eq 5), WithE fixed to the value 4. The densities  ASis responsible for the abrupt changepgfwith decreasing
Sr(eﬁo.(o% "I')Heongta-)s'e(t)éogreo)s’hof't%ﬁ %)' ?\t?a? (;I)s %-fog g)'.ggg T. This also implies that a system with longer strands, i.e., where
cI'arityXof the figure. The inset slhows ){hle fitvparameﬂ.sfgg the _the loss of entropy on bonding will be I_arger, will form bonds
two-state approximation as a function of density. in an evensmallerinterval of T. Thus, width of the crossover
could be made arbitrarily small by increasing the DNA strand

interaction, the potential energy between base pairs provides arfength. The significant change inSkg in the bonding process
indication of the number of links in the system. In Figure 6, we (onthe order of 5 per base pair or 2.5 per base) originates primarily
show the potentia| ener@per base pair as a function ®ffor from the chalizatic.)n of the base Site, which |S f.ree to Ol'ientlon
the different isochores studied. The energy decreases rap|d|y aéhe full solid angle in the unbonded state and is instead confined
we decrease the temperature for all the densities studied. In an @ smallangular range in the bonded one. In the present model,
very small interval of temperatures, roughly 2% of the energy this is the main contribution, since there is no significant change
of a Sing|e bond, we cross from a fu"y unbonded System to a in conformation of the strand between the bonded and unbonded
nearly fully bonded system. In the present model, the ground States, due to our modeling of the bending energy. In real DNA,
state energyE,s of the system can be properly defined as the base pairs have comparatively less freedom, and hence our model
energy where all base pairs are bonded. For this mégek overemphasizes this contribution to the entropy.

—0.9286;E4s = —1 due to the shifting procedure used ineq 1  The two-state model also allows us to define the crossover to
to ensure continuity of energy and forces when crossing the the predominantly bonded state by its inflection pdint® In
cutoff. Data in Figure 6 confirm that the state where all possible the two-state model, the location of the inflection point coincides
bonds are formed cannot be reached within our computationalwith the point wherep, = 0.5. Using eq 5 with the best fit
time (at allp) due to kinetic slowing down and limitations of our ~ parameters, we directly evaluate the inflection temperature as a
computational capability. THE-dependence d relative toEgs function of density and plot it in the phase diagram of Figure
at low T is well-described by an Arrhenius behavior (see inset 2. We will comment later on the relationship of this locus with

of Figure 6), with an activation energy of 1.3, suggesting that the dynamics. The line shown in the diagram indicates a fit of
an independent bonding process dominates the behalgT pf the formp ~ e E'T, a functional form suggested by a recently
The Arrhenius temperature dependence of the bond energy at
low T has been also observed in models of network-forming  (43) sun, Y.; Harris, N.; Kiang, C. HPhysica A2005 350, 89—94.
molecular liquids like watéP and silica®* Since the energy can (44) Dudowicz, J.; Freed, K. F.; Douglas, JJFChem. Phys.999 111, 7116.
be directly associated with the formation of bonds, we will focus 1,5 5ag © '+ Douglas: . F.; Glotzer, S. L Chem. Phys2003 119
on the bonds in the remaining analysis. (46) Van Workum, K.; Douglas, J. Rhys. Re. E 2006 73, 031502.

0.2
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Figure 8. Probability for a four-armed DNA dendrimer of having
n arms bonded. The graph corresponds to the pas®.05 where
itis very close to the optimal density for the formation of a tetrahedral
network. The points are the data for sevélradnd the lines are the - ) o N
predictions based on eq 6. probability of having an arm bonded to a significant probability

to have all the possible bonds. We H{n) with the function

Figure 10. The fraction of molecules in the percolating clusters vs
T. The transition occurs in a small interval ©f

10 UL T T L] LR
(a) p=0.01 (b) p=0.03 3 4!
N £ P(n)=———pi(1—p)* " 6
0 1 (n) nia — n)! Po(1 — Py) (6)
< 3
= 10" 1 that corresponds to random bond percolation with coordination
~ 4 4.%8The agreement with eq 6 is excellent, and so we may interpret
1o Bl ul " bonding as a random percolation process.

