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We report an extensive numerical study of a charged colloidal system with competing short-range

depletion attraction and long-range electrostatic repulsion. By analyzing the cluster properties, we

identify two distinct regions in the phase diagram: a state composed of stable finite-size clusters, whose

relative interactions are dominated by long-range repulsion, and a percolating network. Both states are

found to dynamically arrest at low temperatures, providing evidence of the existence of two distinct

non-ergodic states in these systems: a Wigner glass of clusters and a gel.
1. Introduction

The origin of low-density non-ergodic states in colloidal systems

is a matter of continuous debate and ongoing research.1–5 Several

different mechanisms may concur in the formation of these

arrested states, depending on the relative ratio between the

thermal and binding energy and on the shape and symmetry of

the interaction potential. When particles interact via excluded

volume plus a spherically symmetric, attractive potential, it has

been shown that the formation of a gel structure takes place

concurrently with a spinodal decomposition process. Gelation

results from an arrested phase separation.6 A different scenario

occurs when colloidal particles have a residual electrostatic

charge which builds up an additional long-range repulsion in the

effective colloid–colloid interaction. This term is often modeled

as a Yukawa potential with Debye screening length x to take into

account the presence of the solvent and counterions.7 In apolar

solutions or under low salt conditions, when particles are

sub-micron sized, x can become comparable to the particle

dimension. This long-range repulsive term can coexist with

a short-range attraction (induced for example via depletion

interactions), generating a competition between aggregation,

driven by the attractive part of the potential, and the stabilizing

role of the repulsion, which may ultimately suppress the
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macroscopic phase separation. Indeed, it has been shown that

the addition of a long-range repulsion of moderate strength can

shift to larger attraction strengths (or lower temperatures) the

phase separation,8,9 eventually inhibiting it.10–13 In this case

a microphase separation into clusters14–18 of a preferred cluster

size and shape takes place, depending on repulsion parameters.19

When repulsion is moderately short-ranged, i.e. x/s ( 0.5 with s

being the diameter of the colloidal particle, it was observed both

in experiments and in simulations that elongated clusters are

formed at low enough temperature T.20,21 The repulsion between

such clusters is relatively weak so that they tend to form at low T

quasi-ordered columnar structures.22,23 At large enough packing

fraction, the clusters are found to merge into a percolating

network.20,21 This network of clusters exists at low enough T and

undergoes dynamical arrest, so that a gel state can be properly

identified.4

For cases where the repulsion term is considerably longer-

ranged, i.e. x/s T 1, simulations at low enough colloidal densi-

ties24 have reported the presence of a Wigner glass of clusters.

This corresponds to a disordered state of polydisperse clusters

(due to finite T) which do not percolate and are actually arrested

due to the long-range repulsion, in analogy with the Wigner glass

reported by Chaikin and coworkers25,26 for charged colloidal

particles under very dilute conditions, stabilized by the Coulomb

repulsion. Recently, a comparison between theory and simula-

tions27 of Yukawa particles has shown that the ideal mode

coupling theory (MCT) provides a quite accurate description of

the formation of a particle Wigner glass. The MCT predictions

for Yukawa particles have also been exploited for interpreting

arrest into a Wigner glasses of clusters, in systems with

competing interactions.24,28 Indeed, once clusters are assumed

spherical and monodisperse (in size), the effective cluster–cluster

interactions can be modeled in terms of a Yukawa potential, with

the same screening length as the one acting between single

particles but with a renormalized amplitude.24

These earlier works call for additional investigations, in order

to further question the existence and the stability of a Wigner

glass of clusters, as well as a deeper understanding of cluster–

cluster interactions. To this end, it is also relevant to mention

a recent simulation study29 where clusters were observed to

arrest, at a not-too-low density, by percolation rather than by
This journal is ª The Royal Society of Chemistry 2009



repulsion. However, differences in the simulation protocol of this

work are present with respect to that used in ref. 24, in particular

history of quench and quench rate, as well as a shorter cut-off

distance for the long-range repulsion potential. Hence, a more

comprehensive study of these models in a wide region of packing

fraction f and temperature T, fully accounting for the long range

nature of the repulsive interactions, is needed.

In this work we report an extensive simulation study which

aims at elucidating in detail the phase diagram of colloidal

systems interacting with both short-range attraction and long-

range repulsion, encompassing states well below, at the crossing

and well above the percolation line at low enough T. We char-

acterize in detail the properties of the aggregates that are formed,

both when they exist in finite size objects (clusters) and when they

merge into a percolating network. We analyze both particle–

particle and cluster–cluster correlations to show that, at low

enough packing fractions, the system self-organizes into stable,

long-living clusters which do not percolate and do not form

ordered structures. The interactions between these clusters can be

characterized, for low and intermediate f values, in terms of

renormalized long-range repulsive interactions of Yukawa form,

as previously hypothesized.24 Most importantly, despite the high

polydispersity and non-sphericity of the clusters, we find that the

screening length of cluster–cluster interactions remains

unchanged with respect to that of particle–particle interactions,

while the repulsion amplitude is found to increase with particle

density. At larger f values, when the shape of the clusters starts to

significantly deviate from the spherical one and increased

packing leads to the arising of branching events, a crossover takes

place, ultimately leading to the percolation of the clusters asso-

ciated to a gel transition. We also monitor the dynamics of the

two regions, calling for the existence of two distinct non-ergodic

states in this low-density, low-T part of the phase diagram.
2. Description of the simulation protocol and
analysis

