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We present a numerical evaluation of the critical point location for a primitive model for silica
recently introduced by Ford et al. �J. Chem. Phys. 121, 8415 �2004��. We complement the numerical
estimate with a theoretical description of the system free energy �and related thermodynamic
quantities� by solving �i� the standard parameter-free first order thermodynamic perturbation
Wertheim theory and �ii� an ad hoc modeling of the temperature and density dependences of the
bonding free energy, inspired by the Wertheim theory but requiring one fitting parameter ����. This
parameter takes into account the correlation between adjacent bonding induced by excluded volume
effects. We compare the predicted critical point location in the temperature-density plane with the
“exact” numerical Monte Carlo value. The critical temperature is correctly predicted by both
theoretical approaches, while only approach �ii� is able to accurately predict the critical density.
© 2008 American Institute of Physics. �DOI: 10.1063/1.3023151�

I. INTRODUCTION

Recently Ford et al.1 introduced a simple and computa-
tionally efficient primitive model of silica �PSM�. This
model aims to reproduce the key chemical and physical fea-
tures of SiO2, i.e., the strong association between bonded
silicon and oxygen atoms and the low tetrahedral coordina-
tion of the oxygen atoms around a silicon atom. In the
model, oxygen atoms are represented by bivalent particles
and the silicon atoms are described by tetravalent ones. Both
Si and O atoms are modeled as �nonadditive� hard sphere
particles decorated by four and two short-range bonding
“sticky” sites, respectively. The bonding sites are located at
fixed distances from the particle centers and arranged in such
a way that the tetrahedral coordination of oxygen particles
around a single silicon particle is reproduced. Despite the
absence of long-range forces, the numerically calculated
phase diagram and the mechanical properties of silica most
common solid phase structures, such as cristobalite, quartz,
and coesite, reproduce quite accurately the experimental re-
sults. The good qualitative agreement with experimental data
on the dense silica phases1 validates the PSM as a powerful
and simple model for silica. The same model has also been
used to study the phase stability of zeolite frameworks2 as
well as the dynamic properties of the fluid phase, with a
particular emphasis in the region where bonding �as opposed
to caging� slows down the dynamics near to a dynamic arrest
transition.3 From the initial observation of Ford et al.1 and
the numerical estimates reported in Ref. 3, it appears that in
this model a liquid phase is technically missing since no
critical point is observed in the region where the fluid is the

stable phase. The disappearance of the stable gas-liquid criti-
cal point in the equilibrium phase diagram is probably asso-
ciated with the short-range nature of the attractive interaction
of the model, in analogy with the behavior of spherical in-
teracting potentials in the limit of short attractive ranges.4–7

Nevertheless, the critical point can still be observed in meta-
stable conditions, i.e., when the typical time scale of crystal-
lization is significantly longer than the observation time
scale.8,9 Determining the existence and the temperature-
density location of the critical point allows a deeper under-
standing on the behavior of the system. Indeed, if the gas-
liquid critical point lies in the fluid-solid coexistence region,
like for other primitive patchy models,10 the liquid phase is
not observed as an equilibrium stable phase but only in a
metastable condition.

In this article we report a precise estimate of the location
of the critical point for the PSM, resulting from grand
canonical simulations and histogram reweighing
techniques.11–13 We complement the numerical evaluation
with two theoretical approaches: �i� we solve the Wertheim
theory �WT� for associating liquids, providing a parameter-
free prediction for the model free energy, and �ii� we modify
the Wertheim expression for the bonding chemical equilib-
rium to incorporate, at zeroth order level, the correlation be-
tween adjacent bonds induced by excluded volume interac-
tions. In this second case, the resulting free energy provides
a rather good description of the temperature and density de-
pendences of the bond probability. The theoretical critical
points are also compared to the numerical evaluation of the
critical temperature Tc and density �c. Both theoretical ap-
proaches correctly predict Tc but only the second one is able
to accurately estimate �c.
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II. THE MODEL