10— e As afurther test of the correspondence with random percolation,
() p=005 (d) p=007 we examine the distribution(s) of clusters of finite sizes. To
evaluaten(s), we examine all clusters and remove any that
percolate the system. We define a percolating cluster as a cluster
that spans the simulation box and is connected via the periodic
S~ boundary conditions. The periodic boundary condition is checked
. \A T by replicating the simulation box in all directions of space and
1 10 100 checking that in the replicated system the cluster is bigger than
Figure 9. Cluster size distribution(s) for severalo andT values. in the original nonr(iplicgted system. F_igure 9 shovys that close
The dashed line represents a power law with exponeh® that 0 percolatioms ~ s with 7 ~ 2.2. This exponent is exactly
corresponds to random percolation. Note that upon approaching thethat expected for the random percolation process.
percolation transition the range of validity of the power law extends.  To locate the percolation line, we evaluate the fraction of

The values ofT for the different densities are (a) 0.0965, 0.0970, configurations that contain a percolating cluster. Additionally,
0.0975, 0.100, 0.105, 0.110; (b) 0.096, 0.0975, 0.100, 0.105, 0.110,\ye eyaluateP.,, the fraction of molecules belonging to the

() 0.095, 0.096, 0.097, 0.098, 0.099, 0.100, 0.110, 0.120; (d) O'O%’percolating clusters, which we find to be nearly identical to the

0.097, 0.0975, 0.99, 0.100, 0.110. fraction of percolating configurations (Figure 10). Since we find
that in a very small range of the probability of finding a
Opercolating cluster and the fraction of tetramers in the percolating
cluster both gofrom 0to 1, we can define the percolation threshold
Tpercolatiok o) @s thel where the probability of having a percolating
cluster in an equilibrium configuration is 50%. We show the
percolation line in the phase diagram (Figure 2). We find that
'the percolation locus occurs fgp values that go from~0.42

1{)0 0.32 as we go down in density, i.e., percolation occurs well

eforethe completion of the network structure.

Ifbonds were irreversible (infinitely long-lived), the percolation
line inthe phase diagram would provide an indicator of a crossover
to arrest, since the system will have a finite low-frequency shear
modulus if static clusters percolate. However, our definition of
percolation does not include any information about the lifetime
of the spanning cluster. Since bonds can break and reform
continuously, the percolation line cannot be taken as an indication

(47) Stambaugh, J.: Van Workum, K.: Douglas, J. F.; LosertPhys. Re. of dy_namical arrest. This is an important difference b_etwe_en
E 2005 72, 031301. physical and chemical gels; in the latter, the percolation line

(48) Stauffer, D.; Aharony, Alntroduction to percolation theoryTaylor & closely corresponds to the arrest line (gel line). At the same time,
Francis: London, 1994. this model allows us to link physical and chemical gels, since

(49) Torquato, SRandom Heterogeneous Materials: Microstructure and - . A
Macroscopic PropertiesSpringer-Verlag: New York, 2001. by increasing the length of the strands we can make the percolation

ool ool ooed ool vl 3o
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proposed model of equilibrium polymerizatiét!’We find E'

= 5.6, close to the energy needed to break a bond according t
the two-state approximation. The temperature range over which
we are able to test the equilibrium polymerization model is very
small, but the behavior of the present set of data is consistent
with this prediction. Should such a correspondence be robust
it would suggest that association leading complex network
structures can be understood in the same framework as that o
the simpler living polymer formation.

C. Percolation. We next consider whether the connectivity
of the system can be understood in the framework of percolation
theory#84° In Figure 8, we show the probability for a single
DNA—dendrimer to have a specific numbeof arms bonded,
with 0 < n < 4. As expected from the energy, we find that in
a small range ofT, the tetramer goes from an almost zero
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Figure 11. Bond correlation functiof(t). The temperatures plotted ~ Figure 12. The bond lifetimez vs T. While 7 has very strong’
are those of Figure 4. The symbols are the numerical data, and thedependence, the behavior of different densities is nearly identical,
lines are the fit using the stretched exponential of eq 9. The lowest 'esulting in an approximate master curve for

