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The analysis of realistic numerical simulations of a gel-forming irreversible aggregation process provides
information on the role of cluster diffusion in controlling the late stages of the aggregation kinetics. Interestingly,
the crossover from chemically controlled to diffusion-controlled aggregation takes place well beyond
percolation, after most of the particles have aggregated in the spanning network and only small clusters
remain in the sol. The simulation data are scrutinized to gain insight into the origin of this crossover. We
show that a single additional time scale (related to the average diffusion time) is sufficient to provide an
accurate description of the evolution of the extent of reaction at all times.

I. Introduction

Irreversible bonding of elementary units with a finite func-
tionality f into branched clusters and networks is common to
molecules, proteins, and colloidal particles, under the name of
polymerization, irreversible aggregation, or clustering. The
kinetics of cluster formation is sensitive both to the intrinsic
rate of the chemical reaction process between clusters at contact
and to the transport limitations that arise from the cluster size
dependence of the diffusion coefficient. According to the relative
importance of these two factors, the aggregation process is said
to take place in the chemically controlled or diffusion-controlled
limit. In general, the final structure of the aggregates results
from a balance between the cluster size dependence of the
diffusion process and the probability to irreversibly stick. It often
happens that a transition from the chemically controlled to the
diffusion-controlled limit occurs gradually as the aggregation
product decreases the diffusivities in the system. Many thermoset
materials of widespread use are the result of reactions where
such crossover takes place.

A significant amount of theoretical work has focused on the
description of the kinetics of irreversible aggregation,1-5 mostly
starting from the Smoluchowski coagulation equation,6 describ-
ing the time evolution of the cluster size distribution ck(t) ≡
Nk(t)/V

where Nk(t) is the number of clusters of size k present in the
system at time t, V is the volume, and the coagulation kernel
koverall

i, j represents the rate coefficient for a specific clustering
mechanism between clusters of sizes i and j. It is assumed that
both intrinsic chemical constraints and diffusional limitations
to the bonding can be taken into account through appropriate

modeling of koverall
i, j .6 In experimental studies, on the other hand,

one often searches for a simpler description that excludes the
information on the cluster size distribution and focuses only on
the experimentally more accessible time dependence of the
fraction p of formed bonds, a measure of the extent of reaction.
In the hypothesis that all sites have equal reactivity, independent
of the size of the cluster to which they are attached, the fraction
of formed bonds as a function of time, p(t), satisfies

where koverall is an overall rate coefficient of forming a single
bond that incorporates all information on the aggregation process
and that can, in general, depend on p. Equation 2 simply states
that the probability to form a bond depends on the probability
of encounter between two unreacted sites, independently of their
spatial location or local environment. Equation 2 can also be
derived from eq 1 by assuming that (i) the size dependence of
koverall

i, j is not affected by diffusion but is completely determined
by the product of the number of unreacted sites on clusters of
size i and j and (ii) closed loops of bonded particles are absent.7

In the chemical limit, koverall is constant (we indicate this constant
value as kc) and the solution of eq 2 with p(0) ) 0 (i.e., starting
from absence of bonds) is

In general, how to best model the time (or p) dependence of
the kernels koverall

i, j in eq 1 and koverall in the description of eq 2
is an open question.

Recently, we introduced a model for describing the irrevers-
ible aggregation process of a stoichiometric mixture of el-
lipsoidal particles of different sizes interacting through short-
range directional interactions,8,11 explicitly designed to simulate
three-dimensional step-growth polymerization.12 The model can
also be considered representative of systems with bioselective
interactions,13,14 associating polymers,15-17 functionalized mol-
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§ CNR-ISC, c/o Università di Roma “La Sapienza”.

dck

dt
) 1

2 ∑
i+j)k

koverall
i,j cicj - ∑

j)1

∞

koverall
k,j ckcj (1)

dp
dt

) koverall(1 - p)2 (2)

p(t) )
kct

1 + kct
(3)

