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We perform numerical simulations of a simple model of one-patch colloidal particles to

investigate: (i) the behavior of the gas–liquid phase diagram on moving from a spherical

attractive potential to a Janus potential and (ii) the collective structure of a system of Janus

particles. We show that, for the case where one of the two hemispheres is attractive and

one is repulsive, the system organizes into a dispersion of orientationally ordered micelles

and vesicles and, at low temperature (T), the system can be approximated as a fluid of such

clusters, interacting essentially via excluded volume. The stability of this cluster phase

generates a very peculiar shape of the gas and liquid coexisting densities, with a gas

coexistence density that increases on cooling, approaching the liquid coexistence density

at very low T.

I. Introduction

The synthesis of colloidal particles with controlled anisotropy

is central in today’s research. One of the main ideas is the

development of a set of colloidal molecules1–7 which can be

useful to generate, on the nano and micron-scale, collective

phenomena presently observed only at the atomic or molecular

scale as well as additional phenomena, induced by the possi-

bility of controlling the parameters of the effective interaction

potential between colloids. The self-assembly of a colloidal

diamond crystal, to be used in photonic applications,8 is one of

these technologically relevant goals. The anisotropy can be

induced not only by building colloidal molecules (i.e. colloids

with peculiar non-spherical shapes), but also (with a promising

alternative) via the process of patterning the particle surface,

generating in this way particles interacting in a very different

way according to their relative orientation.1,9–13

This vision of materials science, based on the design and self-

assembly of materials with required properties has stimulated,

beside the experimental work, a large amount of theoretical

and numerical studies based on simple, primitive, anisotropic

potentials.14–20 Indeed, the possibilities of modifying the surface

properties are endless, including the number of patches, their

width, their location, their chemical specificity, and seem to

pose no limits to the design of specific particle–particle inter-

action potentials. In this large parameter space, primitive

potentials—modeling repulsion as a hard-core and attraction

as a square-well interaction—can provide a useful reference

system to deeply investigate the role played by the number of

patches, their width, their spatial location and the role of the

attraction range. In addition, there are some consensus that

these studies can shed light on the aggregation properties of

proteins and on the sensitivity of the aggregates on the protein

surface properties.21–24

Another useful aspect of the study of primitive models

is the possibility to accurately investigate theoretically and

numerically their phase diagram, casting the self-assembly

process of these systems into a wider thermodynamic perspective.

Important questions about the nature of the self-assembly

process and its reversibility, the relative stability of aggregates

of different sizes, the competition between self-assembly and

phase-separation can in principle be addressed with an accurate

study of these models. Finally, in some cases, numerical

simulations can be compared with state of the art integral

equation approaches for non-spherical potentials providing a

benchmark for the possibility of developing a fast and accurate

prediction of the structural properties. Several efforts in this

directions, capitalizing on studies of molecular associations,25–28

are taking place these days.29–31

In this article we report a study of the phase behavior of a

very simple primitive potential, proposed in 2003 by Kern and

Frenkel14 with the aim of exploring the scaling of the critical

parameters (including the reduced second virial coefficient) on

the number and width of the patches, and the possible

implications for the phase behavior of globular proteins. We

limit ourselves to the case where the surface of the colloid

particle is divided into two parts: repulsive and attractive,

respectively. On decreasing the surface area corresponding to

the attractive part, the potential interpolates between the

well-known isotropic square well potential and the symmetric

case of an evenly divided surface, commonly indicated as

Janus potential. We find that an unconventional phase diagram

characterizes Janus particles, due to the onset of a micelle

formation process which takes place in the gas phase, providing

additional stability to this phase as compared to the liquid one.

We characterize the structural and connectivity properties of

the system in a wide range of temperatures T and number

densities r, to clarify the origin of the aggregation process

and the mechanisms behind the stability of the cluster phase.
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Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy.
E-mail: francesco.sciortino@uniroma1.it; Tel: +39-06-49913799;
Fax: +39-06-4463158

bDipartimento di Chimica Fisica, Università Ca’ Foscari Venezia,
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Our study demonstrates how a small change in the attractive

surface has profound consequences on the collective behavior

of the system.

