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We simulate a binary mixture of colloidal patchy particles with two and three patches, respectively,
for several relative concentrations and hence relative average valences. For these limited-valence
systems, it is possible to reach low temperatures, where the lifetime of the patch-patch interactions
becomes longer than the observation time without encountering phase separation in a colloid-poor
�gas� and a colloid rich �liquid� phase. The resulting arrested state is a fully connected long-lived
network where particles with three patches provide the branching points connecting chains of
two-patch particles. We investigate the effect of the valence on the structural and dynamic properties
of the resulting gel and attempt to provide a theoretical description of the formation and of the
resulting gel structure based on a combination of the Wertheim theory for associated liquids and the
Flory–Stockmayer approach for modeling chemical gelation. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3153843�

I. INTRODUCTION

In the last years, we have witnessed the development of
several models for describing the process of colloidal �re-
versible� gel formation and the resulting gel structure and
dynamics.1–5 It has clearly emerged that colloidal gels can
result from several distinct preparation routes5 and an effort
has been performed to identify the connections between the
particle-particle interaction potential and the resulting prop-
erties of the low-density arrested state.6 In the case of colloi-
dal solutions in which particle attraction is driven by deple-
tion, gels result from an arrested phase separation and the
final structure of the gel is characterized by density fluctua-
tions with a specific wavelength, determined by the depth of
the quench in the unstable region.7,8 In the case of particles
interacting via a competing short-range attraction and a
screened longer range repulsion �often of electrostatic ori-
gin�, one observes one dimensional growth of the aggregates
with occasional thermally driven branching which favors the
formation of a spanning three-dimensional network.9–15 In
other colloidal systems, the possibility of independently tun-
ing number and lifetime of the bonds provides a case where
gelation may even coincide with geometrical
percolation.4,16–18

An additional important mechanism of gel formation is
offered by the so-called reduced �or limited� valence, i.e., by
the collective behavior of particles interacting with dominant
directional interactions, limiting the possibility of forming
bonds with neighboring particles.1 The study of the phase
diagram of these particles as a function of the valence has
shown that the region in which phase separation in a colloid-
poor �gas� and a colloid rich �liquid� phase is observed pro-
gressively shrinks on decreasing the valence, vanishing for

valence approaching two.19–21 Hence, for small valences, it is
possible to explore low-density states at low temperatures
�where the bond lifetime is significantly large� without en-
countering phase separation. These low temperature T-low
packing fraction � states have been named equilibrium gels,
since the gel state can be approached continuously from high
temperatures without encountering any phase transition.22

Studies of models with limited valence23,24 are also relevant
in the promising field of patchy and functionalized particles25

as well as in modeling irreversible aggregation in colloidal
particles with limited valence26–30 or in developing connec-
tions between reversible and irreversible gelations.31

Systems with small limited valence are particularly in-
teresting since they are amenable to analytic
modeling.19–21,32 Indeed, for a binary mixture of particles
with valence two and three, when the average valence per
particle is close to two, the static equilibrium properties of
limited-valence colloids have been successfully described by
a combination of the Wertheim �W� theory for associating
liquids33,34 and the Flory–Stockmayer �FS� approach for
chemical gelation.35 Here we extend such analysis to exam-
ine the effect of the valence on the structure of the equilib-
rium gels by investigating at a specific value of packing frac-
tion of �=0.1 a two-component system made of bifunctional
and three-functional particles for several relative concentra-
tions, corresponding to average valence ranging from 2.1 to
the largest possible value for which phase separation is not
encountered on cooling, i.e., �2.8. This study offers us the
possibility to examine the effect of the valence on the static
and dynamic properties of the resulting gel and to investigate
the range of validity of the W and FS theories in modeling
gel formation in this class of colloids. We focus our attention
on how the dynamics of the fully connected low T gel is
affected by the average valence.

The paper is organized as follows. Section II introducesa�Electronic mail: john.russo@roma1.infn.it.
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the model and gives a brief account on the relevant aspects
of W and FS theories. Section III compares the W-FS pre-
dictions with the results from simulations, showing also the
limits of its applicability. Section IV concentrates on the
static and dynamic properties of the low temperature systems
in the absence of bond breaking processes. We conclude our
work in Sec. V, where possible directions for future studies
are presented.

II. MODEL AND COMPUTATIONAL DETAILS

A. The interaction potential

We aim at modeling particles where the dominant attrac-
tive interaction is highly directional or patchy. We limit our-
selves to cases where each patch can be engaged in only one
bond, the so-called single bond per patch condition, in such a
way that the maximum number of possible bonds which can
be formed is encoded in the choice of the particles and it can
be tuned by changing the relative concentrations of particles
with different number of patches. A particle i is modeled as a
rigid body defined by the position of its center of mass and
by a number Mi of vectors indicating the locations of the Mi

patches. Patches are located at distance 0.5 from the parti-
cle’s center of mass. The interaction potential between par-
ticles 1 and 2 is

V�1,2� = VCM + VP, �1�

where VCM is the potential acting between the centers of
mass of the two particles and VP is the interaction between
patches. Different from previous studies based on stepwise
potentials, we study here the case of a continuous potential
by choosing

VCM�12� = � 1

r12
�m

, �2�

VP�12� = − �
i=1

M1

�
j=1

M2

� exp�−
1

2
� r12

ij

�
�n	 , �3�

where m=200 is chosen to approximate the hard-sphere be-
havior; n=10, so that the exponential function resembles a
square well; �=0.12 to fulfill the single bond per patch con-
dition and �=1.001 to impose that the absolute minimum is
at unitary depth. Moreover, r12 is the distance between par-
ticles 1 and 2 center of mass, r12

ij is the distance between
patches i and j on different particles, and M1 and M2 are the
number of patches of particles 1 and 2, respectively. Bond
forces thus act on patches allowing momenta which can in-
duce rotations of the monomers.