J. Phys. Chem. B XXXX, xxx, 000 A

10.1021/jp911165b  XXXX American Chemical Society



ecules,18 and patchy colloids.19,20 Starting from an initial
configuration of monomers, the aggregation process drives the
formation of finite-size clusters (sol). The size of the clusters
grows with time, progressively merging into an infinite (gel)
cluster at the percolation transition when the bond probability
reaches a critical value pgel. At longer times, a final state is
reached where essentially all particles belong to the infinite
cluster, even if reaction has not reached its full extent [i.e., p(∞)
* 1]. It was found (see Figure 1) that p(t) is well described by
eq 3, with a constant value koverall ) kc, up to p ≈ 0.65, well
beyond percolation. Furthermore, the cluster size distribution
observed in the simulations during the aggregation process was
compared to the corresponding quantity evaluated according to
the Smoluchowski equation (eq 1) for the chemically controlled
case, for which an analytic solution is available under the
hypothesis of absence of bond loops in the aggregates of finite
size.7 It was found that, again for p j 0.65, the cluster size
distribution calculated numerically coincides with the theoretical
predictions (see Figure 3 of ref 8 and, for small clusters, Figure
2 of the present article).

In this article, we capitalize on the available simulations to
investigate the reasons for the breakdown of the chemical limit.
To do so, we analyze the evolution during polymerization of
the diffusion properties of the system as well as of the clusters
as a function of their size. The reported data can provide a useful
reference to devise appropriate approximations to eq 1 incor-
porating the diffusion process. We finally show that a simple
modeling of koverall in eq 2, taking into account the average
diffusivity of the sites, is sufficient to provide an accurate
description of the time evolution of p(t) throughout the reaction.

II. Simulation Details, the Model, and a Brief Review of
Its Properties

The model, introduced in ref 8, represents two types of
mutually reactive molecules, A and B, as hard homogeneous
ellipsoids of revolution whose surfaces are decorated in a
predefined geometry by fA ) 5 and fB ) 2 identical reactive

sites. The two molecules involved in the reaction are pictorially
represented in Figure 3. Calling σ the unit of length and m the
unit of mass, A particles are small and light (axes a ) 10σ, b
) c ) 2σ, volume VA ) 20σ3/3π, and mass MA ) m), whereas
B particles are large and heavy (axes a ) 20σ, b ) c ) 4σ,
volume VB ) 160σ3/3π, and mass MB ) 3.4m). Sites on particles
of different type interact through an attractive potential that we
model as a square well of depth u0 ) 1 and interaction range δ
) 0.2σ. Using event-driven molecular dynamics simulations,
we study a binary mixture composed of NA ) 480 ellipsoids of
type A and NB ) 1200 ellipsoids of type B. Because fANA )

Figure 1. Rate of bond formation, dp/dt, as function of the fraction p
of formed bonds. Symbols are the simulation results, averaged over
40 independent starting configurations up to t ≈ 103 [in units of σ(m/
u0)1/2] and over 11 configurations for longer times. The dashed and
solid lines represent eq 2 in the chemically controlled limit [koverall )
kc ) (4.43 ( 0.01) × 10-3, in units of inverse time] and in the case
including the effects of diffusion (koverall given by eq 9), respectively.
In the latter case, with kc known from the early stages of aggregation
and p0 and γ known from the behavior of the diffusion coefficient (eq
6), the fit procedure adjusts only one parameter, k0 ) 0.785 ( 0.015.
Inset: Time dependence of the fraction of bonds p. Lines are solutions
of eq 2 with the initial condition p(0) ) 0, in the chemically controlled
limit [dashed line; analytic solution (eq 3)] and in the case including
the effects of diffusion (solid line; numerical solution).

Figure 2. Number of monomers (N1), dimers (N2) and trimers (N3),
observed as a function of the fraction of formed bonds. Lines are the
theoretical predictions of the Smoluchowski equation with kernels
derived in the chemically controlled limit of the aggregation and absence
of loops in finite size clusters (eq 4).