II. Model and simulation techniques

The Kern-Frenkel potential is a paradigmatic model for highly

anisotropic interactions. In this model, a hard sphere of

diameter s is complemented by a set of unit vectors {n̂i},

locating the position of the center of a patch on the particle

surface. Each patch can be reckoned as the intersection of the

sphere with a cone of semi-amplitude y and vertex at the center

of the sphere. In the case studied in this model, each particle

has only one patch. When both the patch unit vectors n̂i of

particle i and n̂j of particle j form angles smaller than y with the

vector joining each particle to the other, and in addition the

distance between the center of the two particles is between s
and s + D, then an attractive interaction of intensity u0 is

present. More precisely, the two body potential is defined as:

u(rij) = usw(rij)f(Oij) (1)

where usw(rij) is an isotropic square well term of depth u0 and

attractive range s + D and f(Oij) is a function that depends on

the orientation of the two interacting particles Oij. The angular

function f(Oij) is defined as

f ðOijÞ ¼ 1 if

r̂ij � n̂i4 cos y
patch
on particle i

and

r̂ji � n̂j4 cos y
patch
on particle j

8>>><
>>>:

0 else

8>>>>><
>>>>>:

ð2Þ

The diameter of the particles and the depth of the square well

have been chosen as units of length and energy respectively,

i.e. s = 1 and u0 = 1.

In practice, two particles interact attractively if, when they

are within the attractive distance s + D, two patches are

properly facing each other. When this is the case, the two

particles are considered bonded. The fraction of surface

covered by the attractive patches w is related to y by the

relation w ¼ 1�cos y
2

.

Structural properties of the system have been evaluated by

mean of standard MC simulations, for a system of N = 5000

particles. Extremely long simulations, of the order of 109 MC

sweeps, have been performed to reach a proper equilibrium

state of the system. Here a MC sweep is defined as an

attempted random translation and rotation for each particle.

To calculate the location of the gas–liquid critical point we

perform grand canonical Monte Carlo (GCMC) simulations,32

complemented with histogram reweighting techniques to

match the distribution of the order parameter r � se with

the known functional dependence expected at the Ising univer-

sality class critical point.33 Here e is the potential energy

density, r the number density and s is the mixing field

parameter. We did not perform a finite size study, since we

are only interested in the trends with w. We have studied

systems of different sizes, up to L = 15. For each studied

w—using the methods described in ref. 34—we calculated the

critical temperature Tc and density rc for values of cos y

between �1 and 0 (at fixed D= 0.5). Temperature is measured

in reduced units, i.e. Boltzmann constant kB = 1.

We also performed Gibbs ensemble simulations (GEMC)

to evaluate the coexistence curve. The GEMC method was

designed35 to study coexistence in the region where the gas–

liquid free-energy barrier is sufficiently high to avoid crossing

between the two phases. Since nowadays this is a standard

method in computational physics, we do not discuss it here.

We have studied a system of (total) 350 particles which

partition themselves into two boxes whose total volume is

2868s3, corresponding to an average density of r = 0.122. At

the lowest T this corresponds to roughly 320 particles in the

liquid box (of side E 8s) and about 30 particles in the gas box

(of side E 13s). Equilibration at the lowest reported T

required about one month of computer time.

The model, in the case w = 0.5, can be related to the

experimental system that is currently under investigation.11

In these newly synthesized Janus particles, the repulsive inter-

action has an electrostatic origin and the attractive part is

hydrophobic. At the present time, experiments by Granick’s

group11 have focused on the analysis of the structure of the

aggregates sedimented on the bottom surface due to gravity.

Micelle formation has been observed. While the interaction

range in Granick’s experimental system is about 0.1 of the

particle size, nano-sized particles synthesized with the same

protocol would indeed give rise to potential ranges similar to

the one we have selected. It is also in principle possible to

modify the range of the interaction by tuning the physical

properties of the solvent (for example the ionic strength or the

solvent dielectric constant). Another interesting possible

experimental realization of longer range interactions can be

achieved by means of the recently measured Casimir critical

forces [for a highlighting review see for example ref. 36 or 37]

by dissolving the particles close to the critical point of the

solvent. By playing with the distance from the critical point,

the range of the interaction can be controlled and tuned close

to the value we have explored. Moreover, in the critical

Casimir effect, the coating of the two hemispheres will control

whether the interaction is attractive or repulsive. Other

possibilities of probing different ranges will be offered by

studies of Janus-like proteins. Indeed, the hydrophobin proteins

(extracted from fungi) are good candidates for nano-Janus

particles, as discussed in ref. 38. Even in this protein case, the

bulk phase diagram has never been explored.