We consider a system of N ¼ 1000 particles of unit mass m

interacting with a total pair potential composed of a short-ranged

attractive part, modeled for convenience as a generalized Len-

nard-Jones potential30 with exponent a¼ 100, and of a long-range

screened electrostatic repulsion, modeled as a Yukawa term,

VðrÞ ¼ 43
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where A is the amplitude of repulsion and 3, the depth of the

attractive part, is chosen as the energy unit. Time is measured in

units of
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q
. The choice of a¼ 100, also studied in ref. 19 and

24, ensures a very short-range attraction, corresponding to bond

formation only within the first neighbour shell. According to the

extended law of corresponding states for spherical short-ranged

attractions,31 the choice of the generalized Lennard-Jones

potential is generic for any width and shape of the attractive

potential.6 Note that the cluster ground-state properties have also

been shown to be invariant for a $ 18.19 We fix the parameters of

the Yukawa potential to x ¼ 2s and A ¼ 0.23. For such values

a microphase separation into clusters exists.19,24 To correctly take

into account the long-range nature of the interactions we solve the
This journal is ª The Royal Society of Chemistry 2009
equations of motion using Ewald summation.32 Indeed, we have

compared results obtained in this way with those based on the use

of a finite (although large) cut-off. For our choice of parameters,

an underestimate of about 10% for the repulsive potential energy

is provided by the use of a finite cutoff at 8x, in agreement with

previous studies.33 Hence, despite the significantly increased

computational cost, it appears crucial for the case under study to

treat the long-range repulsive term with Ewald sum, in order to

discriminate cases where clusters truly form a disconnected or

a percolating state and to address satisfactorily the nature of the

arrested state(s) for the chosen value of x.

To model the motion of colloidal particles in a solvent, we use

Brownian dynamics simulations with time step dt ¼ 0.005 and

bare diffusion coefficient D0 ¼ 0.005. For this choice, the

crossover from ballistic to diffusive regime, for isolated particles,

takes place at t z 10. We do not treat explicitly the effect of the

solvent, i.e. hydrodynamic interactions are neglected, but we do

not expect these to provide significant changes to the long-time

structures that we observe.34 We neglect any change in the elec-

trostatic parameters, in particular of x, with increasing colloid

packing fraction f. For particles of the order of mm, this varia-

tion is expected not to be significant with respect to the particle

diameter.35

The system was initially prepared at several densities and high

T, and later it was slowly equilibrated to successively lower T.

Our aim is to study the approach (from the equilibrium side) to

a dynamic arrest transition, rather than a rapid quench inside the

region where arrest is observed. We study 9 isochores and several

T in the low-f region up to f ¼ 0.20. Equilibration was carried

out in a NVT ensemble, followed by production runs for data

collection and analysis. For very low T (depending on the studied

f values), a true equilibration is no longer possible. Monitoring

for example the energy per particle, the system at first shows

a robust decrease towards an apparent equilibrium state, but

then the system starts to display a very slow (logarithmic in time)

energy drift, typical of an approach to dynamic arrest and

trapping in a metastable state.

The connectivity properties of the system have been monitored

by studying the interparticle bonding. Two particles are consid-

ered bonded when the distance between them is smaller than the

position of the local maximum in the interaction potential, i.e. r <

rb ¼ 1.072s. When a state point has reached equilibrium, we

collect several independent realizations of the system and calcu-

late the distribution n(s) of clusters of size s over time. Moreover,

we check whether the largest cluster that we find in the configu-

ration has spanned the whole box at least in one direction. If at

least 50% of the considered realizations contains a spanning

cluster, the state point is classified as percolating. For state points

which do not percolate at the studied T, we monitor the cluster

properties in time, finding that the clusters have a finite, but large

lifetime. If the cluster size distribution shows a maximum for

a finite value of s, indicating that a preferred size for the clusters

exists, we classify this state point in the cluster phase region.

3. Finite size clusters and percolation: disordered,
metastable states

In Fig. 1 we report the phase diagram of the system in the studied

(f,T) region, highlighting the loci of points where (i) a cluster
Soft Matter, 2009, 5, 2390–2398 | 2391



Fig. 1 A phase diagram of the studied system. B indicate fluid states (no

cluster phase and non-percolating). A indicate points within the cluster

phase region [i.e. showing a maximum at finite s for n(s)] and - refer to

percolating state-points. The solid line (——) defines the cluster region and

the percolation region, and the dashed line (----) defines the region (i.e. the

state points below the line) where the energy starts to display a slow

logarithmic drift, drawn as guides to the eye. At a low enough f (i.e. f (

0.02) the cluster size distribution is peaked at s¼ 1. Inset: potential energy

per particle ep versus packing fraction at T¼ 0.10. A minimum is found at

very low f values; ep becomes positive for f > 0.125, i.e. close to the

location of the percolation transition.
phase is observed and (ii) the system percolates. We also report

a (dashed) line delimiting the region where a true equilibration

cannot be reached, meaning that, for all investigated state points

below the line, the potential energy keeps displaying a very slow,

logarithmic drift for the entire duration of the simulation. This

region largely belongs to the portion of the phase diagram where

stable clusters and percolation are present.