The primitive model for silica consists of a binary mix-
ture of patchy particles with different valences. The mixture
of Si and O �in a 1:2 ratio� is a nonadditive hard sphere
mixture. More precisely, the Si–Si and Si–O nonbonded in-
teractions are hard core repulsions with hard sphere diameter
�SiSi=�SiO�� �where � defines the length scale�, while the
O–O hard core is defined by �OO=1.6�. The four attractive
sites of silicon are arranged in a tetrahedral geometry and
located on the hard core surface, i.e., at a distance of 0.5�
from the particle center. The two oxygen bonding sites are
located at a distance of 0.5� from the particle center and the
angle between them is fixed at 145.8°. The only attractive
interaction takes place between pairs of Si and O sites.
Sticky sites interact via a square well potential of depth −u0

for r�� and 0 otherwise. When the interaction takes place
between an oxygen and a silicon particle, the potential
V�1,2� between particles 1 and 2 is given by

V�1,2� = VHS�r12� + �
i=1

4

�
j=1

2

VSW�r12
ij � , �1�

where VHS is the hard sphere potential and VSW is the site-
site square well interaction. Here r12 and r12

ij are the vectors
joining the particle-particle and the site-site �on different par-
ticles� centers, respectively. The individual sites are denoted
by i �site on the Si particle� and j �site on the O particle�.
When the interaction takes place between particles of the
same type, only the repulsive contribution �first term in the
right hand side of Eq. �1�� survives. The attractive interaction
range is chosen to be �= �1−�3 /2���0.134�, a value for
which double bonding at the same site is not observed, as
discussed in Ref. 3. In this model, bonding is properly de-
fined: two particles are considered bonded when their inter-
action energy is equal to −u0 �where u0 defines the energy
scale�. Hence, the potential energy is a precise measure of
the number of bonds present in the system. Temperature is
measured in units of the potential depth �i.e., Boltzmann con-
stant kB=1�.

We note that the nonadditivity of the mixture has a direct
influence on the O–Si–O bonding. As we show in Sec. IV,
some O–Si–O angular configurations are incompatible with
three-particles bonding since two oxygens bonded to the
same silicon particle interact via the nonadditive hard core
repulsion �see Fig. 1�. The features of the model thus intro-
duce a correlation between adjacent bonding sites. Indeed, if
a silicon particle is bonded to an oxygen one, a second oxy-
gen approaching the bonded dimer would be partially hin-
dered in bonding to the same silicon �in any of the remaining
free sites� by the presence of the first bonded oxygen.

III. MONTE CARLO SIMULATIONS

To estimate the location of the gas-liquid critical point in
the temperature-density plane, we perform standard Monte
Carlo simulations in the grand canonical ensemble �GCMC�.
In this ensemble, the chemical potential �, the temperature

T, and the volume V are fixed. MC moves include insertion
and deletion of particles as well as particle translation and
rotations. A MC step is defined as 50 000 attempts to per-
form displacement moves and 100 attempts to insert or de-
lete a particle �with equal probability of being Si or O�. In
the displacement moves, a particle is randomly translated by
a random quantity between �0.05� in each direction and
rotated around a randomly chosen angle by a random quan-
tity between �0.5 rad. We perform simulations at fixed V,
T, �1, and �2 �where �1 and �2 are the chemical potentials
of the two species of the mixture�, and we tune T, �1, and �2

until the simulated system shows ample density fluctuations,
signaling the proximity to the critical point. Once a reason-
able guess of the critical point in T, �1, and �2 is reached,
we start 15 independent GCMC simulations to improve the
statistics of the fluctuations of the number of particles N in
the box and of the potential energy E. We note that since the
critical temperature is found to be around T	0.075, the
probability of breaking a bond 	e1/T is extremely small and
hence numerical simulations are particularly time consum-
ing. Each independent realization of the system was simu-
lated for 107 MC steps, corresponding to about 20 days in a
3.4 GHz processor. We have studied different sizes and re-
port the values for the largest one, corresponding to a box of
side L=9�. In these conditions, the total number of particles
in the simulated box oscillates between 0 and 160, as shown
in Fig. 2. Figure 2 also shows the number of particle distri-
bution P�N� at the studied T closest to the critical tempera-
ture.