The parameters entering in the functional form �Eqs. �2�
and �3�� have been chosen in such a way that the resulting
potential has a depth of u0=−1 and it resembles the hard
sphere plus square well potential, allowing greater flexibility
in the study of the dynamics of these systems compared to
stepwise potentials. Figure 1 shows the specific shape of the
interaction potential for two particles approaching each other
in the best bonding geometry, i.e., when the two patch sites
face each other. The short range attractive potential, Eq. �3�,
guarantees that each patch is engaged at most in one bond.

B. Numerical details

We study a binary mixture composed of N2 particles
with two patches �bifunctional� and N3 particles with three
�three functional� with N=N2+N3=1000 for several values
of x2
N2 /N. For bifunctional particles, the two sites
�patches� have been located on the poles, while for the three-
functional particles, the three sites have been equally spaced
on the equator. In some cases, simulations have been per-
formed for N=8000 to estimate size effects. Five different
values of the average valence �M�
�2N2+3N3� /N=3−x2

have been studied, varying in the range of 2.1–2.8, where the
upper limit is fixed by the constraint of avoiding phase sepa-
ration at low temperature at the chosen �. We have per-
formed Brownian dynamics simulations with the algorithm
described in the Appendix. In the following, the energy unit
is chosen to be the depth � of the potential, distances are in
units of the colloids diameter ���, time is in units of �m /�,
where m is the mass of the colloid. Temperature is also mea-
sured in unit of energy �Boltzmann constant kB=1�. The in-
tegration time step used is 10−3 units of time. In these units,
the chosen translational diffusion coefficient is DT=0.01 and
the corresponding rotational diffusion coefficient is DR

=0.03 �so that DR /DT=3, as expected for nonslip particles�.
For a colloidal particle with diameter of 1 �m in water at
ambient T �kinematic viscosity �=1 mm2 /s�, the unit of
time would correspond to 22.8 ms and the particle would

thus diffuse a distance equal to its diameter in a time of 16.6̄,
corresponding to a physical time of 0.38 s. We thus define
the time scale as t̃= t /16.6, with t̃=1 being the time a free
particle needs to diffuse a distance equals to its diameter.

We have equilibrated configurations at four different
temperatures �T=0.09,0.07,0.06,0.055�, monitoring the ap-
proach of the potential energy to its long time value. Equi-
librium runs have been performed for more than 5 108 inte-
gration time steps �corresponding to several months of
computer time� to produce the necessary trajectories. Note
that the probability of breaking a bond is �e1/kBT. At T
=0.055 this term is already of the order of 108, explaining
the need for very long simulations to be able to explore
several breaking and reforming events. The equilibrium con-
figurations at T=0.055 have been cooled down to T=0.04
and we have waited until all small isolated clusters have
attached to the spanning one. This is equivalent to perform-

FIG. 1. Graphic representation of the potential. Solid �black� line represents
the potential of Eq. �1� when colloids 1 and 2 approach, as shown in the
inset. The chosen potential is the continuous version of the hard sphere
+square well potential depicted with a dotted �red� line.
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ing a quench from randomly distributed monomers since it
has been recently shown that for low-valence patchy systems
the aging process proceeds through equilibrium states.36

Hence, at this low T all particles belong to the same cluster
and never detach from it. The only possible dynamics con-
cern modes which do not alter the system connectivity.

C. Wertheim theory

The W theory33,37,38 provides a route to evaluate the
probability pb that a patch is engaged in a bond. It requires
only information on the interaction bonding potential and the
reference isotropic interaction. More specifically,

pb

�1 − pb�2 = �M��� , �4�

where �M� is the average number of patches per colloid, � is
the system number density, and � is defined by

� = 4	� gCM�r12��f�12��
1
2
r12

2 dr12. �5�

Here, gCM�r12� is the pair correlation function of a reference
fluid whose potential is VCM, Eq. �2�, and �f�12��
1
2

repre-
sents an angle average over all orientation of particles 1 and
2 at a fixed relative distance r12 of the Mayer function,
f�12�=exp�−VP�r12

ij � /kBT�−1. Equation �4� is equivalent to
the mass-action law formulation of the chemical equilibrium
between bonded and not-bonded independent sites.39 The
calculation of the averaged Mayer function is performed nu-
merically via a Monte Carlo integration algorithm. An ex-
pression of the pair correlation function gCM�r12� is then
needed in the range where bonding occurs. This function is
obtained by numerical simulation of the VCM model. Before
integration, the numerical gCM�r12� is smoothed with a spline
under tension interpolation.40

D. Connectivity properties—Flory–Stockmayer

Reference 20 called attention on the fact that the W and
the FS theories are based on the same set of approximations
and hence the thermodynamic approach of W theory could
be used to provide a parameter-free evaluation of the bond
probability to be used in the evaluation of the T and � de-
pendence of the cluster size distributions. Within the FS ap-
proach, the percolation transition is reached when pb

c =1 / �1
+ p3�, where p3
3N3 / �2N2+3N3�=3x3 / �2+x3� and p2=1
− p3 are the probabilities that a randomly chosen site belongs
to a three-functional or to a bifunctional particle. pb can also
be written as a function of the average valence as pb

c

= �M� /4�M�−6. Hence, the T at which the system percolates
depends on �M� or equivalently on the fraction of bifunc-
tional particles. For the chosen value of �, the predicted
percolation transition temperature as a function of x2 is re-
ported in the inset of Fig. 2. It is interesting to observe that
by tuning the average valence, the percolation transition can
be moved to arbitrarily small temperatures, i.e., to tempera-
tures where the bond lifetime is significantly longer than the
experimental time. Under these conditions, the system will
behave as a chemical gel, where percolation coincides with

the onset of nonergodic collective behavior. For all models
with finite range of interactions,41,42 at the critical density,
percolation via bonds always takes place at a temperature
higher than the critical point temperature. Hence, in equilib-
rium, the percolation line is always located in the fluid region
and crosses the binodal on the left side of the coexistence
curve.