We notice that in the absence of repulsion, the critical

temperature for the short-ranged attractive potential studied

here is found at Tc x 0.24,24 while the critical packing fraction is

found to be approximately fc x 0.27, following the behavior for

spherical attractive potentials in the short-range limit.36 Hence,

the addition of a long-range repulsion suppresses the tendency to

phase separate macroscopically, at least in the T-window that we

have studied, i.e. for T $ 0.05. It becomes thus possible to reach

lower temperatures in one-phase condition. At these low T, the

lifetime of the inter-particle bond increases significantly and

clusters behave as effective long-lived aggregates.

Fig. 1 shows that for f # 0.125 the system never percolates at

all studied T. For very small f (e.g. f ¼ 0.005) the system

organizes into very small clusters, and the maximum of n(s) is

located to s ¼ 1 at all studied T. We can consider this very low-f

region to be essentially in a ‘monomeric’ state. As the f value is

increased, a maximum in the cluster distribution n(s) develops for

T ( 0.15, and we can identify a stable cluster phase, according to

our definition discussed above. In this region, clusters can be

monitored in time and we observe that they continuously

exchange particles with each other, breaking and reforming

bonds, while on average existing at all times in different reali-

zations. For T ( 0.1, clusters become more and more long-lived,

since the time necessary to break a bond becomes comparable to

the simulation time. Similarly, the encounter between two

different clusters is quite rare, due to the presence of the long-
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range repulsion. Essentially, clusters become frozen. Finally, for

f T 0.14 we observe percolating states. Hence, at low T or

equivalently for high attraction strengths, the system displays

a transition from monomers to a stable finite-cluster phase and

eventually to a particle network. These findings are in very good

agreement with recent confocal microscopy experiments carried

out for a charged colloidal suspension with depletion interactions

under low screening conditions,37 consistent with the case dis-

cussed in the present work.

In the inset of Fig. 1, we report the dependence of the potential

energy per particle ep, on f for T ¼ 0.1. Data are collected at the

end of the long simulation runs (due to the presence of the slow

logarithmic aging). We notice that the energy has a minimum at

0.02 < f < 0.04 and then becomes positive for f > 0.125, i.e. in

the region where percolation is observed. This points to the fact

that particle clustering is dominated by the attractive interactions

only at very low f values, while the interplay with repulsion

becomes important for f T 0.04. The increase in the energy

arises from the large number of neighbours within the repulsive

range of the interaction, which overcomes the gain associated to

bonding.

To visualize the cluster formation and to highlight the fact that

the system at low f values neither percolates, nor forms ordered

structures, we report in Fig. 2 some snaphots of the system for

different f values along the isotherm T ¼ 0.10. Different clusters

are drawn in different colors, according to particle number.

Although exchange of particles between clusters as well as cluster

branching and breaking processes are sometimes observed,

a similar picture of clusters to that reported in Fig. 2 exists at all

times. The emergence of a percolating cluster arises, for the

reported temperature, at f ¼ 0.14, and rapidly involves

the majority of particles as f grows further. We notice that in the

cluster phase region, clusters are polydisperse, both in size and in

shape. While at low f values they are always rather spherical, they

tend to become more and more elongated with increasing packing

fraction. This phenomenon was observed in previous simulation21

and experimental20 studies for a system with a much shorter

screening length. A study of the ground state properties of iso-

lated clusters19 has shown that, while in the short screening length

case quasi one-dimensional cluster growth is energetically fav-

oured, giving rise to the peculiar Bernal spirals,20,21 for the present

study the expected ground state cluster structure is much more

spherical, although with some degree of anisotropy. Comparing

the ground state structure of clusters of a certain size, shown in

Fig. 5 of ref. 19 for the two cases, it is evident that the average

number of nearest neighbours is dramatically different: in the

Bernal spiral, particles have always exactly 6 neighbours (since

there is no difference between bulk and surface), in our case

particles in the interior of the cluster have a coordination close to

12 neighbours, while those on the surface a much smaller one

(close to 6). Hence, the resulting average coordination is close to 8.

To gain a better understanding of the cluster shape and local

structure for the present case, we report in Fig. 3 the (average)

distribution of nearest neighbours P(n) for all studied f values

for T ¼ 0.1, and the average number of neighbours <n> in the

associated inset, which is compared to the ground state predic-

tions. While, as expected, the number of nearest neighbours at

first increases with f, above percolation it roughly stops

evolving, so that <n> does not grow much above 6. Indeed, the
This journal is ª The Royal Society of Chemistry 2009



Fig. 2 Snaphots of the simulated system for several different f values at T ¼ 0.10. Different clusters are drawn in different colors according to particle

number in the cluster. For f # 0.125 (top row), the system forms at all times several distinct clusters which are not connected and do not span the

simulation box; while for f $ 0.14 (bottom row) a percolating cluster exists at all times.

Fig. 3 The distribution of nearest neighbours P(n) for all studied f

values and T ¼ 0.1. Inset: dependence on f of the average number of

neighbours <n> and comparison with isolated clusters ground state

predictions from ref. 19.