The precise location of the critical point is obtained
through a fitting procedure associated with histogram
reweighing.11 This technique allows us to predict the distri-
bution of N at T�, �1�, and �2� within few percents of the

FIG. 1. Two dimensional �2D� schematic representation of the O–Si–O
bonding geometry. The Si–Si and Si–O hard core interactions have diam-
eters of �SiSi=�SiO��, while the O–O hard core diameter is �OO=1.6�.
Black points on the spheres represent the bonding sites. Silicon has four
attractive sites arranged in a tetrahedral geometry �in the 2D figure only
three of them are visible� and located at a distance of 0.5� from the particle
center. The two oxygen bonding sites are located at a distance of 0.5� from
the particle center and the angle between them is 145.8°.
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simulated T, �1, and �2. We tune the chemical potentials of
the two species of the mixture in such a way that the propor-
tion of Si and O is well reproduced. We find Tc=0.0747,
�1

c =−0.877, and �2
c =−0.363, all in unit of u0. The average

molar fraction of Si, XSi, is equal to �0.332 at the estimated
critical point. The corresponding critical density, in unit of
�−3, is the average of the P�N� distribution and it is found to
be �c=0.0850�0.0004.

To confirm that the critical point is properly located, we
also calculate the fluctuation distribution of the ordering op-
erator X at the critical point and compare it to the universal
distribution characterizing the Ising class.14 The ordering op-
erator X of the gas-liquid transition is a linear combination
X	�+su, where � is the number density, u is the energy
density of the system, and s is the field mixing parameter.
Exactly at the critical point, fluctuations of X are found to
follow the Ising model universal distribution.14 We imple-
ment a fit procedure to estimate the values of s for which the
reweighed distribution of N is closest to the known form for
Ising-type systems and we find s=0.458. Figure 3 shows the

agreement between the PSM critical fluctuation distribution
of the order parameter and the Ising one.

We also consider the possible demixing of the binary
mixture in phases of different relative compositions of Si and
O. In order to evaluate the percentage composition of the two
species in both the liquid and the gas phases, we analyze the
particle configurations at the critical point, separating the
ones with density smaller and larger than �c. We observe that
the stoichiometric ratio between Si and O is kept constant in
both the dense and diluted phases.

IV. THE THEORY

We complement the numerical study by theoretically es-
timating the temperature-density location of the gas-liquid
critical point. We use two different theoretical approaches:
first we use the standard parameter-free Wertheim
approach15,16 and then we develop an interacting bond ap-
proach �IBA� by introducing in the Wertheim equation for
the bonding probability an appropriate fitting parameter
which takes into account the effect of correlation between
adjacent bonds.

A. The WT

The Wertheim thermodynamic perturbation theory15,16

can be applied to all those systems whose interaction poten-
tial is composed of a spherical reference repulsion comple-
mented by a directional attraction. Recent applications can
be found in Refs. 17–24. For the PSM the reference interac-
tion is the hard core repulsion and the nonspherical attraction
is the site-site square well interaction, both described in Sec.
II. According to the WT, the free energy per particle a�� ,T�
can be written as the sum of a bonding contribution plus a
repulsive one,

�a��,T� = �abond��,T� + �aHS��,T� . �2�

The hard sphere part can be evaluated from the density de-
pendence of the nonadditive hard sphere binary mixture
pressure, PHS, as follows:

�aHS��,T� = �aHS��ref,T� − 

�ref

�

�PHS����
d��

��2 , �3�

where �ref is the number density of an arbitrary chosen ref-
erence state point. The Helmholtz free energy due to bonding
is derived from a summation over certain classes of relevant
graphs in the Mayer expansion25 and it can be simply written
as a function of the bond probability pb as follows:

�abond = � f ln�1 − pb� + 1
2 pb� . �4�

Here f is the average system functionality, i.e., two times the
ratio between the maximum possible number of bonds in the
system and the number of particles. For the present model,
the functionality of silicon is fSi=4 �while the functionality
of oxygen is fO=2� and the molar fraction of silicon is XSi

=1 /3 �XO=2 /3�. The maximum number of bonds in the
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FIG. 3. �Color online� Comparison between the calculated distribution of
X	�+su at the estimated critical temperature Tc and critical chemical
potentials �1

c and �2
c �full line� and the expected distribution �dashed line�

for systems at the critical point belonging to the Ising universality class
�Ref. 14�.
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FIG. 2. �Color online� GCMC simulation results for the fluctuations of the
number of particles for the largest studied system, i.e., L=9, close to the
critical point, i.e., T=0.075 and �1=−0.874 and �2=−0.358. Panel �a�: the
number of particles N vs MC steps for each of the 15 independent realiza-
tions of the system �reported in a sequence�. Panel �b�: the resulting P�N�
distribution.
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system is thus 4NSi, where NSi is the number of silicon par-
ticles, and hence the resulting average functionality of the
system is f =8 /3.