Figure 3. Graphical representation of A and B particles of the
simulated system. Reactive sites are shown as orange spheres on the
surface of the hard-core ellipsoidal particles. The other three panels
show a pictorial representation of the system, in which the percolating
cluster is colored in red, monomers in green, dimers in blue, trimers in
magenta, and larger finite clusters in light black, at p ) 0.51, 0.65,
and 0.73 (i.e., above the percolation threshold pgel ≈ 0.5).
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fBNB, the reactive sites of type A and B are initially present
in equal numbers. This allows, in principle, the formation of
a fully bonded state in which all of the sites have reacted.
Time t is measured in units of σ(m/u0)1/2. The packing fraction
is fixed at φ ) 0.3, which is a realistic value for a
stoichiometric mixture of bifunctional diglycidyl ether of
bisphenol A (B particles) with pentafunctional diethylenetri-
amine (A particles), the experimental system that inspired
the model.12

A detailed description of the event-driven algorithm for
rigid bodies interacting with additional site-site square-well
potentials can be found in refs 9 and 10. In the numerical
code, two mutually reactive sites i and j, on two distinct
ellipsoids, form a bond if, during the dynamic evolution, the
site-site distance rAB

ij becomes smaller than δ. Once this
condition is reached, the bond is formed, and bond formation
is made irreversible by switching on an infinite barrier at
distance rAB

ij ) δ between the sites i and j involved, which
prevents both the breaking of the bond and the formation of
additional bonds by the same sites. Between bond formation
and collision events, all particles in the system propagate at
constant translational and rotational velocities, with an
average translational and rotational kinetic energy corre-
sponding to a temperature T ) 1.0. We note that the T value
in the present simulations sets only the time scale for the
exploration of phase space.

Because the site-site interaction potential is of a square-
well form, there is no ambiguity in the number of bonds in
the system, and hence, it is straightforward to evaluate the
extent of reaction p as the ratio between this number and
the maximum number of possible bonds fANA. Clusters are
defined as groups of bonded particles. Details on the
connectivity properties of the model were reported in a
previous publication,8 where it was shown that the formation
of bond loops within finite clusters (i.e., intracluster bonds
connecting particles belonging to the same cluster) is
negligible in this system throughout the aggregation process.
The absence of loops in finite-size clusters is apparently
favored by the elongated particle shape and the location of
the reactive sites on the particle surface. For the present
model, percolation was found at pgel ≈ 0.5 in agreement with
the theory of Flory and Stockmayer,21,22 which predicts a
dependence of pgel only on the functionality of the particles in the
mixture {pgel ) 1/[(fA - 1)(fB - 1)]1/2} and not on the packing
fraction. For completeness, we note that a φ-independent
value of the bond probability along the percolation line has
also been observed in a number of studies of patchy particle
systems.23-25

In addition to the time dependence of p and the evolution
of the cluster size distribution, ref 8 reported also a
comparison with the predictions of mean-field theories for
loopless aggregation. Here, we focus on the distribution of
small-size clusters and on how their relative concentration
changes with p, an element that will be relevant for the
analysis reported in the next section. Figure 2 shows the
numbers of monomers (N1), dimers (N2), and trimers (N3) in
the system as functions of the extent of reaction. We observe
that the number of monomers exceeds the number of dimers
by more than 1 order of magnitude throughout the explored
time window. The figure also shows the corresponding
predictions of the Flory-Stockmayer model (also solutions
of the Smoluchowski equation in the loopless chemically
controlled limit), namely

The theoretically predicted values of Nk agree very well with
the numerical data for p j 0.65, that is, well above the
percolation threshold pgel. The breakdown of the chemical
approximation thus manifests itself simultaneously in the time
evolution of p and in the departure of Nk from the Flory-
Stockmayer predictions. Figure 2 also shows that the number
of monomers significantly drops upon increasing p beyond pgel,
but at a lower rate than for larger clusters, quickly becoming
the dominant particles in the sol. Hence, at large values of p,
the percolating cluster coexists with sol particles, which are
mostly found in monomers and very small aggregates. To
provide a graphical visualization of the system structure and
clustering in the large-p region, we show in Figure 3 configura-
tions at three different values of p, all above pgel. It appears
clearly that the sol concentration is strongly suppressed with
increasing p and that only very small clusters are present in the
region where the chemical approximation breaks down.