III. Results: from square-well to Janus

The Kern-Frenkel model offers the possibility to continuously

change the coverage interpolating from the isotropic square-

well potential to the symmetric Janus-like one, when the

coverage moves from w = 1 to w = 0.5. To investigate how

the phase diagram of Janus particles arises, we start by looking

at how the gas–liquid coexistence is modified on progressively

reducing w. Fig. 1 depicts the gas–liquid phase coexistence for

several w values, extending the original data by Kern and

Frenkel.14 While the critical density presents a significant

decrease with decreasing w, the density of the liquid branch

does not show any significant reduction, consistent with the

possibility of forming six or more bonds with neighboring
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particles when w 4 0.5. Recent studies on the role of the

valence (defined as the maximum possible number of bonded

nearest neighbors)15,39 have suggested a progressive reduction

of the critical temperature Tc and critical density rc on

decreasing the valence. Indeed, when the valence decreases

below six, a significant reduction of the density of the liquid

branch has been reported.16 Estimates of the critical para-

meters have been calculated using grand-canonical simula-

tions, i.e. simulations in which the chemical potential m, T and

the volume V are kept constant. In GCMC simulations, the

number of particles fluctuates. When m and T are close to their

critical values, the number of particles fluctuates widely

(since the compressibility, which is a measure of the variance

of the density fluctuations, diverges). The distribution of

sampled densities, close to the critical point, follows a universal

curve which depends only on the class of universality of the

critical phenomenon.

The critical parameters, resulting from the grand-canonical

simulations, are summarized in Table 1. The last column

indicates the size of the largest simulation box, which has been

progressively increased to compensate the decrease of the

critical density and the associated shift towards smaller number

of particles of the density fluctuations. Table 1 also reports the

critical chemical potential and the value of the second virial

potential Bc
2, normalized to the hard-sphere value BHS

2 :

Bc
2=B

HS
2 ¼ 1� w2 1þ D

s

� �3

�1
" #

exp
u0

kBTc

� �
� 1

� �
; ð3Þ

which is also evaluated at the critical point. Previous work19

has shown that Bc
2/B

HS
2 becomes smaller and smaller with

decreasing valence. The actual value of Bc
2/B

HS
2 can provide

an estimate of the effective valence of the system. A comparison

with Table 1 of ref. 19 suggests that when w reaches the value

0.6, the effective valence becomes less than 4 and that when

w = 0.5, the effective valence is still larger than three. The

critical parameters Tc and rc are also shown graphically in

Fig. 2. In agreement with the progressive reduction of the

valence, Tc and rc do decrease with decreasing w. Note that

results presented in Fig. 1 have a counterpart in the case where

the attractive part is spread over two patches distributed at the

opposite poles of the sphere (see Fig. 2 in ref. 31).

When w = 0.5 (the Janus case), a new interesting pheno-

menon appears. Fig. 1 shows indeed that, different to the

standard behavior (and for all the studied w 4 0.5 cases), the

density of the gas phase along the coexistence line increases

progressively on cooling. This peculiar behavior is discussed in

full detail in the following sections. For smaller values of w we

have not presently been able to evaluate the phase diagram for

two different reasons: (i) the temperature region where the

critical point is expected (around T = 0.17 for w = 0.4, by a

quadratic extrapolation of the data reported in Table 1)

requires significant computational resources; (ii) preliminary

tests have detected the formation of lamellar phases for w =

0.4 already at T 4 0.17. Despite the disappearance of the

liquid phase as an equilibrium phase in the presence of

anisotropic potentials being a potentially relevant issue,40 we

cannot at the present time address this point for the present

model. A study of the stability of the liquid phase as compared

to the (unknown) ordered phases will be the topic of a future

study, which will require the use of algorithms to identify the

possible crystal structures41,42 as well as free-energy evalua-

tions to establish the relative stability compared to the liquid

phase. A similar study for tetrahedral patchy particles has

been recently reported.40,43 Indeed, it could well be, as

suggested in a recent study of particles with two patches,31

that the reduction of the bonding angle could play a role

analogous to the reduction of the range in spherically inter-

acting potentials44,45 and limited valence potentials,40 where

the liquid phase disappears when the range is smaller than

E0.2s.