Since we assume equal reactivity of all the sites, the
bonding process can be seen as a chemical reaction between
two unsaturated sites in equilibrium with a pair of bonded
sites. In this respect, one can write

pb

�1 − pb�2 = ��3e−�Fb, �5�

where Fb is the site-site bond free energy, i.e., the free en-
ergy difference between the bonded and the unbonded states.
The WT predicts an expression for Fb in terms of liquid state
correlation functions and spherically averaged Mayer func-
tions. More precisely �3e−�Fb = f /2	 or, equivalently,

pb

�1 − pb�2 = �
f

2
	 , �6�

where 	 refers to a single Si–O bond and is defined as an
integral, over the range where bonding occurs, of the hard
sphere fluid pair correlation function for the Si–O pair,
gHS

SiO�r�, and of the angle-averaged Mayer function for the
site-site attraction, i.e.,

	 = 4


�SiO

�SiO+�

gHS
SiO�r��fSiO�r,�Si,�O���Si,�O

r2dr . �7�

Here the Mayer function between a Si site and an O site is
fSiO�r ,�Si ,�O�=exp�−VSW�rSiO� /kBT�−1, where r and rSiO

are the center-to-center and the site-site distances, respec-
tively. In Eq. �7�, �¯��Si,�O

represents an angle-average over
all orientations of Si and O particles at a fixed relative dis-
tance. We note that, since the WT is insensitive to the ar-
rangement of the sites, the number of bonding sites is simply
encoded in the factor f /2 in front of 	 in Eq. �6�, where the
factor of 1/2 takes into account that the attractive interaction
takes place only between sites of different types.

To determine the bonding contribution to the free energy
of the system we need to solve Eq. �7�. The Mayer function
can be calculated as26

�fSiO�r,�Si,�O���Si,�O
= �e�u0 − 1�S�r� , �8�

where S�r� is the fraction of solid angle available to bonding
when two particles are located at relative center-to-center
distance r, i.e.,

S�r� =
�� + � − r�2�2� − � + r�

6�2r
, �9�

�where �SiO=��. The evaluation of 	 from Eq. �7� thus re-
quires only an expression for gHS

SiO�r� for distances smaller
than �. As previously done for the case of PMW,27 we as-
sume a linear dependence of gHS

SiO�r� for r close to �SiO, i.e.,

gHS
SiO�r� = gHS

SiO��SiO� + cSiO�r − �SiO� , �10�

where the density dependence enters in the two parameters:
gHS

SiO��SiO� �the contact value� and cSiO �the slope�. Figure 4
shows the density dependence of gHS

SiO��SiO� and cSiO on the
MC data and the associated cubic polynomial fits. The result-
ing fit parameters are reported in Table I. In the low density
limit we find the ideal gas value gHS

SiO�r��1.
The resulting expression of 	 is

	 = �e�u0 − 1�Vb���� , �11�

where Vb is the bonding volume in the low density limit,

TABLE I. Parameters of the polynomial fits for �from left to right� the contact value of the hard sphere radial
distribution function, the slope of gHS

SiO�r� in the linear approximation, the function ���� in Eq. �11�, the hard
sphere pressure of the system �here the value of the second virial coefficient is B2

HS=4.976 28 from Eq. �15��,
and the parameter ���� in Eq. �16�. Note that, by definition, the i-coefficient has the dimension of �−i in all the
columns.

gHS
SiO��SiO� cSiO � �PHS �

0th 1.0027 0.188 69 1.009 57 0 1.0414
1st 3.4069 −7.766 30 3.124 05 1 −1.23981
2nd 3.7852 25.949 00 4.730 26 B2

HS −3.9475
3rd 22.375 −183.79 15.681 4 107.392 ¯

4th ¯ ¯ ¯ −1 820.26 ¯

5th ¯ ¯ ¯ 12 857.5 ¯

6th ¯ ¯ ¯ −35 514.8 ¯

7th ¯ ¯ ¯ 35 568.2 ¯
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FIG. 4. �Color online� Points are MC data and lines are the corresponding
cubic polynomial fits for the contact value �panel �a�� and the slope �panel
�b�� of the hard sphere radial distribution function gHS