The FS theory also provides expressions for the cluster
size distributions.35 The number of clusters containing l bi-
functional particles and n three-functional ones is35

Nnl = N3
�1 − pb�2

p3pb
�p3pb�1 − pb��n�p2pb�lwnl,

�6�

wnl = 3
�l + 3n − n�!

l ! n ! �n + 2�!
,

where wnl is a combinatorial contribution.35 Distributions are
normalized in such a way that �ln,l+n�0�l+n�Nnl=N2+N3 for
pb� pperc. FS also provides expressions for the total number
of finite size clusters #c=�ln,l+n�0Nnl and for the total num-
ber of bonds in finite size clusters

#bond
finite = �

ln,l+n�0
�l + n − 1�Nnl. �7�

These expressions can be extended to pb� pb
c in the

Flory postgel assumption. This assumption, which indicates
the possibility of reactions inside the infinite clusters, i.e., the
formation of loops of bonds in the infinite cluster �but only
there�, has been shown to properly describe the case of ther-
moreversible gelation when �M�=2.05,20 and it is worth to
explore the range of its validity as a function of the average
valence. Note that for pb� pb

c, �ln,l+n�0�l+n�Nnl /N=1− P,
where P is the fraction of particles in the infinite spanning
cluster.

Before concluding this section, we recall that both W
and FS theories are based on the assumption of independent
bonds and on the assumption of absence of closed bond
loops in finite size clusters. Under these conditions, the num-
ber of clusters #c is given by #c=N−#b, since the formation
of a bond links together two distinct clusters. Bond loops are
found only in the infinite cluster. We also note that the num-
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FIG. 2. Temperature dependence of the bond probability for two different
average valences at �=0.1. Lines are fitting-free theoretical predictions
while symbols are results of numerical simulations. The inset shows the
percolation temperature Tperc as a function of the fraction of bifunctional
monomers x2 predicted by the FS theory.
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ber of loops in a cluster can be calculated as the difference
between the number of bonds and the number of particles in
the cluster �minus one�.

III. NUMERICAL RESULTS FOR THE BOND
PROBABILITY AND FOR THE CONNECTIVITY

The very sharp shape of the bonding potential makes it
possible to unambiguously define the bond between two par-
ticles introducing a site-site distance criterion. We define as
bonded any pair of particles whose site-site distance is less
than 0.15�. The bond probability is then calculated as the
average number of bonds #b found in the system divided by
the maximum number of bonds possible in the system #b

max,
i.e.,

pb =
#bond

#bond
max . �8�

The single-bond per site condition allows us to write #b
max

=2N2+3N3 /2. Figure 2 shows the T dependence of pb for
two systems with different values of the average valence at
�=0.1. It also shows the corresponding parameter-free pre-
dictions for pb based on the W theory, as discussed in Sec.
II C. The comparison between theory and simulation
confirms20,43 that the W theory provides a rather accurate
modeling of the thermodynamic of the system in the ex-
plored range of average valences.

The analysis of the configurations allows us to evaluate
the presence of loops of bonds and to test the main assump-
tions of W and FS theories. Figure 3 shows in �a� the fraction
of clusters with at least one bond loop inside the cluster and
in �b� the average number of loops in loop-containing clus-
ters. A clear trend toward increasing the loops with increas-
ing the average valence is detected. For x2=0.9, clusters
smaller than 50 particles are not involved in loops. Even
more, the number of loops is always negligible. Even very
large clusters do not incorporate more than two or three bond
loops. The situation is different for the case x2=0.2, for
which clusters of size 10 already show bond loops.

According to the FS theory bond loops are only con-
tained in the infinite spanning cluster and it is possible to
calculate the predicted average number of loops #loop per
particle in the spanning cluster as a function of pb. Indicating
with #bond

 �#bond
finite� the number of bonds in the infinite �finite�

clusters and with NP the number of particles in the infinite
cluster, then

#loop

NP



#bond

 − �NP − 1�
NP

, �9�

where #bond
 
#bond−#bond

finite. Both contributions can be calcu-
lated as discussed previously �Eqs. �7� and �8��, according to
the FS theory. The #loop per particle in the infinite cluster is a
function of pb, approaching the asymptotic limit #loop /NP

=x3 /2 when pb→1 and P→1, i.e., when all particles be-
long to the infinite cluster. Figure 3�c� compares the FS pre-
dictions with the numerical results. Deviations in this aver-
age value are only seen for the case of x2=0.2 and close to
percolation. For p� pb

c the mean field FS predictions are
quite accurate for all average valences.

Figure 4 shows a comparison between the cluster-size
distribution N�s�, summing over all realization of Nlm �Eq.
�6�� for which l+m=s, calculated in the theory and in simu-
lation for two different average valence values and for state
points close to percolation. The parameter-free theoretical
predictions agree rather well with the numerical results for
the case of x2=0.9 but show detectable deviations for the
case of x2=0.2 in the same range of values of cluster sizes
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FIG. 3. Study of the presence of loops in clusters for x2=0.2 �circles� and
x2=0.9 �squares� for, respectively, T=0.09 and T=0.07. These state points
are close to the percolation transition to be able to sample a large variety of
cluster sizes. �a� Fraction of clusters with at least one loop. �b� Average
number of loops in loop-containing clusters. �c� Average number of loops
per particles in spanning cluster. Solid lines are the FS theory predictions
�for pb� pc�. For x2=0.2 the theoretical predictions agree very well with the
data except for the lowest pb where the FS prediction is not as accurate.
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for which intracluster bonds are present. In the percolation
universality class,44 the cluster size distribution must decay
with the law N�s��s−�, where the critical exponent ��2.2,
different from the value of �=2.5 which results from the FS
mean field predictions. The absence of significant amounts of
bond loops and the substantial agreement of the cluster size
distribution in the x=0.9 case confirms that the small valence
plays a significant role in the stabilization of the mean-field
universality class with respect to the percolation universality
class,45 locating the crossover between the two classes46 very
close to the percolation point. Hence in a very large range of
pb values, the FS predictions provide an accurate description
of the connectivity properties of the system.