Fig. 1 Phase diagram of the one-patch Kern-Frenkel potential

with attractive range 0.5s for different values of the coverage w, inter-
polating between the square-well potential (w = 1) and the Janus

potential (w = 0.5).

Fig. 2 Coverage w dependence of the critical density rc and

temperature Tc.

Table 1 Critical parameters as a function of the coverage. The last
column indicates the size of the largest studied simulation box

w rc Tc bcmc mc Bc
2/B

HS
2 L

1 0.31 1.22 �2.955 �3.601 �2.020 7
0.9 0.30 1.01 �3.048 �3.079 �2.253 7
0.8 0.27 0.800 �3.270 �2.613 �2.790 11
0.7 0.24 0.610 �3.684 �2.248 �3.828 15
0.6 0.20 0.446 �4.482 �1.200 �6.187 15
0.5 0.15 0.302 �6.371 �1.924 �14.68 15
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IV. Results: Janus

The gas–liquid coexistence for the Janus (w = 0.5) particles is

enlarged in Fig. 4. As discussed in a preliminary publication,46

the phase diagram has a very odd behavior. The gas coexisting

density, which typically is a decreasing function of the tempera-

ture, here increases progressively on cooling, approaching

the coexisting liquid density. In a simple liquid, coexistence

between gas and liquid is established on the basis of a

compensation between the gas and liquid free energies. The

lower energy of the liquid phase is compensated by a larger

entropy of the gas phase, which is acquired by significantly

increasing the volume per particle. As discussed in ref. 46

(and detailed more in the following), the uncommon behavior

observed in the Janus case arises by a completely different

compensation mechanism between the liquid and the gas. The

gas becomes the energetically stable phase (due to the forma-

tion of orientationally ordered aggregates, micelles and

vesicles) and the liquid phase instead is stabilized by the larger

orientational entropy of the particles. This odd behavior give

rises to a gas–liquid coexistence curve in the P–T plane which

is negatively sloped and to an expansion of the system on

crossing from the gas to the liquid phase on cooling along

isobars (see Fig. 4 in ref. 46).

This anomalous thermodynamic behavior arises from the

progressive establishment in the gas phase of clusters of

particles which—due to the surface pattern properties of the

particle—organize themselves in particularly stable structures.

Typical cluster shapes for different values of the cluster size s

are shown in Fig. 3. For small cluster sizes (st 20) clusters are

of micellar type, i.e. formed by aggregates in which the

attractive part constitutes the core of the aggregate. For larger

size, the cluster organization changes in favor of a double layer

structure, reminiscent of vesicles, in which the inner and outer

surfaces are repulsive and the inner core is attractive. Here,

and in the rest of the manuscript, clusters are defined as set of

particles connected by an uninterrupted path of bonds, where

we define as bonded any pair of particles whose pair potential

energy is �u0.
In this article we explore in detail the properties of the

clusters which develop in the gas phase, their structure, energy

and abundance. We then investigate the gas and liquid phases

with the aim of characterizing the collective structure of the

system (both in real and wave-vector space) as well as its

connectivity properties (percolation).

A Critical micelle concentration

The onset of micelles can be demonstrated and quantified by

the study of the relation between the density r1 of particles in
monomeric state (i.e. un-bonded particles) and the system

density r. Fig. 5 shows that for T t 0.28, a sharp kink

separates the ideal gas behavior (where all the particles are

in a very dilute monomeric state and r1 = r) from a rather

insensitive density dependence of the number of monomers in

solutions, a clear indication that, at low T, the addition of

particles to a constant volume system promotes the formation

of additional aggregates. This behavior is indeed typical of

micelle forming systems,47 and the location of the kink provides

an estimate of the critical micelle concentration (c.m.c.), which

in the present case varies from r = 10�3 down to r = 10�4

when T changes from T = 0.28 to T = 0.25.

One may wonder why this system, on cooling, does not

show a typical gas–liquid coexistence. In simple fluids, at low

T, the gas phase does not show significant clustering. Indeed,

on increasing the density, the system transforms into a liquid

phase, by establishing an infinite size percolating cluster, in an

attempt to minimize the potential energy, as the entropic loss

in the free energy (associated with the restricted sampling of

the system available volume) is made less relevant by the small

T. In the present case, the Janus potential allows for the

establishment of significantly bonded aggregates, i.e. with a

low potential energy, without the need of forming an infinite

size cluster. By exposing the hard-core part to the exteriors,

these clusters do not feel any driving force toward further

clustering.