III. Results

To understand the failure of eq 3 for p J 0.65 (Figure 1), we
investigate the diffusion processes in the system. We start by
examining the system’s diffusivity properties for each studied
value of p. Figure 4a shows the overall diffusion coefficient,
evaluated as

where 〈∆r2(t)〉 ) 〈∑i)1
N ∆ri

2(t)/N〉 ) 〈∑i)1
N |rbi(t) - rbi(0)|2/N〉 is the

mean squared displacement of all the particles in the system
over the time period t. Here, 〈 · 〉 denotes an ensemble average,
rbi is the position vector of particle i, and i labels the N ) NA +
NB particles of the system. To provide an accurate determination
of D that is not affected by the ongoing polymerization process,
we exploit the possibility offered by the numerical simulation
of freezing the aggregation process and analyzing the dynamics
in a system of fixed cluster-size composition. More precisely,
during the simulation, when a given value of p is achieved, the
positions and velocities of all particles are copied and used to
start a new simulation in which the bonding pattern is frozen
by switching on an infinite barrier at distance δ between each
pair of mutually reactive sites. In this new simulation, the formed
clusters remain free to move while retaining their integrity (i.e.,
not binding to other clusters), and D is calculated from the long-
time limit of 〈∆r2(t)〉, evaluated where possible subdiffusive
behavior is over and a linear increase in time is established.
This simulation protocol also allows us to evaluate, with
sufficient numerical accuracy, the diffusion coefficient of small
clusters and to assess its dependence on the cluster size. An
average over 11 independent realizations was performed to
improve the statistics.

The numerical results for the p-dependent evolution of D are
well described by a power law

N1 ) NA(1 - p)5 + NB(1 - p)2

N2 )
20NANB

5NA + 2NB
p(1 - p)5

N3 ) 4NBp2(1 - p)5 + 5
2

NAp2(1 - p)8]

(4)

D ) lim
tf∞

〈∆r2(t)〉/6t (5)

D ) D0(p0 - p

p0
)γ

(6)
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where D0 is the diffusion coefficient at p ) 0, γ is the power-
law exponent, and p0 is the value of p where diffusion is
expected to vanish. The best-fit values are γ ) 2.69 ( 0.07
and p0 ) 0.902 ( 0.005. The power-law behavior of D recalls
the analogous slowing of the dynamics in glass-forming liquids,
where similar dependence of D on temperature, pressure, or
packing fraction is seen close to the mode-coupling transition.26

The value p0 * 1 suggests that the arrest of the dynamics occurs
before all available sites have reacted, that is, that a fraction of
unreacted sites exists in the arrested gel network.

In the region where the chemical approximation starts to fail
(p J 0.65), most of the particles in the system belong to the
infinite cluster (see Figure 4a in ref 8). The remaining material,
the sol phase, is mostly constituted by small clusters, as seen
in Figure 2. Hence, it is interesting to compare what fraction of
the diffusion coefficient is provided by the motion of the N1

clusters of size one (monomers). Figure 4 compares D with
D1N1/N (open squares in Figure 4a) for all p values. Beyond p
≈ 0.65, the diffusion process is mostly controlled by the
diffusion of monomers.

Note that the overall diffusion coefficient D can also be
written as D ) ∑iDi/N, where Di ) limtf∞〈∆ri

2(t)〉/6t is the
diffusion coefficient of particle i, or, equivalently, by grouping
together all particles in clusters of the same size, as D )
∑kDkkNk/N, where Dk is the average diffusion coefficient of
clusters of size k and kNk/N is the fraction of particles in the
system that belong to k-size clusters. The cluster diffusion
coefficient corresponds to the long-time limit of the mean
squared displacement of the cluster center of mass, and it also
is evaluated in a frozen-bond condition. Figure 4b shows the p
evolution of Dk, up to k ) 7. All Dk values show a clear slowing
with increasing p. A power-law fit of Dk is possible for small

k, providing evidence that, for all cluster sizes, the arrest of the
dynamics occurs at a finite value of p0 ≈ 0.88, very close to
(and within our numerical error of) the value found for the
overall diffusion coefficient D.