T were not fit, sincé(t) does not decay sufficiently to obtain reliable

parameters. ] o o
and define the characteristic bond lifetime

line arbitrarily close to the dynamical arrest, as we will examine [ _

in the following section on dynamics. = [, f(t) dt = rol (L)

I\VV. Dynamics whereI'(8) is the EulerT" function. We find tha{s is a weak
function of T, and for all state pointg} ~ 0.7 £ 0.1. The bond
lifetime is almostp-independent, compared to the influence of
T, as shown in Figure 12. In other words,only affects the
number of bonds, but not the change in the rate of creation/
destruction of these bonds with The finite values of the bond
lifetime, even for temperatures well below the percolation
threshold, emphasizes that the network is transient and that bonds
break and reform continuously. In this respect, percolation does
not coincide with structural arrest in the system.

B. Diffusion and Isodiffusivity Lines. To better appreciate
the correlation between the structural properties and the eventual
dynamic arrest of the system, we next evaluate the mobility of

some long time in the future. The second measure is more relevant:[e'[r"’lmers by gvalpatmg the diffusion coefflc[ent as a function
of T andp. This will also allow us to extract lines of constant

since it relates to the probability that an initially intact bond is . < e Jiee L eoes : ;
intact at some later time, regardiess of whether there were diffusion, or “isodiffusivity” lines?%>?the location of these lines
intervening intervals in Whi’Ch the bond was broken. Hence. we in the phase diagram indicates the eventual location of arrest and

focus on this second measure demonstrates some correlation with the percolation line and

To evaluate this measure, we consider the fraction of bonds'nﬂeCtlon of the two-state model.

f(t = 0) that are present at some arbitrary initial time; note that _ ' © determine the diffusion coefficieri?, we calculate the
f(t = 0) = py. We then evaluaté(t), the fraction of that same mean-squared displaceméri(t)of the centers of mass of the

; ; o .
initial set that are also bonded at some later tinf®rmally, we :;attrr?mers (:Tl%ut:e".l?;.). Al §hort Emdﬁgh(t)Dls pr?port;pnal tot i
can define a bond function , the so-called ballistic regime where the proportionality constan

is the thermal velocityzt200 ksT. At very long times,12(t)0

A. Bond Lifetime. In this section, we examine the dynamical
properties of the system and how they are related to the
connectivity of the network. As we discussed at the end of the
previous section, the lifetime of the bonds is of particular interest,
since this will determine to what degree we expect the percolation
line to coincide with the arrest or gelation of the system. There
are two ways one might evaluate the lifetime of a bond: (i) the
mean time that an intact bond survives (mean first breaking
time) or (ii) the characteristic time which an initially intact bond
is permanently broken. The first measure is less relevant to the
question of percolation, since bonds could potentially flicker on
and off in a very short time scale but yet still be likely intact at

1 : strands andj are bonded is linear in time, the so-called diffusive regime. At Iawthere
hij(t) 1o : strands andj are not bonded ) is caging between the two regimes that results in an intermediate
. . . time window in which(@?(t)Cis almost constant. Here, particles
and the associated correlation function are confined by the bonds in anergeticage (like the energetic
cages of liquid watét59, with a localization length that can be
f(t) = (O, (0)0 (8  cagesofl ? g

inferred by the value offi?(t)Uat the plateau. As observed in
glass-forming systems, this localization length is small compared
to the first-neighbor distance. The anomalous oscillation peak
observed in Figure 13c at lowis due to finite size effects which
introduce a low-frequency cutoff in the vibrational density of

| States. The effect of cutting off the density of states shows up

where the average is taken over all strand pairs and time origins.
In Figure 11, we shovit), which demonstrates that the increase

in the instantaneous fraction of borf¢i3) (already seen in Figure

7) is accompanied by an increase in the overall lifetime of the

bond. The characteristic bond lifetime can be defined in severa

ways—for example, as the time at whid{0) has been reduced

(50) Foffi, G.; Dawson, K. A.; Buldyrev, S. V.; Sciortino, F.; Zaccarelli, E.;

by one-half. To evaluate a characteristic time, wé(fjtwith a Tartaglia, P.Phys. Re. E 2002 65, 050802.
stretched exponential (51) Sciortino, F.; Gallo, P.; Tartaglia, P.; Chen, SRHys. Re. E1996 54,
6331-6342.