Particles with valence three act as junction points of
chains of bifunctional particles. Within the FS theory it is
possible to derive an expression for the distribution of the
length of chains formed by only bifunctional particles. This
is equivalent to exclude all bonds between particles with
functionality three in the analysis of the connectivity or
equivalently to remove all three-functional particles and ana-
lyze the resulting distributions of chains. The number of
chains of length l, normalized in such a way that �l=1

 lNl

=N2, is

Nl = N2�1 − p2pb�2�p2pb�l−1. �10�

The Nl distribution is thus always exponential. Again, a com-
bined use of W and FS theories provides a very accurate
description of Nl, as shown in the inset of Fig. 4.

When clusters percolate, the three-functional particles
provide the branching point of the network. At small T,
pb→1 and all possible bonds are formed. The chain length
distribution provides the information on the distribution of
distances between the branching points, i.e., a precise char-
acterization of the structure of the resulting fully connected
network. The distribution Nl becomes controlled only by the
relative fraction of two-functional particles. Indeed, in the
low T limit, Eq. �10� becomes

Nl�T → 0� = N2�1 − p2�2p2
l−1. �11�

Such expression can be interpreted as a growth process
where, starting from a bifunctional particle connected to a
three function particle �probability of 1− p2�, a chain of
l−1 two-functional particles is added. This is possible select-
ing randomly sites of type 2 for each addition in the chain.
The last particles are again connected to a type 3 particle

�probability of 1− p2�. The average distance l̄ between
branching points in the network—an indication of the mesh

of the network—is l̄=�llNl /�lNl=1 / �1− p2�.
Figure 5 compares the theoretical predictions for l̄ with

the numerical results at the lowest studied T, i.e., T=0.04, for
which essentially all bonds are indeed formed, confirming
that in the explored region of valences, the structure of the
resulting low T networks results from a random mixing of
the particle types in agreement with the FS assumptions.

IV. THE LOW T NETWORK: PERMANENT BONDS

At T=0.04 the bond lifetime is much longer than the
accessible observation time and pb is very close to one �pb

=0.997� so that the network is almost fully connected with
particles never detaching from it. These conditions are the
same as ideal chemical gels characterized by irreversible
bond formation. Here we discuss both structural and dynami-
cal properties of the low T network, emphasizing the role of
the average valence.

A. Structural properties

To quantify the differences in the structure between net-
works with different average valence, we calculate the radial
distribution function g�r� independently from the particle
type. The function g�r� provides information on the relative
location of the particles in the system. Figure 6�a� shows this
function for the two limiting cases, x2=0.2 and x2=0.9. The
g�r� is significantly peaked around r=�, an evidence of the
preferential bonding distance. The peak value is significantly
larger than the one observed in simple liquids, an effect due
to the short range of the attractive potential, which produces
a significant localization at low T. In the case of abundance
of two-patch particles the sequence of following peaks is
centered at distances multiple of the particle size, showing
that particle chaining is dominant. In the case of x2=0.2, the
main peak is instead located at around 1.8�, a position dic-
tated by the triangular structure of the majority species,
which imposes a 120° angle between the connected particles.

Figure 7 shows a slab of the system in the �almost� fully
connected low T state for x2=0.2 and x2=0.9. Despite the
fact that the � is the same for both cases, the two pictures
appear rather different. The necessity to satisfy all possible
bonds induced by the small temperature imposes in the x2

=0.2 case a condensation of the three-functional particles,
which can only be achieved by locally increasing the density
and with the concomitant appearance of empty region, the
precursors of the gas-liquid transition. In the x2=0.9 case, the
density of bonds is lower due to the large number of bifunc-
tional particles and the system does not encounter any diffi-
culty in satisfying all bonds in a homogeneous configuration.
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FIG. 5. Average length of the chains of bifunctional particles l̄ connecting
the three functional branching particles in the low T fully bonded network as
a function of the fraction of bifunctional one x2. Lines are fitting-free theo-
retical predictions while symbols are results of numerical simulations at T
=0.04.
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The effect of the valence on the spatial homogeneity of
the sample is well captured by the behavior of the structure
factor S�q� �the Fourier transform of g�r��. S�q� can be cal-
culated as

S�q� 
 � 1

N
�
i,j

e−iq� ·�r�i−r�j�� , �12�

where q� is the exchanged wave vector, r�i is the coordinate of
particle i, the sum runs over all N particles in the system
independently of their valence, and the average � . . . � is over
equilibrium configurations. The structure of the low T net-
work is shown in Fig. 6�b� for all investigated values of the
average valence. The softness of the network manifests itself
in the non-negligible value of S�q� for small q since the q
→0 limit of S�q� provides a measure of the compressibility
of the system. Figure 6�b� also shows that when x2 is small,
an additional increase in S�0� is observed. Such large in-
crease in S�q� at small q indicates a vanishing of the com-
pressibility and the nearby presence of a thermodynamic in-
stability connected to the gas-liquid phase separation.
Indeed, as discussed in Ref. 19, the width of the unstable
region in the �-T plane is controlled by the average valence,
and it shrinks to zero as the average valence approaches two.
Hence, at fixed �, the distance from the instability increases
on decreasing the valence. For each value of �, there is a
critical value of the valence for which phase separation is not
encountered on cooling. For �M� values smaller than the

critical, the system always remains in homogeneous condi-
tions on cooling. The low q behavior of S�q� suggests that
x2=0.2 is indeed close to such critical value when �=0.1 in
agreement with the direct visual inspection of the configura-
tions previously discussed. Stable equilibrium networks can
only be realized with smaller values of the average valence.