Having evaluated Dk, we can also analyze the simulation data
to test one of the commonly found approximations in the
theoretical literature,4,5 the assumption of a (p-independent)
scaling relationship between the cluster size and the diffusion
coefficient (i.e., Dk ) D1k-1), the so-called Stokesian limit of
diffusion. In this approximation, we can write

where n ) ∑kNk is the total number of clusters in the system.
Equation 7 shows that the slowing of the overall diffusion arises
from two different mechanisms: the decrease of the diffusion
coefficient of the monomers and the decrease in the number of
diffusing clusters. The difference between this expression and
the one that takes only monomers into account (i.e., includes
only the first term in the sum) can be assessed in Figure 4a.
Even though the assumption of Stokesian dynamics for the
clusters is clearly incorrect according to the data shown in Figure
4b, eq 7 provides an excellent description of D in the entire
range of p. This agreement brings further evidence to the fact
that D is controlled mostly by the small clusters, which are faster
and more abundant, essentially determining the diffusional
behavior of the system.

As an additional confirmation that the entire diffusion process
is associated with the sol clusters, we show in Figure 5 the mean
squared displacements for sol and gel particles for several values
of p. The sol particles always retain a diffusive motion, whereas
the large-scale motion of the gel is subdiffusive, that is, the
mean squared displacement of the gel center of mass increases
less than linearly in time. Moreover, the particles belonging to
the gel network are always much more localized than the
particles in the sol fraction (Figure 5). These results show that
the gel contribution to the diffusion can be safely neglected.

The analysis of the size dependence of the cluster mobility
allows us to comment on the conventional approach based on
the Smoluchowski coagulation equation, where the cluster mass
dependence of Dk is generally presumed not to change with the
advancement of the reaction.4,5 We show in Figure 6 how Dk

scales with the mass of the cluster, M, for different values of p,
by properly taking the different masses of the small and large

Figure 4. (a) Overall diffusion coefficient, D (b), and diffusion coefficient
of monomers, D1 (O), as functions of the fraction of bonds p. Open squares
represent the monomer contribution to the overall diffusion coefficient,
D1N1/N. Stars represent the overall diffusion coefficient evaluated, in the
approximation of Stokesian diffusion of the clusters, as D ≈ D1n/N, where
n ) ∑kNk counts the total number of clusters and N is the number of
particles in the system. The solid line is the best fit of D(p), using eq 6.
(b) Dependence on p of the average diffusion coefficient of k-mers, for k
) 1, 2, ..., 7 from top to bottom. In both panels, diffusion coefficients are
measured in units of σ(u0/m)1/2.

Figure 5. Mean squared displacements of sol and gel particles, for
configurations at different fractions of formed bonds, increasing from
top to bottom of each set of curves (0 e p e 0.84 for sol configurations,
0.53 e p e 0.84 for gel configurations). A slope equal to 1 is expected
when particles are diffusive.

D ) ∑
k

D1

k

kNk

N
)

D1

N ∑
k

Nk ) D1
n
N

(7)
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particles into account.27 The simulation data, compared with
the expectation of a power law Dk ∼ Ms,28,29 provide different
estimates of the s exponent for different values of p (see inset
of Figure 6), revealing that a change in the structure of the
environment in which branched clusters are moving has a
significant impact on the size dependence of the cluster mobility.
Note that Dk decreases faster than M-1 already in the initial
stages of the reaction, and it decreases even faster for p
increasing close to and beyond the gel point (pgel ) 0.5). The
p dependence of the exponent highlights the difficulty of
providing an accurate and detailed model of the aggregation
process when diffusion is relevant, because it is not sufficient
to postulate a time-independent coupling between the diffusion
of clusters and their size.

