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Materials and Methods

Experiment – The phase state of several binary mixtures of stars was investigated in squalene,

a nearly athermal, non-volatile solvent. In most cases, experiments were conducted with 1,4-

polybutadiene stars with a large star (with code 12880) having nominally f1 = 128 arms1; its

hydrodynamic radius was measured by dynamic light scattering in dilute solution and found to

be2 Rh = 51.4 nm. Different small stars3 were utilized with codes 36230, 14130 and respective

hydrodynamic radii Rh = 40.2; nm and Rh = 25 nm; in the coding, the first three digits denote

the functionality f2 and the last two Mw,arm/(103 g/mol). For all mixtures, the 12880 number

density was fixed to ρ1σ
3
1 = 0.477, where the effective corona diameter σ1 coincides with the

measured large-star hydrodynamic radius2; and the densities of the added small stars ranged from

ρ2σ
3
1 = 0 to ρ2σ

3
1 = 7.2.

For one series of experiments we also used a mixture of stable star-like micelles in decane4, an

alternative to the micelles studied in Ref. 5. These micelles a based on arborescent polystyrene

graft polyisoprene copolymers, where the polystyrene forms the core4. The particular mixture

used consists of a large star with f1 = 170, total arm molar mass Mw,arm = 29000 g/mol and

Rh = 34.7 nm and of a small star with f2 = 150, total arm molar mass Mw,arm = 2900 g/mol

and Rh = 11.4 nm. The properties of the samples are summarized in Table SI.

Code Functionality Mw,arm [g/mol] parm pstar

12880 128 80000 1.04 1.02

36230 362 30000 1.06 1.14

14130 141 30000 1.08 1.03

17029 170 29000 1.06 1.27

15003 150 2900 1.04 1.07

TABLE SI: Properties of the studied samples. We list the coding, functionality, molar mass (Mw),

and star-arm polydispersity (parm) and star polydipersity index (pstar). The latter are the ratio of

the weight-average and number-average molar mass.
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The state of a given sample was investigated with linear rheological measurements; these were

carried out with a sensitive strain-controlled rheometer (TA Instruments ARES-HR 100FRTN1).

All measurements were performed in a cone-and-plate geometry (25 mm diameter, 0.04 rad cone

angle), except for samples with the highest concentrations for the mixture 12880/14130, which

were measured in a parallel plate (8 mm diameter) fixture. The temperature was set at 20± 0.1 ◦C

with a recirculating water/ethylene glycol mixture. Where necessary (decane solvent) a home-

made solvent trap system was used to reduce the risk of evaporation.

Special care was taken to account for the aging of the glassy samples, which typically was observed

in the range of 0.5 to 1 day. In one particular case, the mixture 12880/14130 was observed to

age for about 1 week. When conditions for reproducible and time-independent measurements

were established, small strain amplitude oscillatory shear tests were carried out in the frequency

range 100 to 0.01 rad/s. Analysis of the data provided information on the state of the sample

studied and, in the case of solid-like behavior, the plateau modulus G′. Typically, a glassy state

was characterized by a nearly frequency-independent storage modulus G′ that exceeded the loss

modulus G′′ over a wide frequency range2,6.

Theory and simulations – The theoretical investigations are based on a coarse-grained view of the

stars with different functionalities, f1 and f2, which employs the effective interaction potentials

derived in Ref. 7. We consider mixtures of large and small stars with several combinations of f1

and f2, with σi, i = 1, 2 denoting the corona diameters of the two stars. The size ratio δ is defined

as δ ≡ σ2/σ1. In the theoretical calculations, the number density of the large stars ρ1 is kept

constant at a value corresponding to a glassy state within Mode Coupling Theory8. The actual

values of f1, f2, ρ1 are reported in the figure captions. We study the dynamics of the mixture

using two component MCT9,10 . The required partial structure factors for MCT are calculated by

solving the binary Ornstein-Zernike equation11 with the Rogers-Young closure12. Within MCT,

we have also calculated the the zero-frequency storage modulus13 G′, which is compared to the

experimental results.