SiO�r�. In the linear
approximation: gHS

SiO�r�=gHS
SiO��SiO�+cSiO�r−�SiO�, where gHS

SiO��SiO�
=�i=0

3 ai�
i and cSiO=�i=0

3 bi�
i, where ai and bi are reported in Table I.
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Vb=4
�SiO+�
�SiO S�r�r2dr=0.000 524 15�3, and ���� incorpo-

rates the remaining density dependence of 	: Upon increas-
ing �, the bond probability increases as well due to the struc-
turing associated with the hard sphere excluded volume
interactions. We note that the free energy associated with the
bonding process can be expressed as a function of the micro-
scopic parameters characterizing the system. More precisely,
it is a function of the bonding volume and of an exponential
temperature factor as follows:

�Fb = − ln��e�u0 − 1�
f

2

Vb

�3����� . �12�

Once the function 	 is known �Eq. �11��, it is possible to
solve Eq. �6� and find pb�T ,��, which is the only thermody-
namic quantity involved in the bond free energy �see Eq.
�4��.

To determine the reference free energy �see Eq. �3��, we
numerically evaluate, via MC simulations, the equation of
state of the reference nonadditive hard sphere mixture. For
hard sphere interactions, the pressure can be calculated from
the contact value of the hard sphere radial distribution func-
tions as

PHS = �kBT +
2


3
�2�XSiXO�SiO

3 gHS
SiO��SiO�

+ XO
2 �OO

3 gHS
OO��OO� + XSi

2 �SiSi
3 gHS

SiSi��SiSi�� . �13�

The resulting pressure is shown in Fig. 5. We also fit the MC
data with a polynomial form, whose coefficients are reported
in Table I. To improve the quality of the fit we constrain the
first two coefficients to the theoretically known low density
behavior. Indeed, from the virial expansion we know that in
the low density limit the pressure can be expressed as

�PHS

�
= 1 + B2

HS� . �14�

The virial coefficient of a binary mixture is defined as

B2�T� = XSi
2 B2

SiSi�T� + XO
2 B2

OO�T� + 2XSiXOB2
SiO�T� . �15�

In the hard sphere limit, we have B2
SiSi=B2

SiO=2
 /3�3, B2
OO

=2
 /3�1.6��3, and hence B2
HS=4.976 28�3.

From the knowledge of the resulting total free energy, it
is now possible to locate the position in T and � of the
gas-liquid critical point by solving the coupled system of
equations ��2a�T ,V� /�V2�T=0 and ��3a�T ,V� /�V3�T=0. The
resulting critical Tc and �c values are reported in Table II.
While Tc correctly reproduces the “exact” MC numerical
value, the predicted critical density is significantly different.

To pin down the origin of this discrepancy, we compare
theoretical and simulation results for the temperature and
density dependences of pb, a key element in the WT �see Eq.
�6��. In this model, pb provides a measure of the potential
energy of the system and can thus be easily compared to the
numerical results. In particular the energy per Si particle is
simply given by eSi=−4u0pb, and hence the system ground
state energy �per particle� is egs

Si =−4u0. A comparison be-
tween the predicted Wertheim values for eSi�T ,�� with the
available numerical results from Ref. 3 is reported in Fig. 6.
The agreement between the theoretical predictions and the
numerical results is rather unsatisfactory, especially in com-
parison with the previously reported studies of models for
colloidal patchy particles.22,23 Even more astonishingly, the
disagreement appears to increase in the region of small den-
sities where the theory should, in principle, work better.

B. IBA

To highlight the origin of the disagreement we look more
carefully into the � and T dependences of pb. Inspired by the
functional form suggested by Eq. �6�, we single out the
bonding volume contribution �see Eq. �11��, which, accord-
ing to the WT, should remain constant to the value of Vb

=0.000 524 15�3 under the assumption of independent
bonds. We define Vb

c, the bonding volume in the presence of
bond correlation, as Vb

c ��pb / �1− pb�2� / ���f /2��e�u0

−1������. Figure 7 shows that Vb
c departs from the Vb value

upon increasing pb, signaling a reduction in the available
bonding volume in the presence of already bonded configu-
rations. This suggests that the bonding volume entering in
the chemical equilibrium between bonded and unbonded
pairs is a function of the extent of bonding present in the
system. Thus, the reason for the failure of the WT in the
present model can be ascribed to the fact that the assumption
of independent bonding sites is not fully satisfied. This is due
to the nonadditivity of the O–O interaction. Indeed, when an
O particle is bonded to a Si particle, the very large repulsive
diameter determines a reduction in the bonding volume of
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FIG. 5. �Color online� Hard sphere pressure as a function of the total num-
ber density of the system. Points are MC data and the solid line is the
corresponding polynomial fit: �PHS=�i=0

7 ci�
i, where the coefficients ci are

reported in Table I. The inset shows an enlargement of the low density
region and a comparison with the approximation of Eq. �14� �dotted line�.