The shape of S�q� close to q��2	 also shows a signifi-
cant dependence on the average valence. The peak becomes
more and more asymmetric on increasing x2, an effect of the
progressive chaining in the system.

The inset of Fig. 6�b� shows the temperature dependence
of the structure factor for the system x2=0.9. As the tempera-
ture is lowered the structure factor approaches an asymptotic
low T value. This asymptotic value is reached well within the
temperature region where equilibrium simulations can be
performed �consistently with what has been previously ob-
served in other models for reversible gels2�. In this way,
cooling one of these equilibrium low T configurations into a
nonergodic system has the only effect of increasing �expo-
nentially in 1 /T� the lifetime of bonds.
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FIG. 6. �a� Radial distribution function g�r� at T=0.04 for x2=0.2 �dashed
line� and for x2=0.9 �solid line�. The position of peaks reflects the different
structure imposed by the patch geometry. �b� Particle-particle structure fac-
tor S�q� for valences x2=0.2,0.5,0.66,0.75,0.9. The increase at small q for
large valences signals the approach to the liquid-gas instability. The inset
shows the T dependence of the structure factor for the system x2=0.9 for
temperatures T=0.04,0.06,0.070,0.09.

FIG. 7. Representative configurations of the gel structure at T=0.04 for two
slabs of side 17� and width 6� for �a� x2=0.2 and �b� x2=0.9. Bifunctional
particles are coded in light grey �green�, three-functional particles are coded
in dark grey �red�, and patches are coded in light grey �yellow�. Dandling
ends, which can be seen, are due to the fact that just a slab of the entire
system is depicted.
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B. Dynamic properties

In this section we investigate the dynamics at the lowest
studied T=0.04. In this set of simulations, bonds never break
or form during the investigated time window. Moreover, all
particles are connected in the same unique cluster. In this
way, the observed dynamics can be attributed to the intrinsic
breathing modes of the network without any masking effect
due to the dynamics of small isolated clusters �or monomers�
diffusing in the system �as it would be the case at slightly
higher T�.

1. Mean square displacement

The continuous line in Fig. 8 shows the mean square
displacement of the three-functional particles as a function of
the average valence. At large times, the mean square dis-
placement shows a crossover toward a plateau value, which
indicates the �squared� localization length lo

2 of the particles
in the arrested structure. lo

2 depends sensibly from x2, varying
more than a factor of 20 in the explored range. While in the
case of a majority of three-coordinate particles the distance
over which a particle can delocalize is of the order of �0.5�,
it becomes �2� in the case of x2=0.9. These figures are
significantly larger than the localization length observed in
glasses, where a value of the order of 0.1� is typical. The
reason for such large values is due to the fact that particles
are indeed confined by bonds, and hence with relative posi-
tions fixed by the connectivity of the network, still particles
participate in large-amplitude breathing floppy modes in-
volving large section of the network.1,2 Since the energy cost
of these modes is rather small, the amplitude of the modes is
rather large, determining a localization length significantly
larger than the typical size of the bond. Using a terminology
borrowed by the glass, the cage confining the particles is not
generated by the nearest neighbors but by the connectivity of
the system. The important part of the dynamics of the net-
work is thus encoded in the crossover region, i.e., in the way
particles explore the amount of space accessible in the
bonded configuration. Signatures of localization and noner-
godicity are thus expected only for wave vectors smaller than
2	 / lo, i.e., in a region of wave vectors significantly smaller
than one where nonergodicity is observed in glasses.

An important characteristic of the low-T network is the
relation between the motion of three-functional particles and
bifunctional ones. Bifunctional particles compose the chains
in the fully connected network while three-functional par-
ticles act as branching points or, borrowing terminology from
polymer gels, as crosslinks between the chains. Surprisingly,
as shown in Fig. 8, for all investigated average valences, the
mean square displacement of branching points is 2/3 times
the one for bifunctional particles, suggesting that the fluctua-
tions of bi- and three-functional particles are strongly corre-
lated and hence related to the fluctuations of the network as
a whole. It is interesting to observe that the 2/3 factor is
predicted by the phantom model of polymer gels.47,48 Such
model, applied to a network composed of chains with N
monomers and crosslink points of valence f , predicts that
crosslinks will have Gaussian fluctuations of variance
N / f�f −2� while chain segments will fluctuate on average
with variance fN /6�f −2�. The ratio between spatial fluctua-
tions of f-functional units and bifunctional ones is then 6 / f2,
which provides the factor 2/3 for the case of f =3. It thus
appears that despite the phantom model is valid for ideal
nonoverlapping Gaussian chains, it provides a fair under-
standing of the relation between the fluctuations of crosslinks
and chains which compose the network in the presently in-
vestigated patchy model.

C. Van Hove self-correlation function

The Van Hove self-correlation function is defined as

Gs�r,t� =
1

N��
i=1

N

��r + ri�0� − ri�t��� �13�

and represents the probability distribution of finding a test
particle at distance r from the origin at time t, given that the
same particle was at the origin at time t=0. Figure 9 shows
the probability 4	r2Gs�r , t� at various times for the system
x2=0.2. For t̃�102 we observe a progressive extension of
the tails of Gs�r , t� as particles explore more and more space
as time increases. For t̃�102 the Van Hove function remains
almost time invariant since particles are trapped in the gel
network and are not allowed to diffuse. This is in fact the
same time when the mean square displacement reaches its
constant value �Fig. 8�. The inset of Fig. 9 shows the long
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time �and time invariant� Van Hove function for systems
with different compositions. Lowering the N3 concentration
results in a broader distribution shifted at higher r. This pro-
vides the same information as the plateau height in Fig. 8
since the localization length is just the variance of the Van
Hove function: l0

2=limt→�r2�=�Gs�r , t=�r2dr.
The shape of Gs�r , t� in its time-invariant state gives use-

ful information about the confining potential that particles
feel in the network. If particles were constrained to move in
a three-dimensional harmonic potential then the Gs�r , t�
would be a Gaussian distribution. In fact one would expect
that at low T the motion of particles in the cage has a sig-
nificant harmonic character. To quantify the degree of Gaus-
sianity of the Van Hove function it is possible to study the
following parameters:49

�n�t� =
3n

�2n + 1� ! !