We also performed standard molecular dynamic simulations for a binary mixture of particles in-

teracting with the above mentioned potential7. To be able to reach state points that are sufficiently

close to the glass transition, and hence to suppress crystallization, a size polydispersity of 10% for

the large stars only has been used in all simulations with ρ1σ
3
1 > 0.345. We have studied a number

of large particles varying between 250 and 2000 and a number of small particles ranging from 0 to

5000. The mass ratio between the large and small particles is assumed to scale as δ5/3(f2/f1)
1/3,
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as discussed in Ref. 14. Time is measured in unit of τMD =
√
kBT/(m1σ2

1).

Two large stars closer than the distance corresponding to the first minimum in g11(r) are considered

nearest neighbors. The symbol N11 is defined as the associated average number of large star

neighbors. The inertia tensor I of a number n of point particles of unit mass with respect to their

center of mass is defined as15:

I =
n∑

i=1

[r2
iE − ri ⊗ ri], (1)

where ri is the coordinate of the ith particle with respect to the center of mass, E is the 3 × 3

identity matrix, and ⊗ denotes the dyadic product. We calculate the inertia tensor for the nearest

neighbor cage of each large star, formed by the neighboring large ones. After that, we diagonalize

it obtaining the eigenvalues λ1 ≤ λ2 ≤ λ3. A robust measure of the cage anisotropy is given by

the k2-parameter, defined as

k2 = 1− 27A

B3
, (2)

with A and B being rotational invariants, defined as

A = 〈λ1〉 〈λ2〉 〈λ3〉 ; (3)

B = 〈λ1〉+ 〈λ2〉+ 〈λ3〉 , (4)

where the averages are taken over all large particles and several independent configurations.
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Additional Results

• MSD for different combinations of f1 and f2

Fig. S1 confirms that the dynamics of the large stars, as probed by numerical simulations,

shows a reentrant behavior. The two sets of parameters are here chosen to be identical to the

experimental values and to the MCT case reported in Fig. 1(c) and Fig. 1(d).
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FIG. S1: Mean squared displacements of the large stars at δ = 0.4 and increasing ρ2. (a)

Mixture with f1 = 128 and f2 = 141 at ρ1σ
3
1 = 0.39; (b) f1 = 170 and f2 = 150 at the

same ρ1 as (a). In both cases the non-monotonic behavior as a function of additive density

is evident. The lines are numbered in order of increasing additive density.

• Partial radial distribution functions g12(r)

Fig. S2 shows the results for the cross-correlation function g12(r) for the same state points

discussed in Fig. 4 of the article. The correlations between the different species confirm

that on increasing ρ2, small stars penetrate deeper into the large-star cages. As a result,

the height of the correlation peak grows. Note also that subsequent peaks are formed at

distances compatible with sequences of small and large stars.
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FIG. S2: Cross correlation function of the large and small stars g12(r) for ρ1σ
3
1 = 0.345,

δ = 0.4 and increasing ρ2. The peak moves to smaller distances, at the same time layering

with a length scale ∼ σ2 appears.

• Effect of δ on the radial distribution functions g11(r)

Fig. S3 shows that the development of the structure on increasing ρ2 at small δ is clearly dif-

ferent from the one observed for δ = 0.4, shown in Fig. 4(a) and discussed in the manuscript.

While the behavior for δ = 0.1 can be interpreted in an effective depletion picture analo-

gous to colloid-polymer mixtures, the behavior for δ ∼ 0.4 is clearly different: only a

full, two-component MCT yields the double glass and the asymmetric glass, whereas an

effective, one-component MCT yields simply a monotonically falling melting curve on the

(ρ2, δ)-plane2.
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FIG. S3: Radial distribution function of the large stars g11(r) for ρ1σ
3
1 = 0.345, δ = 0.1

and increasing ρ2. The shift of the peak position is much less pronounced than for larger δ.