TABLE II. Tc is the gas-liquid critical temperature and �c is the density of
the critical point as estimated from GCMC simulations, the WT, and the
IBA.

kBTc /u0 �c�
3

MC 0.0747 0.0850
WT 0.0743 0.0151
IBA 0.0749 0.0954
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the adjacent bonding sites. In this respect, the probability of
forming additional bonds is reduced as compared to the one
of forming the first bond. Interestingly, it appears that the
increase of density compensates this sterically induced bond
correlation, resulting in a cancellation of errors and in an
optimal performance in density of around �=0.27.

To quantify the correlation between adjacent bonding

sites we generate, via a MC technique, a large number of
configurations �	108� of three particles, in which two O par-
ticles are connected to a central Si particle via bonds. In
doing so, we do not account for any interaction between the
two O particles. We then evaluate the fraction of these con-
figurations for which the distance between the center of the
two O particles is smaller than �OO. We find that about
�30% of the configurations is forbidden due to sterical con-
straints, providing a mechanism for decreasing the bond
probability upon the presence of pre-existing bonds. The
shading of a bonding site by the presence of a nearby bonded
site introduces in the system a sort of negative cooperativity
which reduces the bonding probability �see Fig. 6�. To better
visualize the described phenomena, we report in Fig. 8, for
each of the generated configuration, the O–Si–O angle versus
the corresponding O–O distance rO−O. In this plot, only
points with rO−O�OO�1.6� represent allowed PSM con-
figurations.

In an attempt to cure the WT, we develop a zeroth order
theoretical approach in which the interaction between adja-
cent bonding sites is taken into account via a density depen-
dent parameter, which properly reproduces the observed lin-
ear pb dependence of Vb

c as Vb
c =1−����pb. In other words,

we substitute the independent-bond expression of Eq. �6� by

pb

�1 − pb�2 = �
f

2
	�1 − ����pb� . �16�

Figure 7 shows a linear relation between Vb
c and pb, whose

slope is density dependent. The resulting linear fit parameters
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FIG. 7. �Color online� Bonding probability dependence of Vb
c ��pb / �1

− pb�2� / ���f /2��e�u0 −1������. If the WT holds, a plot of Vb
c /Vb should result

in a constant value of one. Vb
c shows instead a linear dependence on pb,

reproduced by Vb
c =1−����pb. Points refer to data from simulations, while

lines are linear fits, whose slopes give the density dependence of ����. The
inset shows the resulting values of � for the four studied densities and the
dotted line is their quadratic fit: ����=�i=0

2 di�
i, where di are reported in

Table I.

FIG. 8. �Color online� Oxygen-silicon-oxygen angle vs oxygen-oxygen
center-to-center distance for a bonded triplet O–Si–O. Points are all the
possible combinations of angles and distances between the two O particles
bonded to a Si one. The inner the color layer is, the most probable the
bonded configuration is. The �purple� vertical line on the left corresponds to
the Si–O hard sphere diameter. The �red� horizontal line represents the co-
sine of the tetrahedral angle. The �blue� vertical line on the right corresponds
to the minimum allowed distance between the oxygen particles, i.e., the hard
core O–O diameter 1.6�. All points with rO−O��OO�1.6� represent
bonded configurations forbidden by sterical constraints.
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�panel �a�� and density �panel �b��. Points are numerical results from Ref. 3,
solid lines are WT predictions, and dashed lines are IBA predictions.

224904-6 Bianchi, Tartaglia, and Sciortino J. Chem. Phys. 129, 224904 �2008�

Downloaded 19 Jan 2009 to 141.108.6.64. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



���� are shown in the inset of Fig. 7. The density depen-
dence of � can now be conveniently parametrized by a qua-
dratic expression, whose coefficients are reported in Table I.
This modification captures the physics of the progressive re-
duction in the bonding volume on progressive bonding since
the term �1−����pb� multiplies the bare bonding volume Vb

�contained in 	�. Using the polynomial expression for ����
from Table I, it is possible to solve Eq. �16� and obtain the T
and � dependences of pb. The resulting pb expression does
now reproduce, as shown in Fig. 6, quite precisely the bond
probability in a large region of T and �.