Fig. 4 (a) Radius of gyration of finite-size clusters for all studied f

values at T ¼ 0.1. Also shown are the ground state calculations (B) for

isolated clusters taken from ref. 19. ---- indicates power-law behavior s1/d
f,

namely spherical (df ¼ 3) for small sizes and quasi-linear (df ¼ 1.3) for

large sizes.
distribution tends to saturate and to remain always peaked

around 6 neighbours, despite a gradual increase in the number of

particles with large number of neighbours. Monitoring the

evolution of <n> with T (not shown), we do not observe the

presence of non-monotonic effects, which were found in the low-

screening length case,21 suggesting that the long-range repulsion

never facilitates the formation of compact structures. Comparing

with the isolated cluster study of ref. 19, we can argue that the

interactions between clusters act against the compaction of the

clusters and favor the formation of elongated structures. Indeed,

if we imagine cluster–cluster interactions to be ruled by the long-

range repulsion (as we will prove below), clusters will occupy the

space much more efficiently and, at the same time, reduce the

total potential energy due to increased average cluster–cluster

distance by growing in an elongated rather than a spherical

manner.
This journal is ª The Royal Society of Chemistry 2009
Next, we examine the behaviour of the radius of gyration of

clusters of size s, defined as RgðsÞh
1

s
1=2

*"Xs

i¼1

ðri � RCMÞ2
#1=2

+
,

where ri is the coordinates of particle i, RCM is the cluster center

of mass and the average is performed over all particles of size s.

We report Rg(s) in Fig. 4 for all studied f at T ¼ 0.1. Percolating

clusters are not included in the analysis.

We notice that, in agreement with data in ref. 21, the depen-

dence of Rg on cluster size below the percolation threshold does

not show a dependence on f, although larger f values allow

sampling of larger cluster sizes. However, as f grows above

percolation, clusters gradually become slightly more compact,

displaying a smaller Rg at comparable sizes. We can try to
Soft Matter, 2009, 5, 2390–2398 | 2393



identify a growth law for Rg with size. For s ( 10, clusters are

compact objects, as expected. Defining a fractal dimension for

clusters df as the power law exponent of Rg z s1/df, we find that

for s T 10, clusters lose their compactness and a quasi-linear

growth is observed, roughly compatible with an exponent of 1.3.

This is close to what is observed for the Bernal spiral case. The

figure also shows the corresponding data for the ground state

configuration of isolated clusters, taken from ref. 19. In

comparison with the isolated clusters’ ground states, the clusters

observed in the simulations are significantly less compact, sug-

gesting that interactions between clusters and the non-negligible

role of entropy already induce a one-dimensional growth at

smaller sizes. Hence, the system always remains very far from

isolated clusters ground state predictions. This probably results

from a combination of effects: on one hand, the increased bond

and cluster lifetime does not allow an effective restructuring of

the clusters towards their preferred configuration, on the other

hand, entropy and cluster–cluster interactions act against

spherical growth. In summary, we find the system existing in

highly disordered, metastable states, both above and below

percolation. This is very clear looking at the movies for several

studied f at T ¼ 0.1 in the ESI.‡ These results point to the

existence of two distinct metastable disordered states, that we are

tempted to identify as a Wigner glass of clusters below percola-

tion and a gel state above percolation. To verify whether these

two states are kinetically arrested, we examine the dynamics of

the system in the following. However, we can already report that

an ordered low-T state is never reached during the course of our

simulations at any studied f, despite the slow equilibration path

that we have used, probably due to the large screening length

used. Indeed, a recent study23 where a much shorter screening

length was used (although the potential studied there was not

Yukawa-like but exponential) reported the formation of

a columnar phase during the course of the simulation: the

tendency to order was increased in that case by the reduced

repulsive barrier, facilitating formation and breaking of bonds.

Finally, we report the cluster size distribution along the same

isotherm, for all studied f, in Fig. 5. We observe a number of

relevant phenomena: (i) the emergence of a clear peak between

0.02 ( f ( 0.125, delimiting the cluster phase region for this T

as we have defined it and whose boundaries have been repre-

sented in Fig. 1. The peak arises at successively larger sizes as
Fig. 5 Cluster size distribution for all studied f values at T ¼ 0.1; only

non-percolating clusters are included. ---- is the prediction for random

percolation n(s) z s�2.2.
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expected; (ii) the gradual disappearance of monomers (s ¼ 1),

which from being dominant at low f values, in what we have

called the monomeric phase, become absent. Not only monomers

disappear, but also small clusters of increasing sizes gradually

disappear, and the system exists in the form of finite-size clusters;

(iii) for increasing f, numerical noise becomes important, due to

the small number of finite clusters, but, within such noise, the

cluster distribution is consistent with the random percolation

power-law prediction, i.e. n(s) z s�2.2.

We conclude this section by observing that, in the present

study, we do not find any signature of reentrant percolation as it

was found in the short-range repulsion case.21 In the latter case,

at a high enough f, percolation was observed at first for high T,

due to random aggregation of particles, then a restructuring into

the preferred shape was observed, giving rise to a non-perco-

lating regime for intermediate temperatures, and finally to a new

random percolation of the spiral-like clusters at low T. Here, in

the investigated region (up to f ¼ 0.20), we do not observe such

behavior.
4. A more careful look at the clusters: intra-cluster
and inter-cluster properties

We have seen so far that, at a low f, the system remains orga-

nized into several clusters for all studied temperatures. We have

also tried deeper quenches (e.g. T ¼ 0.01), where the system

remains far from equilibrium, and we never observe the coales-

cence of such clusters due to the long-range repulsion. We have

also seen that the clusters are polydisperse, even though a pref-

erential size emerges as a peak in the n(s), and that no long-range

order is present, i.e. we do not observe the presence of any

columnar or lamellar phase. However we notice that, at low T,

a certain degree of order develops inside the clusters.