More importantly, no additional layering at the length scale of the small ones occurs.
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• Eigenvalues of the inertia tensor

To complement results reported in Fig. 4 of the manuscript, we show here the ρ2 depen-

dence of the normalized eigenvalues 〈λi〉/N11, i = 1, 2, 3. They decrease monotonically on

increasing the additive concentration. Moreover, the ratios 〈λ1〉/〈λ3〉 and 〈λ2〉/〈λ3〉, shown

in Fig. S4, display a significant reduction, signaling the growing anisotropy of the cages. It

can be clearly seen than one of the eigenvalues decouples from the other two, signaling an

increasing anisotropy.
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FIG. S4: Ratios of the eigenvalues of the inertia tensor for f1 = 263, f2 = 64,

ρ1σ
3
1 = 0.345, and δ = 0.4.

Table SII reports the absolute value of the eigenvalues. This is found to genuinely decrease

as the cage shrinks, even taking into account the drop related to the decrease in the average

number of nearest neighbors, N11.

• Comparison with binary mixtures of hard spheres with δ = 0.4 and δ = 0.5.

To provide evidence that the asymmetric glass reported for a binary mixture of star poly-

mers is a unique feature of soft interactions, we have performed event driven simulations of

hard sphere mixtures with size ratio δ = 0.4 and δ = 0.5, at ρ1σ
3
1 = 0.993, a value corre-

spondingly close to the hard-sphere glass transition density. The mass ratio of the particles

is assumed to scale as δ3, proportional to the relative volume of the colloids. As shown in

Fig. S5(a), for δ = 0.4 we observe only a slowing down of the dynamics upon increasing

the density of smaller spheres, confirming the absence of reentrance at this size ratio.
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ρ2σ
3
1 N11 〈λ1〉 /(N11σ

2
1) 〈λ2〉 /(N11σ

2
1) 〈λ3〉 /(N11σ

2
1) k2

0.05 12.5 1.55 1.74 1.90 0.0101

0.5 10.0 1.32 1.53 1.74 0.0184

1.5 6.54 1.02 1.31 1.61 0.0486

2.0 5.63 0.866 1.19 1.49 0.0711

3.0 4.25 0.670 1.08 1.39 0.123

4.0 3.34 0.472 0.969 1.25 0.207

5.0 2.88 0.348 0.819 1.06 0.261

fcc 12 1.71 1.71 1.71 0

TABLE SII: Number of nearest neighbors, (normalized) eigenvalues of the inertia tensor

and anisotropy parameter as a function of the density of small stars for δ = 0.4. As a

comparison, we also quote the corresponding values for a fcc lattice at the same

ρ1σ
3
1 = 0.345.
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FIG. S5: Dynamical and structural properties of hard sphere mixtures from simulations. (a) Mean

squared displacement of large hard-spheres with increasing additive density at ρ1σ
3
1 = 0.993 and

δ = 0.4. (b) g11(r) of large hard spheres in the binary hard sphere mixture with δ = 0.4.

Concerning the evolution of the structure, we see in Fig. S5(b) the emergence of several

small peaks in g11(r), corresponding to a layering of small spheres around the large ones.

Of course, the hard-core prevents any progressive shift in the location of the main peak.

The first minimum moves slightly, giving rise to a moderate decrease of the number of

nearest neighbors. More interestingly, Fig. 4(d) of the manuscript shows that the anisotropy
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parameter k2 grows only from 0.012 to 0.019 for δ = 0.4 and to 0.025 for δ = 0.5, indicating

that a rather spherical shape of the cages is retained for all studied ρ2. Despite the fact that

large ρ2 values are difficult to simulate, the absence of any significant trend is sufficient to

affirm that no asymmetric glass is expected in hard colloids.
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