B Cluster size distributions, percolation

To quantify the effect of clustering and its r and T dependence

we show in Fig. 6 the cluster size distribution, N(s).

Fig. 3 Typical cluster shapes of different size, extracted from simulations at T = 0.27.

Fig. 4 Phase diagram of the Janus particles. Filled (red) circles

indicate the gas–liquid coexistence lines with the (blue) triangle

denoting the critical point. The filled and open squares indicate the

percolating and non-percolating state points, respectively, whereas

(green) diamonds indicate the simulations that show a lamellar phase.

Dashed lines connect coexisting state points whereas the two dotted

lines refer to the two paths followed in the calculation of the structure

factor of Fig. 8.
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Below the critical temperature, the gas phase becomes

populated by rather stable clusters. Particularly significant

are clusters of sizes between 10–15 (micelles) and clusters

between sizes 40 and 50 (vesicles). Other sizes are also found,

but their statistical relevance decreases on decreasing T. This

feature appears clearly in the cluster size distribution, N(s),

shown in Fig. 6. On decreasing T, the monotonic decaying

N(s) develops a shoulder around Tc, which evolves into a

clear two-peaked function on further cooling, signaling the

appearance of micelles and vesicles (Fig. 6(a)). Part (b) of

Fig. 6 shows the evolution of N(s) on increasing r. The micelle

peak progressively empties in favor of the vesicle peak, which

at low T and large r are the most stable structures. Similar

trends are seen at other T or r.
An indication of the relative stability of the clusters as a

function of their size is provided by the cluster potential

energy. Fig. 7 shows the average potential energy hE(s)i,
averaged over all clusters of the same size, vs. size s for different

T at fixed r. One notices that for each size there are several

distinct arrangements with different energies and entropies. On

cooling, lower energy clusters become preferentially selected

and hE(s)i decreases. One also notices a plateau between size

10 and 30 followed by an additional plateau, at low T, starting

from sE 40. The initial location of the plateaus coincides with

the size of the mostly represented clusters. This can be under-

stood by considering that the free energy of the system has

both energetic and entropic contributions. When the potential

energy per particle does not change with the size of the cluster,

it then becomes convenient to the system to favor the forma-

tion of the smallest possible cluster with the same energy, since

it will be possible in this way to maximize the total number of

clusters and hence the translational component of the entropy.

Fig. 7 also shows the lowest energy configuration Emin(s)

found for each cluster size, independently from temperature

and density of the simulation. This curve provides an estimate

for the cluster ground state and clearly shows that the lowest-

energy structures are the vesicles, i.e. clusters composed of

between 40 and 60 particles.

We have examined the connectivity properties of the different

state points by evaluating the presence of clusters spanning the

entire simulation box. When more than 50 per cent of the

configurations are characterized by spanning clusters, the state

point is classified as percolating. Fig. 4 shows the location of

the percolating state points in the phase diagram. The cluster

gas phase is never percolating, while the liquid states always

are, so that percolation properties can also be used to distin-

guish between the two phases. We also confirm that the critical

Fig. 5 Relation between the monomer number density r1 and the

system number density r at different T. The flat region for T t 0.28

indicates that the addition of monomers preferentially results in the

formation of aggregates. The intercept between the flat curve and the

ideal gas behavior provides an accurate estimate of the critical micelle

concentration.

Fig. 6 Cluster size distributions at r = 0.001 for several T values

(a) and at T = 0.25 for several densities (b). The distributions have

been normalized so that
P

ssN(s) = 1.

Fig. 7 Average potential energy (per particle) of clusters of different

size s at several T at r = 0.01. For each s, the lowest energy ever

observed Emin(s), independently from T or r, is also shown.
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point is located inside the percolation region, confirming

once more that a pre-requisite for critical phenomena is the

existence of a percolating network of interactions.48

C Structure factor

It is particularly relevant to look at the structure factor in this

system both in the gas phase at low T, when micelles and

vesicles become prominent, as well as in the liquid phase.