By looking at the particle–particle radial distribution function

g(r), shown in Fig. 6 for f ¼ 0.08, clear sharp peaks arise with

decreasing T. After a very large maximum at contact (highlighted

in the inset), enhanced correlations are found in correspondence

of specific discrete distances indicating locally preferred geome-

tries (e.g. triangular, tetrahedral, linear order, etc.). However,
Fig. 6 Radial distribution function g(r) for particle–particle correlations

along the isochore f ¼ 0.08 (within the cluster phase region) and several

studied T. Also, results for f¼ 0.16 (within the percolating region) at low

T (----) are reported to show the invariance of the locally preferred

positions and liquid-like disorder at large distances in the two connective

regimes. Inset: magnification highlighting the contact peak.

This journal is ª The Royal Society of Chemistry 2009



liquid-like disorder is retained after the 2nd peak of the g(r). This

behaviour is invariant whether we consider states below or above

percolation, as also shown in the figure. A parallel analysis of the

structure factor (not shown) confirms these observations. This

indicates that, at low T, particles inside the clusters tend to

occupy preferential ordered positions, thus providing quasi-

crystalline character to the inside of the clusters. However, this

order is lost already after the second neighbour shell, both in the

cluster region and in the percolating one.

After the analysis of particle–particle correlations, it is inter-

esting to consider cluster–cluster correlations to get an idea of

what mechanisms regulate the interactions between different

clusters and why they do not percolate at sufficiently low f

values. In a previous work,24 it was hypothesized that cluster

interactions may be of renormalized Yukawa form, maintaining

the same screening length as the underlying particle–particle

interactions and with an increased repulsion strength with

increasing cluster size. This hypothesis was based on the

assumption of spherical and monodisperse clusters, an assump-

tion which is not strictly verified, as we have already discussed,

within the present system. To quantify the inter-cluster interac-

tions, we adopt the following strategy. We consider a low enough

T where the cluster phase extends over a large f region. In each

configuration, for each cluster we calculate its center of mass

coordinate. Then, independently of cluster size and shape, we

calculate the pair distribution function gclust
CM(r) between centers of

mass of different clusters. Results for T¼ 0.1 and various studied

f are reported in Fig. 7. It is clear that the centers of mass of

clusters are found in liquid-like configurations, with increasing

correlations as f increases to roughly f¼ 0.08. Next we compare

the numerical gclust
CM(r) with theoretical predictions obtained by

solving numerically the Ornstein–Zernike (OZ) equation7 with

the hypernetted chain (HNC) closure. We checked that results

are independent of the chosen closure. As suggested in ref. 24, to

model the cluster–cluster interaction, we select a pure Yukawa

potential (no hard-core), with the same screening length (x¼ 2.0)

of the particle–particle repulsive interaction. We leave the

amplitude Aeff of the Yukawa potential as the only fitting
Fig. 7 Radial distribution function between clusters centers of mass for

T ¼ 0.10 and various studied f in the cluster phase region. Symbols are

simulations results, lines are theoretical calculations based on HNC

solution of the OZ equation for a renormalized Yukawa interactions.

Insets: (a) renormalized amplitude Aeff of the Yukawa cluster–cluster

interactions and (b) clusters number density (in units of s�3) dependence

on f. ---- are linear fits.
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parameter. Indeed, the number density of the clusters is read

directly from the simulation data. The best-fit curves are reported

in Fig. 7 and show a remarkable agreement with the data

extracted from the simulations. The behavior of the cluster

number density and of the renormalized amplitude are reported

in the insets. Aeff grows approximately linearly with f, starting

from the particle–particle value at f / 0, while the number of

clusters progressively shrinks.

Hence, we can describe the system as composed essentially of

repulsively-interacting clusters up to f¼ 0.08, with a renormalized

amplitude which results from the average of all amplitudes which

characterize clusters of different sizes and shapes. This result is

central for the present paper, and confirms the conjecture put

forward in ref. 24, which was then combined with the use of MCT

to provide evidence of the existence of a Wigner glass at low f.

The picture of interacting Yukawa clusters breaks for f > 0.08.

The gclust
CM(r) can no longer be fitted with a Yukawa analogue. A

careful look at the configurations shown in Fig. 2 shows that, at

this point, clusters have completely lost their spherical-shape.