f(t) ~A e—(t/ro)/’ (9) 67(&2.2) Starr, F. W.; Sciortino, F.; Stanley, H. Ehys. Re. E 1999 60, 6757
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only when the time scale for diffusion has significantly increased 10" 3 = \\’h‘—___ 3
and the system behaves in a solidlike manner for short time g A T .
scale153The diffusion coefficienD is defined a® = 216t I e e e 1
in the limit t — co. Figure 14 shows the dependencédior all Qo2k . a8 — 4
the densities simulated along both isochoric and isothermal paths, : “‘«.\_\ * — 1
demonstrating thak dominates the dependencelfsimilar to - (b)Isotherms < " 1
the behavior ot. At high T, where the number of bonds4<0, 4| eer=0.1100 < T
the tetramers are able to diffuse with little hindrance. Inthishigh ~ '® £ 5 5 7201050 i A
T limit, diffusion is slowed down progressively by increasing [ AAT=0.0975 < 1
density, but only by about 1 order of magnitude in the investigated e STEEERA 1
range. A small decrease Thin the region where the network 1% Y T 7 T,
forms has a dramatic effectin the slowing down of the dynamics. p

Network formation results in a decreasel®by several orders Figure 14. Diffusion coefficientsD (a) along isochores and (b)
of magnitude. Figure 14 also shows that, when the network forms, along isotherms. The loW behavior of (a) can be described by an
D is compatible with an Arrhenius dependence, Dex e &/T, Arrhenius expression.

whereEp is the activation energy for diffusion. The origin of this

dependence and the value B will become clear when we
examine the direct relationship betweBrand the fraction of As alluded to before, recent studies of simple models of network-

bonds in the system. forming liquids suggest the possibility ofumiversal scenario
By making “cuts” at fixed values dd in Figure 14, we obtain controlled by the valency of the particles, in the absence of
various loci in theT—p plane of constanb, or isodiffusivity isotropic attractive interactions. In this respect, all particles with

lines (Figure 2). The progression of the isodiffusivity lines to valency of 4 should be characterized by similar thermodynamic
smallerD values provides an indication of the position and shape and dynamic properties. A comparison of Figure 2 with Figure
of the eventual arrest line in the phase diagram. Figure 2 shows9 of ref 34 shows that this is indeed the case. In all models for
that there is no significant change in the isodiffusivity lineswhen tetrahedral particles studied, the region of thermodynamic
they intersect the percolation line. Thus, the percolation line is instability is observed only at low densities, delimited by the
not directly related with dynamical arrest for this system, and density at which an unstrained network of fully bonded particles
similar behavior has been found for other systems with finite can form—the optimal density of the network. In scaled density
bond lifetimes:*55Additionally, there is no change in behavior  (top axis in Figure 2), phase separation is encountered (in all the
crossing the inflection point of the two-state model. Indeed, given models) only belowpscaeq? 0.65. Above this value, no phase
the Arrhenius behavior @, in a strict sense the systemwillonly  separation is encountered on cooling, and the system can access
arrestall = 0; in amore practical sende willbecome extremely  equilibrium states up to densities where the formation of a glass
small compared with experimental time scales Tor 0, but due to packing constraints prevents equilibrium. In this window
lower than the lowesT we study. In either case, itis clear from  of intermediate densities, kinetic arrest driven by the Arrhenius
Figure 2 that the shape of the isodiffusivity lines is highly increase of the bond lifetime provides the ultimate fate for the
correlated with the formation of the network as defined by either system. In contrast, systems with simple isotropic attractions
of the static loci. Hence, these loci do provide useful estimates (where the average number of bonded neighbors can go up to
of where the dynamics become influenced by the formation of twelve) have no such density window, and the fate of the fluid
the network. ) o ) state at lowT is either phase separation or glass formatfon.

. The phase dlagram shown in Figure 2 prov[des a coherent Quantitative Relation of Diffusion and Network For-
view of the behavior of the model in a large regionToandp. mation. The previous study of this modélfound that, at the

(53) Horbach, J.; Kob, W.; Binder, K.; Angell, C. Rhys. Re. E 1996 54, preferred density for network formatior) appears to be
R5897. controlled by the fraction of completely unbonded tetramers.