IV. Discussion

The results presented in the previous section clearly show
that the modeling of the long-time kinetics of aggregation for
the investigated patchy ellipsoidal system does require the
introduction of transport limitation contributions in the aggrega-
tion kernels. At the level of the less-demanding description of
eq 2, an expression of koverall must also be devised that captures
both the properties of the chemical bonding act and the diffusive
properties of the clusters to which the reactive sites are attached.
Following the Rabinowitch model for small-molecule reactions30

and subsequent theoretical works,31-33 we write

where kc is the intrinsic rate constant, which is given by the
chemistry of the system, and kdiff is the rate coefficient for a
system with no chemical barriers where reactions occur upon
collision of functional groups. The latter rate constant depends
on the diffusion time scale. Equation 8 simply states that the
time required to form a new bond is the sum of the time required
for two clusters of any size to approach each other plus the
time required for repeated collisions between nearby clusters
to become fruitful in providing a bond between the clusters.
The parallel sum of kc and kdiff suggests that, in the early stages
of aggregation, when the system consists mainly of monomers
and oligomers, the particle mobility is high and the aggregation
proceeds in the absence of diffusional limitations (kdiff . kc;
hence, koverall ≈ kc). However, as the extent of reaction is
increased, the cluster-size dependence of the diffusion coefficient
starts to limit the reactivity of unreacted sites, so that, for large

values of p, the rate of aggregation is primarily determined by
the mass transfer of the reactants (kdiff , kc; hence, koverall ≈
kdiff).

Because the early-time kinetics is properly described by the
Smoluchowski equation (as discussed at length in ref 8 and
shown in Figure 1), the constant value of kc [) (4.43 ( 0.01)
× 10-3, in units of inverse time] in this system is entirely
determined by the early-time behavior of the aggregation. The
case of kdiff is different, as it requires an ansatz for the p
dependence of the diffusional time. In the spirit of the mean-
field description of eq 2, we test the possibility that the diffusion
rate constant is proportional to the average diffusion coefficient
(eq 6), writing

where k0 is an unknown constant.
A comparison between the simulation data for dp/dt versus

p and eq 2 [with koverall(p) expressed by eq 9] offers a way to
test the quality of the approximation and to extract the best value
of k0 as a single additional fit parameter. The best-fit value is
k0 ) 0.785 ( 0.015, in units of inverse time, that is, 2 orders
of magnitude larger than kc, thus providing a clear separation
between the two kinetic regimes. The solid line in Figure 1
demonstrates that the diffusion-controlled rate equation derived
in a mean-field approximation provides an excellent description
of the entire kinetic process. The close agreement between the
simulation and diffusion-corrected modeling is further stressed
in the inset of Figure 1, comparing the numerical solutions of
eq 2 with the initial condition p(0) ) 0 in the cases of koverall )
kc and koverall given by eq 9.

The presence of a spanning irreversibly bonded network
severely constrains the motion of the sol clusters of any size.
As shown in Figure 4b, the cluster diffusion decreases by 1
order of magnitude during the aggregation process. An even
larger effect is seen on the average diffusivity, which decreases
by several orders of magnitude. Such a decrease is mostly driven
by the progressive reduction in the number of clusters in the
sol and, in the interesting kinetic region where diffusion effects
are dominant, mainly by the change in the number of monomers.
The higher diffusivity of the monomers results in a progressive
depletion of small clusters as compared to the predicted
concentration in the reaction-limited case (Figure 2). Discrep-
ancies between the cluster size distribution observed in the
simulation and that provided by the ideal kinetic theory of
aggregation are therefore not easily dismissed as an effect
associated with the omitted spatial information in the coagulation
kernels. Instead, they are likely to be associated with the
diffusion-altered size-dependent reaction rates, which favor the
depletion of faster, small clusters and the reduced production
of slower, large clusters.4,34

In the model investigated here, diffusional processes become
relevant only for late stages of aggregation (i.e., p J 0.65) and
allow a facile modeling of the entire evolution of p(t) simply
accounting for the decrease of the system’s average diffusivity
(which, in itself, is driven by a decrease in the number of sol
clusters). It is interesting to discuss why the chemical limit works
for such a long interval, well beyond percolation. At the basis
of this behavior is the small value of the chemical rate constant
kc (with respect to k0). The origin of such a small value has to
be found in the essence of the patchy interaction, which, thanks
to its short-range nature and localization, imposes by itself an

Figure 6. Diffusion coefficient of clusters as a function of their mass
M, at different values of the bond fraction p, as indicated in the legend.
Lines are the best fit to a power law D ∼ Ms. The inset shows the p
dependence of the exponent s.