Fig. 8(a) shows the evolution of the structure factor on

increasing density at T = 0.25, across the gas–liquid transi-

tion. At this low T, as discussed in section IVB, vesicles are the

dominant clusters. The structure factor indeed evolves from

the one characteristic of an ideal gas of spherical vesicles (and

indeed the inset shows that S(q) is well represented by the form

factor P(q) of a sphere of radius R):

PðqÞ ¼ 3ðsinðqRÞ � qR cosðqRÞÞ
ðqRÞ3

" #2
; ð4Þ

to the one of interacting spheres, in the micelle-rich gas phase.

Indeed, on increasing r, oscillations at qs E 1.2 arise, which

correspond to distances comparable to the vesicle size. Beyond

density r = 0.6 the gas condenses into the liquid phase, where

only a very weak pre-peak around qs E 3 is found.

Fig. 8(b) shows the evolution of the structure factor on

cooling along the r = 0.4 isochore. Compared to simple

liquids, one observes a non-negligible scattering at small q,

which progressively increases on approaching the phase

separation. These are the standard critical fluctuations which

are expected to diverge on approaching a spinodal line. While

in simple liquids, below the spinodal temperature the system

phase separates in a gas coexisting with a liquid phase, here,

the peculiar shape of the gas–liquid coexistence line (Fig. 1)

opens up new stable states, composed by interacting vesicles

and S(q) becomes peaked at the vesicle–vesicle distance.

D Angular correlations

To provide evidence of the different ordering of the particles in

the gas and in the liquid phase, we have calculated the

distribution of relative orientations between all pairs of

bonded particles. More precisely, we have evaluated the

distribution of the scalar product n̂1�n̂2 where n̂1 and n̂2 are

the two unit vectors indicating the location of the patch center

in each particle frame, for all bonded pairs. The distribution

P(n̂1�n̂2) is expected to show well defined peaks for an ordered

state and to be flat in a completely disordered state. Fig. 9

shows such distribution for several r values at low T. The

orientational differences between the ordered gas phase and

the disordered liquid phase appear very clearly. On increasing

r, P(n̂1�n̂2) evolves from a highly structured function with

peaks close to |n̂1�n̂2| 4 0.5 in the vesicle-rich gas phase, to a

more uniform distribution for the liquid phase state points,

going back to an evenly more structured function when the

lamellar phase is entered. The peak at n̂1�n̂2 close to �1 is

created by the pairs of particles that face each other (as in a

double-layer), while the peak at n̂1�n̂2 close to 0.9 arises from

particles that form the shells of the vesicle.

We note that, to quantify the orientational ordering in the

system, it is necessary to identify an order parameter which

does not depend on single-particle properties, since both gas

and liquid phases are isotropic. We have also investigated the

rotationally invariant local order49 indicators, which have

often been exploited to quantify order in crystalline solids,

liquids and colloidal gels.50,51

qlðiÞ �
4p

2l þ 1

X1
m¼�l

j�qlmðiÞj
2

" #1=2
ð5Þ

where �qlm(i) is defined as,

�qlmðiÞ �
1

Nbi

XNbi

j¼1
Ylmðr̂ijÞ ð6Þ

Here Nbi
is the set of bonded neighbors of a particle i. The unit

vector r̂ij specifies the orientation of the bond between particles

i and j. In a given coordinate frame, the orientation of the unit

vector r̂ij uniquely determines the polar and azimuthal angles

yij and fij. The Ylm(yij, fij) R Ylm(r̂ij) are the corresponding

spherical harmonics. We have calculated the distribution of ql
for the present model. As shown in Fig. 9(b), the resulting

distributions show systematic differences between gas and

liquid phase, but it is hard to provide a clear connection with

the degree of order in the system.

Fig. 8 Structure factor at (a) T = 0.25 for several densities and at

(b) r = 0.4 for several T. The inset in (a) shows the fit with the

form factor of a sphere (eqn (4)). The best-fit value for the radius is

R = 2.26s. The above isothermal and isochore paths are indicated

with dotted lines in Fig. 4.
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E Pathways for vesicles formation

Despite Monte Carlo simulations not allowing for a precise

definition of time, it is interesting to analyze how particles

rearrange themselves into large aggregates. More specifically,

the analysis of the sequence of MC configurations may help

understand how vesicles are generated. We have examined

graphically several processes of formation of a vesicle starting

from a monodisperse solution of particles and one of these

processes is documented in Fig. 10. In all cases, the system

starts by forming small clusters that grow by incorporating

isolated monomers or colliding to similar clusters, to form

micelles (Fig. 10–(a–c)). The transition to vesicle requires the

interaction between three micelles (d–e), with the formation of

a long cylindrical micelle (f) which then self-restructures itself

into the more energetic vesicles configuration (g).