The radial distribution function shows for f T 0.1 a reversal of

trend in the main peak position and amplitude, which then

persists at larger f. Moreover, a small peak develops with

increasing f for 1 < r/s < 2, indicating the occurrence of some

cluster branching events. The Yukawa effective interaction

naturally ceases to work in this regime, and a competition

between repulsion and increased packing, favoring sometimes

the formation of intercluster bonds, emerges. This mechanism,

which can be considered essentially absent for f ( 0.08, becomes

important in this intermediate regime 0.08 < f < 0.14, and

finally dominant above percolation. These results highlight the

mechanism by which a crossover between a cluster phase and

a percolating state is realized, based on a change between

repulsion-dominated clusters to a branching regime of clusters

favored by the increased packing.
5. Dynamics: MSD and iso-diffusivity lines

Next, we monitor the dynamics of the system, to find out whether

and how we approach dynamic arrest at low T, both in the cluster

region and in the percolating one. We start by calculating the

particle mean squared displacement (MSD), reporting its

behaviour in Fig. 8 for T ¼ 0.1 and all studied f. We observe

a gradual decrease of the MSD with increasing f. From the time

dependence of the MSD one can identify distinct regions. For

very short times, one observes ballistic motion, followed by

a slowing down at short times, which takes place approximately

in correspondence with the length scale of the attractive bond

distance, defined as rmin/s ¼ (21/100 � 1) x 0.007, i.e. when two

particles are in the minimum of the potential well. This attractive

localization by neighbouring particles is active for roughly

a decade, even at small f, in the cluster phase region. It is quite

remarkable to find particles rattling inside the narrow bonds for

such a long time. For intermediate times, particles are able to

escape (on average) from the bond, as signalled by the fact that

they overcome the distance corresponding to the maximum bond

distance rmax/s ¼ (rb � 1) x 0.072. Hence, particles explore their

neighbourhoods, and a second slowing down emerges. This

occurs on length scales that can exceed a particle diameter,

depending on f. These results suggest that the motion of a single
Soft Matter, 2009, 5, 2390–2398 | 2395



Fig. 8 MSD <r2> vs. time for T ¼ 0.1 and various f. From top to

bottom, f ¼ 0.005, 0.02, 0.04, 0.08, 0.10, 0.125, 0.14, 0.16, 0.20. ----

indicates diffusive behaviour. Horizontal lines refer to the squared

minimum rmin
2 and maximum bond distance rmax

2 (see text).
particle results from the sum of the Brownian motion of the

whole cluster and of the intra-cluster motion. We notice that only

the smallest values of f are able to recover a pure diffusive regime

at this temperature. For larger f values a sub-diffusive growth of

the MSD is found in the time window which can be numerically

studied. The apparent exponent regulating the subdiffusivity is

found to decrease with f, as expected for an MSD approaching

a flat plateau. The onset of subdiffusive behaviour signals that

arrest is close-by, and located at slightly lower T, both for the

cluster phase region and for the percolating one. In both cases,

particles are trapped at first by the attractive bonds with neigh-

bouring particles and secondly by a larger localization length. In

the case of a cluster phase, such length provides the distance

where clusters can rattle (see movies provided as ESI).‡ For the

percolating states, the localization length does not decrease much

and the arrested state can be identified as a gel.4 Interestingly, the

transition between the two arrested states is continuous from the

MSD point of view.

To further prove that arrest takes place also in the non-

percolating regime, we show in Fig. 9 the MSD for f¼ 0.125 and

various studied T values. We remark that this is an isochore

along which the system never percolates, at all studied T, but is

the closest, among the studied f values, to the percolation

transition. Similar results are found at lower f. At very low T, the
Fig. 9 MSD <r2> vs. time for f ¼ 0.125 and various T. From top to

bottom, T¼ 0.2, 0.15, 0.125, 0.10, 0.07, 0.05. Horizontal lines refer to the

squared minimum rmin
2 and maximum bond distance rmax

2 (see text).
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MSD approaches a flat behaviour at long times, so that true

arrest occurs. The low-T curves are calculated within a time-

window where the energy slowly drifts, and very slow aging

effects are thus present. These effects can only slow further the

relaxation, so that the reported curves can be considered an

overestimation of the true MSDs. The localization length for the

arrested state at this f can be estimated around�0.8s. The effect

of temperature is also visible in the amplitude of the vibration

within the bond, which decreases with T, as seen in the height of

the inflection around rmin.

We note in passing that, in principle, we can also calculate the

MSD of clusters (not shown), by monitoring their center of mass

trajectory. Due to the fact that clusters undergo breaking and

reforming events during the simulation time, statistics are poor.

However, in all studied cases, the average MSD of clusters center

of mass is always found below that of a single particle. This

provides a hint of the fact that, in the explored time window,

most of the delocalization is provided by rotational motion of the

isolated clusters (see also movies provided in the ESI).‡

From the long-time behaviour of the MSD, we can extract the

self-diffusion coefficient, defined as D ¼ limt/Nhr2i/6t, for those

state points where a diffusive long-time regime can be clearly

identified. We can draw iso-diffusivity lines, i.e. loci in the phase

diagram with constant diffusion coefficient, expressed as a frac-

tion of the bare diffusion coefficient D0. We plot some iso-

diffusivity lines in Fig. 10, together with the phase diagram

reported above. We clearly find that the iso-D lines follow the

shape of the cluster phase boundary at small f values, while at

larger f values they follow the percolation boundary. From

previous studies,38–41 we know that the shape of iso-diffusivity

lines does not change much with approaching distance to the D¼
0 line, which can be identified with the ideal arrest transition.

Hence, if one could extrapolate, the arrest line would be

somehow parallel to the iso-D lines, signaling that arrest is

mainly temperature-driven. Again, we notice the continuous

shape of the iso-diffusivity lines across the percolation transition.