koverall
-1 ) kc

-1 + kdiff
-1 (8)

koverall
-1 ) kc

-1 + k0
-1(p0 - p

p0
)-γ

(9)
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entropic barrier to bond formation. Bonding indeed requires that
two reactive sites become close to each other or, in equivalent
terms, that the two reacting clusters face each other with the
right orientation. In the present model, in which the bonding
site-site distance is much smaller than the particle size, the
time needed for two clusters to diffuse and approach each other
is significantly smaller than the time required to orient them-
selves in the right bonding geometry. As a result, the model
favors the establishment of a wide chemically controlled time
region. The existence of such a wide region (up to p ≈ 0.65)
has the consequence that, when diffusion starts to become
relevant, because of the general mechanism that the average
distance between unreacted sites has grown, coupled with the
increased size of the diffusing clusters, the sol clusters that
contribute to diffusion are mostly monomers that progressively
react with the infinite cluster, determining the faster depletion
of their concentration mentioned above.

In this work, we have studied one single value of φ,
corresponding to a realistic packing fraction for an epoxy-amine
system.12 We expect that similar results are found for different
packing fractions, although the extent of the chemically
controlled regime might change. Because the cluster diffusion
coefficient will decrease with increasing φ, because of the
increase of the system’s viscosity, the crossover between koverall

≈ kc and koverall ≈ kdiff will be affected, and the diffusion-
controlled limit of the aggregation will set in for smaller values
of p. Indeed, a previous study of irreversible polymerization at
smaller values of packing fraction did not reveal any crossover
to a diffusion-limited regime.35 For very large φ, when poly-
merization may compete with excluded-volume-driven glass
formation, more complicated scenarios can arise.

V. Conclusions

The results of this study clearly indicate that the effect of
diffusional limitations on the kinetics of aggregation, in a
realistic model of patchy particles, can be taken into account
by introducing a single characteristic p-dependent time scale.
This time scale and its dependence on the extent of reaction
can be properly associated with the average diffusion time scale.
This result has been made possible by the simultaneous
determination of the extent of reaction as a function of time,
p(t), and of the diffusion coefficient as a function of the extent
of reaction, D(p). We have found that, with only one additional
(p-independent) fit parameter, the entire evolution of p(t) can
be modeled, even in the last stages of aggregation, where a small
number of finite clusters remain interspersed within the frozen
structure of the gel network. The small particle functionality
appears to be a key ingredient to shift the crossover between
the chemically controlled and diffusion-controlled limits well
beyond the percolation point,35 when most particles belong to
the infinite network and only small clusters remain in the sol.

We note in passing that, although the shape anisotropy of the
particles is important for the present study to mimic stepwise
polymerization of a realistic system,12 this feature is not crucial
for the validity of our results. In all cases where bond loops in
finite-size clusters can be safely neglected, a situation that can be
realized effectively also in a system of spherical particles with small
average functionality,36 the evolution of the extent of reaction can
be modeled in a manner similar to that proposed here.

The present study also has potential relevance to experimental
studies of step-growth polymerization, where the diffusion-
controlled kinetics is analyzed by replacing each chemical rate
constant with an overall one, built on the Rabinowitch model
(eq 8) and the assumption of proportionality between kdiff and

the overall diffusion coefficient.37-41 The experimental approach
suffers from certain limitations in order to assess its validity,
as it relies on the knowledge of the kinetic equation governing
the chemically controlled limit of the reaction, which, in most
situations, is complicated by autocatalytic terms42 or multiple-
reaction effects43 or is obtained on a semiempirical basis,44 and
on the determination of the diffusion coefficient, which, in most
cases, cannot be directly accessed and requires a nontrivial
assumption about the way it is related to the structural relaxation
time measured experimentally.39,45 The present patchy particle
model does not suffer from ambiguity in the intrinsic chemical
kinetics and permits a precise determination of the diffusion
properties, thus offering the possibility to check, for the first
time in a direct manner, the soundness of the approach employed
to model diffusion control in experimental studies.
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