(54) Kumar, S. K.; Douglas, J. Phys. Re. Lett. 2001, 87, 188301.

(55) Zaccarelli, E.; Buldyrev, S. V.; LaNave, E.; Moreno, A. J.; Saika-Voivod,
I.; Sciortino, F.; Tartaglia, PPhys. Re. E 2005 94, 218301. (56) Sastry, SPhys. Re. Lett. 200Q 85, 590-593.
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: A — V. Conclusions

107 P
i - - We have presented a detailed study of the structure and
10 dynamics of an off-lattice model of DNA-functionalized particles
2 to provide an insight into their self-assembly. The model retains
107 E - the essential ingredients of the DNA double-strand bonding (most
F B E importantly, the base-pair selectivity intrinsic in the specific A-T/
a |o'3;— ’,-»" ] G-C pairing). To facilitate computational study, the model coarse-
s grains most chemical details of DNA molecules. The DNA strands
10_4; o - S eoin ] are modeled as a polymer whose beads are decorated by labeled

sites mimicking the four different bases, with attractive interac-
tions only with complementary bases. While the model is not
| ] designed to be chemically accurate, it captures the basic physics
Ev p=007 1 of the self-assembly process in these materials.
107 ] ' : — We have focused on an arbitrary choice of an eight-base DNA
1-p, sequence, specifically_the (A-C-G-T-A-C-G-T) sequence, which
Figure 15. Diffusion coefficient vs 1— p,. The dashed line is a has the property of being complementary to the same sequence

line with slope 4, plotted as a guide line. This demonstratesDhat read backward (T-G-C-A-T-G-C-A). This makes it possible for
is dominated by tetramers which are unbonded. pairs of strands grafted on different particles to selectively bind,

promoting the formation of a three-dimensional network on
cooling. More specifically, we have chosen to model a four-

=
T
11}
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Quantitatively, it was found that armed dendrimer complex, which has been synthesized experi-
4 mentally, in which the “hub” of the macromolecule is small
D =Dy(1 — py) (10) compared to the DNA strands. Despite this specific choice, our

) o o o results should be general to other DNA-derivatized particles,
provides an accurate description of the diffusion coefficient. jncjuding gold and PMMA particles.

Since 1~ py is the probability that a bond is broken, {1py)* We have analyzed the structure of the fluid. In a small
is the probability that all four bonds are broken,whic_h corresponds temperature interval, base pairing becomes favorable and the
to a completely free tetramer under the assumption of random gystem crosses from an high-temperature fluid state (characterized
bondmg. Addltlonally, works with simple mode!s of tetrahedral by nearly all monomers) to a fully connected network of four-
coordinated particles have shown the validity of the same cqordinated particles. At low densities, the driving force for
relationship®® _ _ o bonding generates a phase-separation process, and the system
A possible model for the relationship between diffusion and genarates into two coexisting phases (a gaslike phase and a
bonding is thaD can be formally expressed as a sum over the connected liquidlike phase), as detected by the progressive growth
_contnbutlons of particles with different numbers of bonds, that 4 the density fluctuations and confirmed by visual inspection
IS of the configurations.
4 Forintermediate densities, the system does not phase-separate
D= Y D, (T)P(n) (11) at any of the studied. The driving force for phase separation
is suppressed by the possibility of forming an unstressed network
of four-coordinated particles. The thermodynamic behavior of
whereP(n) is the probability that an arbitrary dendrimer has  the present model is analogous to the behavior observed in
bonds andDy(T) the diffusion coefficient for am-bonded  previously studied simple models of four-coordinated patchy
dendrimer. The strong assumption that only free particies ( particles3435confirming that the reduced valency opens a region

n=

0) are free to diffuse is equivalent to the= Do(1 — py)*isochoric of densities where the system remains stable against phase
law, with the additional assumption tHag is weakly dependent  separation to very lowr.24:25.55.57

onT. Figure 15 shows the relation betweBrand 1— p; for The structure of the system (analyzed via the radial distribution
the present model at all densities. With the exceptiop ef function or the static structure factor) shows the clear pattern of