�r2n�t��
�r2�t��n − 1. �14�

In particular �2�t� is called the non-Gaussianity parameter
since values different from zero signal a non-Gaussian shape
of Gs�r , t�. A plot of �2�t� for systems with different compo-
sition is shown in Fig. 10. It shows that after the short-time
region, where �2=0, the non-Gaussianity of the van Hove
function builds up in the “cage” regime and is more pro-
nounced for systems with higher N3. Three-functional par-
ticles are thus responsible for enhancing the non-Gaussian
behavior of the network oscillations.

To investigate the origin of the non-Gaussianity, in the
fully connected gel, we study the non-Gaussian behavior of
each single particle. Indeed the strong structural inhomoge-
neity which characterizes the network may well give rise to a
significant value of �2 despite the Gaussian behavior of each
individual particle. To see this we write the expression of �2

by explicitly indicating the contribution of individual particle
i,

�2 =
3

5
N

�i�ri
4�

��i�ri
2��2 − 1. �15�

The inset of Fig. 10 shows that the motion of the indi-
vidual particles is rather well approximated by a diffusional
process in an essentially harmonic well, since the value of
�2

i , the non-Gaussianity parameter for each particle i, is
close to zero for almost all particles �just a few particles
displaying significant deviations�. Thus, in the approximation
that each particle obeys Gaussian statistics we can write
�ri

4�=5 /3�ri
2�2 and Eq. �15� becomes

�2 = N
�i�ri

2�2

��i�ri
2��2 − 1. �16�

For homogeneous systems, �i.e., when all particles experi-
ence the same confining harmonic potential� �ri

2�= �r2� and
the last equation would yield �2=0. Hence, the nonergodic-
ity observed in the dynamics of the fully connected gels is a
signature of the heterogeneities of the dynamics induced by
heterogeneities in the structural properties.

1. Self and collective scattering function

We study the behavior of the self-density fluctuations
Fs�q , t� in the network state for majority particles �three
functional for x2=0.2 and bifunctional for x2=0.9� for differ-
ent wave vectors q� ,

Fs�q,t� 
 � 1

N
�

i

e−iq� ·�r�i�t�−r�i�0��� . �17�

Figure 11�a� shows Fs�q , t� at different wave vectors.
The correlation decays to a plateau, whose height fq is wave
vector dependent, signaling the nonergodic state of the sys-
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tem, which retains even at very long times the memory of the
initial state. Different from glasses, where all q vectors are
nonergodic, for this system fq goes to zero with continuity at
high q vectors. In fact, the nonergodicity shows up in gels
only above a certain length scale.

The decay of Fs�q , t� after the initial ballistic regime for
t̃�0.017 �see Appendix� can be conveniently parametrized
with a stretched exponential decay �continuous lines in Fig.
11�a��, i.e., with the function f�t�,

f�t� = fq + Ae−�t/���
, �18�

where fq is the nonergodicity factor, A is the amplitude, � is
the decay parameter, and � is the stretched exponent.

The stretched exponential relaxation is ubiquitous in the
description of both colloidal and polymer suspensions far
beyond the sol-gel point and it is due to the hierarchy of
intracluster elastic modes that contribute to the decay of den-
sity correlations.50–54

Figure 12 shows the results of the numerical fits for two
average valences for q-vectors up to 10.85� �for higher q
vectors Fs�q , t� decays to zero within the ballistic region and
hence Fs�q , t� provides only information on the microscopic
ballistic single particle dynamics�.

The q dependence of the nonergodicity factor fq for the
two limiting values of x2 is shown in Fig. 12�a�. The width of

this distribution significantly shrinks on increasing x2, pro-
viding the q-space analog of the plateau in the mean squared
displacement �Fig. 8�.

Figure 12�b� depicts the area under the fit curve, i.e.,
�Ae−�t / ���

dt=� /���1 /��, which represents a suitable and of-
ten used definition of a decay time for the stretched expo-
nential relaxation. For small q, the dynamic is slower for
systems with high x2 since they have longer chains of bifunc-

tional units �see Fig. 5� between the branching points, l̄ is
larger and more time is requested to sample the bond cage.
For larger q, the observed length scale becomes comparable
to the particle size and one observes the short-time motion of
the single particle. In this condition, more bonded particles
are less mobile and, as can be seen in Fig. 12�b�, three-
functional monomers become slower than bifunctional ones.
This is a simple bond-caging effect which is more effective
for higher-valence particles. The crossover between the two
regimes happens at length scales comparable with the
average distance between particles. Figure 12�c� displays the
value of the stretching exponent �, which is always found
significantly different from the Debye relaxation value
��=1�, since there are no length scales at which the process
appears diffusional.

The decay of Fs�q , t� can be linked to the Van Hove
self-correlation function by the following expansion:49

Fs�q,t� = e−q2�1�t��1 +
1

2!
�2�t��q2�1�t��2 −

1

3!
��3�t�

− 3�2�t���q2�1�t��3	 + ¯ , �19�

where �1�t�= �r�t�2� /6 and �n are given in Eq. �14�. The or-
der 0 term is equivalent to the Gaussian approximation of the
Van Hove function. Figure 11�b� shows the different terms of
Eq. �19� for some particular low q vectors. Consistent with
the analysis of the data in real space, the Gaussian approxi-
mation results in a poor approximation despite the small
value of q. One has to resort to at least the second order
correction to properly describe the decay of the correlation,
except for very small q values. This non-Gaussian effect re-
sults from the structural inhomogeneities which affect the
single particle dynamics.

