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Abstract – We investigate nanoflows through dilute disordered media by means of joint lattice
Boltzmann (LB) and molecular dynamics (MD) simulations —when the size of the obstacles is
comparable to the size of the flowing particles— for randomly located spheres and for a correlated
particle-gel. In both cases at sufficiently low solid fraction, Φ< 0.01, LB and MD provide similar
values of the permeability. However, for Φ> 0.01, MD shows that molecular-size effects lead
to a decrease of the permeability, as compared to the Navier-Stokes predictions. For gels, the
simulations highlights a surplus of permeability, which can be accommodated within a rescaling
of the effective radius of the gel monomers.
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Introduction. – Flow phenomena in disordered media
are a subject of great theoretical and practical inter-
est [1,2]. In case of a fluid streaming through a random,
low-density porous matrix, descriptions based on contin-
uum hydrodynamics have been provided [3–8]. Contin-
uum theories are expected to hold on macroscopic scales
and thus might be non-applicable to fluid flow through
microfluidic devices or through micro-gel matrices where
the typical size of the pores is at nanometer length scales
and below.
However, as shown in several simulation studies (see,
e.g., refs. [9,10]), hydrodynamics often holds down to the
molecular scale, as far as simple steady-state flows of dense
liquids are concerned. Similar conclusions have also been
reached recently for the non-trivial case of microflows over
super-hydrophobic surfaces [11]. However, in particular for
the case of nanoflow in disordered media, the question of
whether/to what extent continuum theory is applicable to
flows at the nanoscale in porous materials, remains open
to this day. Indeed, previous studies on flow phenomena
in disordered media have employed only mesoscopic or
macroscopic simulation methods, such as finite-element
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schemes [12,13], the LB method [14–21], and smoothed
particle dynamics [22,23]. In this work, we address such
a question using a combination of lattice Boltzmann
(LB) and molecular dynamics (MD) simulations. While
LB is used as an effective Navier-Stokes equation solver,
the MD simulations are performed to solve Newton’s
equations of motion for a three-dimensional system of soft
spheres. As porous media, we consider non-overlapping
random arrangements of particles, as well as particle gel
networks at different packing fractions. In both cases, flows
through bulk porous media and through porous media
confined between parallel plates are considered. First, we
show that a quantitative mapping between LB and MD
can be established. Second, we study to what extent
continuum theory is applicable at the molecular scale.
This is particularly interesting for gel networks, since they
introduce long-ranged structural correlations which are
not present in the random arrangement of obstacles. For
this case, we quantify deviations to predictions of the
theory. Interestingly, the theory is renormalizable, i.e. the
observed deviations due to an excess of permeability can
be reabsorbed within a readjustment of the effective radius
of the gel monomers.
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Theory. – For low-Reynolds-number flow, Darcy [24]
first established empirically a linear relation between
the average volumetric flow velocity through unit cross-
sectional area, 〈!v〉, and the pressure gradient !∇p of the
fluid across the porous medium, 〈!v〉=−(k/η)!∇p (with η
the shear viscosity of the fluid and k the permeability).
Note that the measurement or calculation of 〈!v〉 implies an
average over different realizations of the porous medium.
In case of high dilution of spheres of radius R as a porous
medium, Darcy’s law reduces essentially to Stokes’ law,
with a permeability k0 = 2R2/9φ, [16,25].
Brinkman’s theory is based on the stationary Navier-

Stokes equations [25], η∇2!v− !∇p+ !F = 0 and !∇ ·!v= 0,
with !v the flow velocity and !F an external force per
unit volume acting on the fluid. By setting !v≡ 〈!v〉 and
by expressing the external force !F through Darcy’s law,
!F =−η!v/k, Brinkman’s equation of motion [3] is obtained:

∇2!v− 1
η
!∇p− 1

k
!v= 0. (1)

This equation describes the porous matrix as an effective
medium that exerts a friction on the fluid. The substitu-
tion of the external force !F by Darcy’s law is expected to
be valid only if the packing fraction of the porous medium
is sufficiently small (see below).
From eq. (1), one can derive an explicit formula for the

flow between two parallel plates in presence of a porous
medium. Consider a gravitational force field ρg in the
x-direction and two parallel plates at z =−L/2 and z =
L/2. The porous medium between the plates is represented
by a random matrix of fixed non-overlapping spheres.
Then, the velocity profile is given by

vx(z) =
kg

ν

[

1− cosh(z/
√
k)

cosh(L/2
√
k)

]

(2)

with ν = η/ρ the kinematic velocity of the fluid.
For a dilute collection of non-overlapping spheres, differ-

ent expressions for the permeabiliy as a function of the
volume fraction, Φ≡ 4πR3n/3, of the porous medium have
been investigated [3–7]. A simple expression for the perme-
ability over the entire range of volume fractions has been
proposed by van der Hoef et al. [7] by fitting both LB [5,7]
and multipole expansion data [6]:

k= k0

[
10

Φ

(1−Φ)3 +(1−Φ)
(
1+1.5

√
Φ
)]−1

. (3)

Note that the square-root of the permeability,
√
k,

describes the screening length of the flow field due to the
interaction with the porous medium.
Equations (2) and (3) are the main results which

our simulations on nanoscopic scales will be compared
against.