This allows us to identify low-T states as arrested, or

approaching arrest at low T, independently of the presence of

a percolating network, the latter condition being discriminant for

determining the nature of the two arrested states. Hence, we can

conclude that also the non-percolating states undergo dynamical
Fig. 10 Phase diagram, partially redrawn from Fig. 1, with added iso-

diffusivity lines, for two selected values of D/D0.
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arrest at low T in full analogy with the percolating ones. Thanks

to the identification of the dominant cluster–cluster interactions

discussed above, arrest at low f can therefore be interpreted as

a Wigner glass of clusters, and it is clearly distinct from arrest

driven by the formation of a spanning cluster (gel).

Due to the presence of subdiffusion and of aging effects at low

T, we can only probe a limited window in D/D0. The behaviour of

D vs. T (not shown) displays a rapid decrease below T ¼ 0.20,

then followed by a slower (non-Arrhenius) decrease for T (

0.125. Due to the limited available data and the difficulty to

extract D for the low-T states, our analysis can not be detailed.

However, the apparent non-Arrhenius behaviour might indicate

the presence of a finite-T arrest line, at least for the larger

densities, and in particular in the gel regime. This is different

from what was reported for other gel-forming systems, based on

patchy or limited-valence interactions, where Arrhenius behav-

iour has been observed,42–44 compatible with an ideal gel state

occurring only at T / 0.4,45 Indeed, in the patchy particle

models, the relaxation and approach to a gel state are essentially

controlled by the single-bond lifetime41 and bonds were shown to

be independent. For the present case, the interplay between

different types of interactions, and in particular their long-range

nature, might be responsible for the fact that collective bond

rearrangements are needed in order to restructure the system.
6. Conclusions

In this manuscript, we have reported extensive Brownian

dynamics simulations of a model potential suitable to describe

the interactions between charged colloidal particles in apolar

solvent, in the presence of an additional short-range depletion

attraction. The long-range nature of the repulsive screened

Coulomb interactions is taken into account numerically by per-

forming Ewald summation. We have studied a wide region of the

(f, T) plane, covering the evolution of the system from fluid

monomers to a percolating network. In between these two limits,

a region of stable finite-size clusters is found. These clusters are

spherical at low f, acquiring more and more elongated shape

with increasing f, due to the role of cluster–cluster interactions.

We have provided evidence that particles inside clusters can

acquire local order, but no long-range order, both inside clusters

and among different clusters, is present. Most importantly, we have

been able to quantify the cluster–cluster interactions in terms of an

effective Yukawa potential, with the same screening length as for

particle–particle interactions, and a renormalized amplitude, con-

firming a previously hypothesized scenario.24 This happens inde-

pendently of the clusters’ polydispersity in size and shape.

However, when f increases, the situation changes, and cluster–

cluster interactions become more subtle, due to the increasing

number of branching events and to the elongation of the clusters.

At low temperatures, we find evidence of dynamic arrest, by

monitoring the MSD and the particles self-diffusion coefficient.

The arrest mechanism appears to be continuous across all

studied f values and is mostly driven by temperature. However,

the distinct nature of the two different low-T states, namely

finite-size clusters or a spanning network, allows us to unam-

biguously identify the presence of two different non-ergodic

states in these colloidal systems. A Wigner glass of clusters exists

at low/intermediate f values, stabilized by the renormalized
This journal is ª The Royal Society of Chemistry 2009
Yukawa cluster–cluster interactions discussed above, while a gel

state, stabilized by the presence of a percolating, long-lived

network takes place at larger f values. It will be interesting in

future studies to compute the viscoelastic response of these two

different non-ergodic systems, that should manifest extremely

different rheological properties. The accurate knowledge of the

phase diagram, provided in this work, will allow us to choose the

best conditions where such response is measurable and to

compare it to those of other gel or glass-forming systems, as well

as to experimental results.
Acknowledgements

We thank S. Mossa for useful discussions on the isolated cluster

ground state properties. EZ wishes to thank R. Hidalgo-Alvarez

and the Fluid and Biocolloids Group at the University of

Granada for kind hospitality during her stay in Granada, when

part of this work was performed. JCFT thanks Junta de Anda-

lucia for financial support during his stay in Rome. We

acknowledge support from Proyecto de Excelencia de la Junta de

Andalucia P05-FQM-0392, the Marie Curie Network on

Dynamical Arrest of Soft Matter and Colloids MRTNCT-2003-

504712 and NoE SoftComp NMP3-CT-2004-502235.
References

1 W. C. K. Poon, Curr. Opin. Colloid Interface Sci., 1998, 3, 593.
2 V. Trappe and P. Sandk€uhler, Curr. Opin. Colloid Interface Sci., 2004,

8, 494–500.
3 L. Cipelletti and L. Ramos, J. Phys.: Condens. Matter, 2005, 17, 253.
4 E. Zaccarelli, J. Phys.: Condens. Matter, 2007, 19, 323101.
5 A. M. Puertas and M. Fuchs, e-print condmat/0810.0681, 2008.
6 P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino and

D. A. Weitz, Nature, 2008, 453, 499.
7 C. N. Likos, Phys. Rep., 2001, 348, 267–439.
8 D. Pini, J. L. Ge, A. Parola and L. Reatto, Chem. Phys. Lett., 2000,

327, 209.
9 P. Charbonneau and D. R. Reichman, Phys. Rev. E, 2007, 75, 011507.