To study the actual relaxation of the network we also
considered the coherent �collective� intermediate scattering
function as defined by

Fc�q,t� 

1

NS�q���
ij

e−iq� ·�r�i�t�−r�j�0��� , �20�

Fc�q , t� behaves like the incoherent scattering function
Fs�q , t� with a stretched exponent relaxation to a plateau. The
parameters obtained by fitting the relaxation of Fc�q , t� with
Eq. �18� are shown as symbols in Fig. 12. The results show
substantial quantitative agreement with the values obtained
from the incoherent scattering �lines in Fig. 12�, thus con-
firming our previous analysis.
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2. Krall–Weitz model for cluster dynamics

The Krall–Weitz50 model has been very successful in
characterizing the dynamics of fractal clusters and, for
its general features, it has been extended to a variety of
systems such as high density colloidal gels,51,52 polymer
hydrogels,53,54 and computer simulations models.55

The model takes into account the contribution of internal
elastic modes of many length scales and predicts for a mode
of length ��q−1 the following mean square displacement:

��r�
2�t�� = �2�1 − e−�t/��p

� , �21�

where �2 is the plateau-height measuring the mean square
displacement of the fractal cluster segments, � is the charac-
teristic decay time, and p is the decay exponent. The model
relates the exponent p to the elasticity exponent �e via the
following relation: p=�e / ��e+1�. For fractals the exponent
�e reflects the propensity for loops within the aggregate,
since more loops result in a floppier cluster.

Figure 13 shows the results of the Krall–Weitz model for
two systems, respectively, with the lowest �x2=0.9� and
highest �x2=0.2� numbers of branching monomers. It shows
that the model does capture the correct behavior for the re-
laxation of the scattering function with the same fitting pa-
rameters being valid for all q vectors for each system.

Interestingly the value of the p exponent is the same
�within uncertainty� for both systems �and for all the x2 frac-
tions considered in this paper�. Moreover the value p�0.7 is
the same obtained both for low-density fractal clusters50 and
for high density52 ��=0.2, two times the one considered in
this article� gels made of polystyrene colloidal particles. It
has been suggested52 that the exponent p=0.07�0.05 could

be a common feature of colloidal gels but experiments on
colloidal silica51 found p=0.5 and computer simulations with
the Asakura–Oosawa potential55 reported p=0.4. Both stud-
ies suggested that the low p exponent could be related to a
higher angular rigidity of the local network resulting in a
structure less compliant on longer length scale. But different
from these studies, our model directly incorporates angular
rigidity of bonds through directional interactions without ob-
serving any decrease in the p exponent. Even more strikingly
our p exponent remains unchanged for all x2 systems and so
it is not affected by the different connectivity of the network.
The relation between p and the elasticity exponent �e for
high density systems is therefore unclear since with our
model it is possible to explicitly calculate the number of
loops in the network, Fig. 3. Since the p exponent does not
change between systems displaying low and high numbers of
network loops it cannot be related to the propensity for loops
within the aggregate. Caution must then be taken with the
physical interpretation of the Krall–Weitz model parameters
for high density systems, where most of the scaling relations
upon which the theory is based are not valid.

V. CONCLUSIONS

Patchy particles are an ideal model for the study of re-
versible gelation. By tuning the average valence it is possible
to explore low-density states at low temperatures while
avoiding the phase separation region. In this paper we have
introduced a model for patchy particles based on a suitable
continuous potential and investigated the role of the valence
in the structure and dynamics of the low T gel.

First, we have shown that the connectivity properties are
rather well described by the mean-field W and FS theories. A
very good agreement is found for the T dependence of the
bond probability �Fig. 2� and the distribution of chain lengths
�Fig. 5� for all systems considered, except that in a small
window of pb values close to percolation, where the mean
field universality class is expected to be replaced by the per-
colation universality class. The width of this nonmean field
region increases with the average valence. Indeed, close to
percolation the cluster size distributions are in good agree-
ment with the theoretical results for the case of high x2 while
there are detectable deviations for the systems with a large
fraction of three-functional particles �Fig. 4�. Similarly, we
observed that the number of loops in nonpercolating clusters
�Fig. 3�, which are assumed to be absent in both the W and
FS theories, is negligible for x2=0.9 but detectable in the
x2=0.2 systems. At low T, when pb→1, the mean field pre-
dictions are always correct and it is thus possible to provide
a quantitative analysis of the gel structure in terms of chains
of two-functional particles connecting the branching points.
The different gel structures obtained by varying the average
valence were characterized by calculating the radial distribu-
tion function �Fig. 6�a�� and the static structure factor
�Fig. 6�b��, respectively, showing the conformation of
chains and the approach of �gas-liquid� thermodynamic in-
stabilities when the average valence approaches three �at the
studied ��.

We have also investigated the dynamics in the network
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in the low T case, where all particles belong to one spanning
cluster and thus the dynamics can be attributed to the intrin-
sic modes of the network. The mean square displacement
�Fig. 8� shows the crossover to a plateau whose height is the
value of the localization length �l0� of particles in the ar-
rested structure. The localization length is higher than one
would expect from just the cage effect of neighboring par-
ticles or from the bond distance and grows significantly by
lowering the average valence of the system. This behavior is
due to the fact that while being bonded to neighbors, par-
ticles participate to the floppy modes of the network, whose
amplitudes strongly depend on the average chain length.
Moreover a precise relation between the mean square dis-
placement of three-functional and bifunctional monomers is
found, the ratio being precisely 2/3 for all valences studied.
This is an important property of the whole network fluctua-
tions, whose behavior resembles the one predicted by the
phantom model of polymer gels, an agreement probably fa-
vored by the small packing fraction of the studied system.
Further work is requested in this respect, and we plan to
investigate the validity of the phantom model predictions
upon changing three-functional particles with particles with
higher functionality �keeping the average valence constant�.
We also plan to explore the effect of density on the low-T gel
dynamics.