V. Conclusions

This article reports a numerical study of a simple potential for

Janus-like particles, i.e. colloidal spherical particles whose

surface is divided evenly into two areas of different chemical

compositions. This study is motivated by the ongoing effort in

the direction of synthesizing optimal Janus colloids.9,11–13,52

The possibility of creating particles whose surface has different

behaviors on the two hemispheres significantly enlarges

the richness of the resulting collective behaviors. The phase

diagram, the ordered and disordered stable structures, the self-

assembly properties of optimal clusters are indeed expected to

finely depend on the chemistry and physical properties of the

particle surface. For this reason, the assembly behavior of

Janus particles is receiving considerable attention even from a

theoretical and numerical point of view.10,20,53–55 With proper

choices of the chemico-physical surface properties, Janus

particles can provide the most elementary and geometrically

simple example of a surfactant particle,56 in which solvophilic

and solvophobic areas reside on different parts of the surface

of the same particle.

Modeling of the phase behavior of these particles can be

performed at different levels of realism. In this article we have

chosen to implement the highest coarse-graining procedure, by

considering the two sides of the particle as repulsive and

attractive, and modeling each of them with the simplest

corresponding potential, a hard-core plus a square-well. Despite

this strong simplification, the phase diagram of the system

displays a very rich behavior, with a colloidally-poor (gas)

colloidally-rich (liquid) de-mixing region, which is progres-

sively suppressed by the insurgence of micelles, thus providing

a model where micelle formation and phase-separation are

simultaneously observed. The study of this model shows that

the suppression of the phase separation is driven by the

possibility of building low energy clusters which are shielded

by the presence of an external hard-sphere surface, diminishing

the driving force for forming large-size aggregates. As a result,

at low T, the system organizes into a dispersion of orienta-

tionally ordered micelles and vesicles, essentially interacting

via excluded volume only.

Another advantage of studying the one-patch Kern-Frenkel

potential is that the parameters of the potential can be tuned

continuously from the square-well to the Janus potential,

simply by decreasing the coverage wor, equivalently, the

bonding angle. This has made following the evolution of

the gas–liquid coexistence curve with w possible, thus including
the Janus case which displays the inherently interesting simul-

taneous presence of a critical point and of micelle formation. It

would be interesting in the future to explore the transition

from the standard gas–liquid coexistence to the more exotic

Janus case in more detail, by exploring a more refined grid of w
values. It is of course possible that the stabilization of micelle

and vesicles can take place already at w = 0.6 but in a low T

region where numerical simulations can not be performed at

the present time.

Several questions are still open including the role of the

interaction range. Experimentally realized Janus particles are

characterized by interaction ranges of the order of 0.1s
or smaller. The range width is an important variable, since

it controls both the internal flexibility of the aggregates

(and hence the cluster entropy) and the geometries of the

lowest-energy aggregates (cluster energy). In this respect, it

cannot be a priori foreseen if micelle and vesicles will remain

the most stable clusters on further decreasing the range.

We are currently repeating our study for smaller ranges, but

this requires a major computational effort, since clustering

shifts to lower temperature, making studies of the phase

Fig. 9 (a) Distribution of the scalar product between the unit vectors

of all bonded pairs of particles. The gas-like state points are charac-

terized by peaked distributions, revealing the presence of orientational

order. The vesicle configurations significantly contribute to the region

n1�n2 E 1, while the micelle configurations contribute to n1�n2 E �1.
(b) Distribution of the rotational invariant ql in the gas and in the

liquid phase.
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diagram (in particular Gibbs ensemble calculations) extremely

hard with current numerical resources. The sensitivity of the

cluster shape to the cluster range would be an important

observation and could teach us a lot about how to control

the shape of the assembly experimentally, and, perhaps, help

us understand geometric arrangements which are found in

protein aggregates. In this respect it is worth noticing that

micelles have been detected in the most recent experimental

work of Granick11 together with Bernal-spiral clusters, which

have not been observed with the present model, perhaps due to

differences in the interaction ranges.
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