The equivalence between pb and the potential energy e
offers a way to extract, a part from an unknown constant, the
density and temperature dependences of the bonding contri-
bution to the free energy. Indeed, the free energy per particle
is defined by the standard thermodynamics relation

a��,T� = e��,T� − Ts��,T� �17�

where e�� ,T�=− 4
3 pb�� ,T�. Choosing a large Tref, so that

s��ref ,Tref� coincides with the entropy of the reference non-
additive hard sphere binary system, and integrating along a
reversible path in the T-� plane, s�� ,T� can be written as

s��,T� = s��ref,Tref� + 

Tref

T CV��,T��
T�

dT�

− 

�ref

� PHS���,Tref�
Tref

d��

��2 . �18�

Here CV�� ,T� is the constant volume specific heat and is
defined as CV�� ,T�= ��e�� ,T� /�T��.

Repeating calculations analogous to the one reported in
Sec. IV A, we locate the position in T and � of the critical
point using the derived total free energy density a�T ,�� ex-
pression �Eq. �17��. The resulting T and � critical values,
reported in Table II, reproduce accurately the exact numeri-
cal data both for Tc and �c.

V. CONCLUSIONS

In this article we report a study of the gas-liquid critical
behavior of a simple but powerful primitive patchy model for
silica.1 We determine the location of the gas-liquid critical
point in the temperature-density plane by means of extensive
GCMC simulations. Figure 9 shows the critical point esti-
mates, reported in this article, within the equilibrium phase
diagram of the PSM from Ref. 1. The gas-liquid phase sepa-
ration region is found to be well inside the fluid-solid coex-
istence region, confirming that a stable liquid phase cannot
be observed in this silica model. In other words, the liquid
phase is always metastable with respect to the crystalline
phase. We thus find a result similar to the case of short-range
attractive colloids4–7 and to the case recently reported for a
primitive model for water.10

We also compare the exact numerical value and two dif-
ferent theoretical estimates of Tc and �c. We use the standard
parameter-free WT15,16 and an IBA developed to better take
into account the peculiarity of PSM. We find that the WT is
able to well reproduce Tc, while �c is far from the MC value.
We also find a discrepancy between the predicted bonding

probability and the simulation data: in the studied region of T
and � the predicted pb is found to be always larger than the
numerical one. Moreover the magnitude of the discrepancy
increases upon decreasing the density of the system even in
the limit of very low density ���0.005� where the WT
should work well.

We thus derive the IBA from the Wertheim equation of
the chemical equilibrium between bonded and unbonded
pairs by introducing an appropriate fitting parameter which
takes into account the � dependent decrease in pb. We find
that our IBA well predicts the potential energy of the system
as well as Tc and �c.

We suggest that the reason of the extra � dependence of
pb could be ascribed to the nonadditive interactions of the
model. The PSM is indeed a nonadditive binary mixture of
silicon and oxygen in a stoichiometric ratio. The large O–O
hard core repulsion reduces the number of O–Si–O bonded
configurations. The percentage of O–Si–O configurations,
which are not allowed to be bonded due to the O–O repul-
sion, is found to be �30%. The bonding volume is thus
dependent on the extent of bonding already present in the
system. In other words, the nonadditivity of the mixture in-
troduces a three-particle interaction in the bonding process.
The bonding sites are no longer independent of each other
since the presence of a bond hinders the formation of a sec-
ond additional bond on the same particle. The interaction
between adjacent sites can be seen as a sort of negative co-
operativity since the probability of forming additional bonds
is less than the probability of forming the first Si–O bond.

In summary, the present study confirm that PSM does
not show an equilibrium liquid phase but only a metastable
form of it, as in spherically interacting short-ranged poten-
tials. It also provides a detailed frame for testing theories for
�anti�correlated bond formation,28,29 as well as suggests
modifications of the original WT to account for bond
correlations.
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FIG. 9. �Color online� Location of the gas-liquid critical point in the phase
diagram of the PSM from Ref. 1. The �red� circle is the exact critical point
from MC simulations, the �light green� square is the standard parameter-free
WT estimate for Tc and �c, and the �dark green� triangle is the IBA estimate
of the critical point. We also report the theoretical spinodal lines �the locus
of points such that ���P /�V�T=0� close the critical points.
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