10 A. J. Archer and N. B. Wilding, Phys. Rev. E, 2007, 76, 031501.
11 M. Tarzia and A. Coniglio, Phys. Rev. Lett., 2006, 96, 075702.
12 C. Ortix, J. Lorenzana, M. Beccaria and C. di Castro, Phys. Rev. B,

2007, 75, 195107.
13 C. Ortix, J. Lorenzana and C. di Castro, Phys. Rev. Lett., 2008, 100,

246402.
14 A. Stradner, H. Sedgwick, F. Cardinaux, W. C. K. Poon,

S. U. Egelhaaf and P. Schurtenberger, Nature, 2004, 432, 492–495.
15 A. Imperio and L. Reatto, J. Phys.: Condens. Matter, 2004, 16, 3769.
16 H. Sedgwick, S. U. Egelhaaf and W. C. K. Poon, J. Phys.: Condens.

Matter, 2004, 16, 4913.
17 P. Baglioni, E. Fratini, B. Lonetti and S.-H. Chen, J. Phys.: Condens.

Matter, 2004, 16, S5003–S5022.
18 F. Cardinaux, A. Stradner, P. Schurtenberger, F. Sciortino and

E. Zaccarelli, Europhys. Lett., 2007, 77, 48804.
19 S. Mossa, F. Sciortino, P. Tartaglia and E. Zaccarelli, Langmuir,

2004, 20, 10756–10763.
20 A. I. Campbell, V. J. Anderson, J. van Duijneveldt and P. Bartlett,

Phys. Rev. Lett., 2005, 94, 208301.
21 F. Sciortino, P. Tartaglia and E. Zaccarelli, J. Phys. Chem. B, 2005,

109, 21942.
22 J. Wu and J. Cao, Physica A, 2006, 371, 249–255.
23 A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia and

A. Coniglio, Phys. Rev. E, 2006, 74, 010403.
24 F. Sciortino, S. Mossa, E. Zaccarelli and P. Tartaglia, Phys. Rev.

Lett., 2004, 93, 055701.
25 H. M. Lindsay and P. M. Chaikin, J. Chem. Phys., 1982, 76, 3774–3781.
26 E. B. Sirota, H. D. Ou-Yang, S. K. Sinha, P. M. Chaikin, J. D. Axe

and Y. Fujii, Phys. Rev. Lett., 1989, 62, 1524–1527.
Soft Matter, 2009, 5, 2390–2398 | 2397



27 E. Zaccarelli, S. Andreev, F. Sciortino and D. R. Reichman, Phys.
Rev. Lett., 2008, 100, 195701.

28 J. Wu, Y. Liu, W.-R. Chen, J. Cao and S. Chen, Phys. Rev. E, 2004,
70, 050401.

29 P. Charbonneau and D. R. Reichman, Phys. Rev. E, 2007, 75, 050401.
30 G. A. Vliegenthart, J. Lodge and H. N. W. Lekkerkerker, Physica A,

1999, 263, 378.
31 M. G. Noro and D. Frenkel, J. Chem. Phys, 2000, 113, 2941–2944.
32 G. Salin and J.-M. Caillol, J. Chem. Phys., 2000, 113, 10459–10463.
33 A. Giacometti, D. Gazzillo, G. Pastore and T. K. Das, Phys. Rev. E,

2005, 71, 031108.
34 R. Yamamoto, K. Kim, Y. Nakayama, K. Miyazaki and

D. R. Reichman, J. Phys. Soc. Jpn, 2008, 77(8), 084804.
35 C. P. Royall, M. E. Leunissen and A. van Blaaderen, J. Phys.:

Condens. Matter, 2003, 15, 3581.
36 J. Largo, M. A. Miller and F. Sciortino, J. Chem. Phys., 2008, 128.
37 Poster presented at the International Soft Matter Conference 2007 by

C. L. Klix, C. P. Royall and H. Tanaka.
2398 | Soft Matter, 2009, 5, 2390–2398
38 E. Zaccarelli, G. Foffi, K. A. Dawson, S. V. Buldrey, F. Sciortino and
P. Tartaglia, Phys. Rev. E, 2002, 66, 041402.

39 G. Foffi, F. Sciortino, P. Tartaglia, E. Zaccarelli, F. Lo Verso,
L. Reatto, K. A. Dawson and C. N. Likos, Phys. Rev. Lett., 2003,
90, 238301.

40 P. Kumar, S. V. Buldyrev, F. Sciortino, E. Zaccarelli and
H. E. Stanley, Phys. Rev. E., 2005, 72, 021501.

41 E. Zaccarelli, I. Saika-Voivod, A. J. Moreno, S. V. Buldyrev,
P. Tartaglia and F. Sciortino, J. Chem. Phys., 2006, 124, 124908.

42 E. Zaccarelli, S. V. Buldyrev, E. La Nave, A. J. Moreno, I. Saika-
Voivod, F. Sciortino and P. Tartaglia, Phys. Rev. Lett., 2005, 94,
218301.

43 E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli and F. Sciortino,
Phys. Rev. Lett., 2006, 97, 168301.

44 E. Del Gado and W. Kob, Phys. Rev. Lett., 2007, 98, 028303.
45 F. Sciortino, S. Buldyrev, C. De Michele, N. Ghofraniha, E. La Nave,

A. Moreno, S. Mossa, P. Tartaglia and E. Zaccarelli, Comp. Phys.
Comm., 2005, 169, 166–171.
This journal is ª The Royal Society of Chemistry 2009


	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...
	Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gelThis paper is part of a Soft Matter issue...