The Van Hove correlation function after the initial time
scale becomes time invariant, giving us important informa-
tion on the shape of the potential confining the particles in
the network state. We find that the non-Gaussianity of this
confining potential becomes more pronounced as the three-
functional particles are added to the system and the network
becomes more entangled. The origin of the non-Gaussianity
is traced back to the heterogeneities in the local structure.

Complementary information on the way particles ex-
plore the accessible space is also encoded in the time depen-
dence of the self-intermediate scattering function. For wave
vectors smaller than 2	 / l0 we find that the system displays
nonergodic behavior with the scattering function approach-
ing a plateau, just as in real space the mean square displace-
ment reaches l0

2. The wave vector dependence of fq shows a
significant dependence on the valence. Nonergodic behavior
�fq�0� is observable in a range of q which shrinks on de-
creasing the average valence. The approach to the plateau
value �Fig. 11� is well represented by a stretched exponential
relaxation. The decay time of the stretched relaxation shows
a strong dependence on the average valence. At small q,
where Fs�q , t� probes the dynamics of the exploration of
space over distances lo, the low x2 systems relax more slowly
because the network of particles is composed of longer bi-
functional chains and hence larger lo. For large q, where
Fs�q , t� probes motions over distances comparable or smaller
than the particles size, the opposite effect is observed due to
the fact that higher bonded particles are more confined.

We also applied the Krall–Weitz model to our systems
finding strong analogies with experimental studies on gels of
polystyrene colloidal particles.50,52 The value of the elasticity
exponent is found to be constant over the whole range of
examined valences, thus asserting the independence of the
elastic constant exponent p on the network entanglement.

In summary, results reported in this articles show that by
tuning the valence of systems of patchy particles it is pos-
sible to tailor the gel properties, and that these can be effec-
tively predicted using W and FS theories. At the same time,
the low T gel, generated via slowly cooling of a physical gel
model, has a structure which may well be very similar to the
one of chemically cross-linked polymeric gels, where the
number of crosslink plays the same role as the number of
three-functional particles. Besides the recently reported
analogies between physical and chemical gels in their aggre-
gation kinetics,30,31 also significant analogies in the gel dy-
namics of physical and chemical gels are expected. Work in
this direction is underway.

ACKNOWLEDGMENTS

We thank C. De Michele, E. Zaccarelli, E. Bianchi, and
P. G. De Sanctis Lucentini for helpful discussions, F. Ro-
mano for help with data fits, and L. Rovigatti for double
checking the numerical analysis. We acknowledge support
from NoE SoftComp �Grant No. NMP3-CT-2004–502235�.

APPENDIX: BROWNIAN ALGORITHM

The Brownian algorithm used in the simulations is a
modification of the one described in Ref. 56. In the latter
algorithm the particles undergo random collisions with the
thermostat every t0 time steps. This is implemented by ex-
tracting the velocity of each particle from the Maxwell–
Boltzmann distribution at the thermostat temperature. The
free-flight motion of colloids is calculated using a symplectic
reversible integrator.57 While producing the correct diffusive
motion of the system, the algorithm yields an unphysical
decorrelation of all particle’s velocities every t0 time steps.

To avoid this problem we define a probability �p� for
each particle to undergo a random collision each time step.
In this way the time t between two random collisions is a
stochastic variable having the following probability distribu-
tion: p�t�= p�1− p��t−1�. Limiting the discussion to a one-
dimensional case, the position of a particle can then be writ-
ten as X�N�=X1+X2+ , . . . ,+XN, where Xi is the displacement
after the ith random collision. We now write Xi=TiVi, where
Ti is the time interval between the ith and �i+1�th collisions
and Vi is the velocity after the ith collision. Dropping the i
subscript, the probability distribution for the variable X can
be written as pX�x�=��pT�t�pV�v���vt−x�dtdv or pX�x�
=�0

pT�t�pV�x / t� / tdt. The second moment of the distribution
is �2=2�0

x2pX�x�dx. Substituting the previous expressions
and remembering that pV�v� is the Maxwell–Boltzmann dis-

tribution, pV�v�=m /2	kBT exp�−mv2 /2kBT�, we get �2

=kBT�T2� /m. The diffusion coefficient can be calculated by
means of Einstein’s equation D= �X2��t�� /2�t
=N�2 / �2N�T��= �kBT /2m��T2� / �T�. Using the aforemen-
tioned probability distribution for the collision times we get
the following expression for the diffusion coefficient: D
= �kBT /2m��2−3p+ p2� / ��1− p�p�. This formula shows that
by tuning the probability p it is possible to obtain the desired
diffusion coefficient.

For efficiency reasons it is best to perform random
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collisions not each time step, but every N time step. There-
fore every N�t unit of time �where �t is the time step of the
algorithm� a particle has a probability p of undergoing a
Brownian collision. This means that the average time be-
tween two random collisions is given by t=N�t / p
= �kBTN�t+2mD� /2kBT. For the low temperature simula-
tions �with N=50� we have, on average, two collisions after
t=0.278 �t̃=0.017�. Thus our simulations follow a Newton-
ian dynamics for t̃�0.017 and a Brownian dynamics after
that time. All fits shown in this article are for times in the
Brownian regime t̃�0.017. With the choice of the thermostat
parameters we thus assure that the average distance between
two successive collisions is less than the range of the poten-
tial of interaction between the particles, so that the collision
process is described by Brownian statistics. During the New-
tonian regime the particle travels a distance of 0.096 while
the range of the potential is 0.125 in units of the particle
diameter. See, for example, Ref. 29 where with the same
algorithm the correct Smoluchowski–Brownian aggregation
rate is recovered.

The same considerations also hold for the rotational mo-
tion of particles. We thus introduce a probability �pr� for a
colloid to undergo a rotational collision extracting its angular
velocity from a Maxwell–Boltzmann distribution. For
spheres with no-slip boundary conditions the rotational dif-
fusion coefficient �Dr� is related to the translational diffusion
by the equation Dr=3 /�2D, which can be realized by appro-
priately choosing pr.
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