0.01, we see that th€ dependence db is very satisfactorily  tetrahedral coordinated systems, including the presence of a pre-
described by eq 10. Finally, we point out that, sipgeean be  peak inS(g) and a ratio between the location of the first- and
described by a two-state model, by combining egs 5 and 10, wesecond-neighbor peaks gfr) significantly different from two.

have The process of network formation is well-described by random
4 IAS _—AAEIT percolation theory. Close to percolation, the cluster size distribu-
D =Dg{1+ exp[(AE — TAS/T]} "~ Dye""e (12) tion is well-described by a power law with exponent 2.2. On

further cooling, a spanning cluster appears, which progressively
asT becomes small, which explains the observed low-temperatureincorporates all molecules in the system. Despite the presence
Arrhenius behavior oD. In this respectEp is four times the ~ Of @ percolating cluster, dynamics do not arrest, since the bond
bonding energyAE. We also note that the prefactor of the lifetime is finite, and hence the percolating structure is transient.
Arrhenius law incorporate a large contribution arising fra® We find that diffusion is mostly controlled by the particles thgt
Additionally, since we knowDo, AE, andAS from numerical completely detach from the network and whose concentration
fits, we can use eq 12 to estim&eat arbitrarily lowT. Inverting is proportional to (1~ py)*, in agreement with random percolation
the relation, we estimate the temperature at widck 1020 theory. This relation between diffusion and free particles has
a value that would be small by experimental standards. We find 2lS0 been observed in other models of limited valefice,
thatD reaches this value dt~ 0.077,~15% below the lowest (57) Sciortino, F.; Buldyrev, S. V.; De Michele, C.; Foffi, G.; Ghofraniha, N.;
Tstudied a”?' Weaklydependenton denspryowdlng anestimate LaNave, E.; Mor’en.é, A.J.; Mdssé, S Saika-Voi\’/od.‘, l; Tértéélia, P.; Zaccéréili,
of the practical bound for arrest of the system. E. Comput. Phys. Commug005 169, 166-171.
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suggesting that the mechanisms of dynamics in network-forming potential energy are identical in both models. The only significant
materials have some common aspects. It is important to stresgdifference between these two models is the width offthenge
that, since the bond probability follows an Arrhenius law atlow  over whichpy crosses from 0 to 1. The large entropic contribution
T, the T dependence of the diffusional times also becomes gye to the collective nature of the bonding in the DNA strands
Arrhenius on cooling. Wh'le. thl_s_suggests t_hat (_jynamlcs formally .5 ses the transition from independent units to a fully connected
arrest only afl = 0 K, the significant contribution of the bond- network in a very smalll window. In systems composed of
formation entropy, amplified by the fourth power, gives rise to tet lent particles. it i iol .t losel h the full

a significant prefactor in the Arrhenius law. As a consequence, etravaient particles, it IS possible to closely approach the fufly
in a very smallT interval, dynamics decreases by an order of Ponded ground state without the interference of phase separation
magnitude of ten or greater, giving rise to an effective arrest i a wide region of density. It is conceivable that, in this region,
transition at a finite temperature, which (in the present system) the slowing down of the dynamics is so pronounced that the
is not far from the percolation line. In this respect, while the system becomes stuck in a kinetically trapped nonergodic state,
low-temperature dynamics remains Arrhenius, the relative preempting the possibility of generating ordered structuthe
distance (inT) between percolation and dynamic arrest is analog of crystal states in atomic systems. Finally, the present
significantly reduced as compared to simple tetrahedral modelsstudy and previous work on models for tetrahedral interacting
in-which the bond formation has no significant entropy simple particles call attention to the role of the maximum number

cogtribution. ina the ph i f th del with that of of bonds per particle as the key ingredient in the classification
_ By comparing the phase diagram of the model wi at ol ot the collective behavior of interacting systems and their
simple tetrahedral patchy particles, we note a clear analogyself_assembly

between them. The location of the phase-separation region in
scaled density, the shape of the percolation line, the shape of the
isodiffusivity lines, and thel and density dependence of the LA063036Z