Methods and simulation details. – We use a stan-
dard lattice Boltzmann model with single-step relax-
ation term [26–28]. No-slip boundary conditions at solid

surfaces are implemented via standard bounce-back colli-
sion rules [29]. Fully developed periodic flows are gener-
ated by pressure boundary conditions [30]. The size of the
LB D3Q19 lattice is (192× 48× 48) in lattice units. When
present, slit walls are placed parallel to the xy-plane with
surfaces at locations z = 4 and z = 43.
For the MD fluid, we choose a binary model system

as proposed by Hedges et al. [31] for which, also at low
temperatures, crystallization is not a problem and thus
this model can be used in forthcoming studies on glass-
forming fluids in porous media.
The MD fluid is composed of a 50:50 mixture of A-

and B-type particles interacting with a WCA poten-
tial, Vαβ(r) = {4εαβ [(r/σαβ)−12− (r/σαβ)−6] + εαβ}, for
r < r− = 21/6σαβ (zero else). The parameters are εAA =
εAB = εBB = 1 and σAA = 1.0, σAB = 11/12, σBB = 5/6
[31]. In the following, length and energy scales are
measured in units of σ= σAA and ε= εAA, respectively;
temperature is in units of the potential depth ε. The
masses of both A and B particles are taken equal,
m=mA =mB = 1. The equations of motion are inte-
grated with the velocity form of the Verlet algorithm
using a time step δt= 10−3 in units of t0 = [mσ2/ε]1/2.
Thermalization at the constant temperature T = 5.0 is
obtained with a Lowe thermostat [32], which provides
local momentum conservation and thus it preserves the
correct hydrodynamic behavior of the fluid. The size
of the MD simulation box is (32× 8× 8) in units of σ.
The total density of all systems is set to ρ= 1.3. First
the porous material is introduced in the simulation box
which is then filled with the appropriate number of fluid
particles to reach the desired density. A pressure drop is
applied along the x direction by adding a gravitational
field (g) on the fluid particles, whose intensity (g in units
of σ/t20) is chosen such that a linear response of the
system is provided. The kinematic viscosity ν of the fluid
has been calculated aside from separate Poiseuille-flow
simulations, which yields ν = 24σ2/t0.
The porous material is composed of A-type particles

and their position is kept fixed as a momentum absorbing
material.
To simulate slit walls (whenever present), the system is

first equilibrated in a (32× 8× 10.2)σ box and then all
fluid particles within a distance zw = 1.2σ from the planes
z = 0 and z = 10.2σ, are labelled as wall particles. Wall
particles retain the same interactions as fluid particles,
but their position is kept fixed. In this way we account for
the walls roughness and avoid layering effects. To avoid
diffusion of fluid particles in the wall region, an external
potential (previously defined as VAA) is added along two
planes parallel to the xy-plane, at a distance zp = 21/6σ
from the slit walls. In this way, fluid particles feel the
external potential only when they start diffusing into the
walls.
To compare LB and MD, units have to be scaled

appropriately. One of our goals is to assess the validity
of the LB predictions for microscopic flows which can be
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Fig. 1: (Colour on-line) Two snapshots at Φ= 0.1 with random
medium (a) and gel (b). Porous media are coded in red, the
binary mixture fluid is coded in yellow and green. The size of
the fluid particles is not at scale to improve visibility.

resolved through MD. As shown recently [10], in order to
recover quantitative agreement with MD results, the LB
simulation must be taken down to microscopic resolution,
i.e. fractions of the range of molecular interactions. The
space conversion proceeds as follows. In LB simulations
the lattice spacing, ∆x is set to unity, while in MD
simulations the unit of length is fixed by the parameter
σ. To resolve fractions of the interaction potential we set
∆x< σ, specifically we choose σ= 6∆x. This fixes the
conversion of space units. It also fixes the radius of the
LB spheres as R= σ/2 = 3∆x. In the rest of the letter we
adopt σ= σAA = 1 as our unit of length.
The time conversion is determined from kinematic

viscosity ν. The kinematic viscosity in the LB simulation
is given by νLB = ν̃LB

∆x2

∆tLB
, with ν̃LB = 1/6, while for

MD we have νMD = ν̃MD
σ2AA
∆tMD

, with ν̃MD given by the

Poisseuille flow comparison. By imposing νLB = νMD and
remembering the space conversion factor we obtain for
time scales ∆tMD =

∆tLB
62

ν̃MD
ν̃LB
.

The Reynolds number is Re= 〈!v〉R/ν, where 〈!v〉 is the
spatially averaged velocity, R is the radius of the obstacles
and ν is the kinematic viscosity. We use very low external
fields (g= 0.05 in units of σ/∆t2MD), so that Re< 10

−3

and simulations can be considered under effectively zero-
Reynolds-number conditions.
MD and LB simulations are best compared in terms of

dimensionless quantities, such as the normalized perme-
ability k/k0, where k0 is the permeability of a single sphere
(as given by Stokes law). Other dimensionless quantities
used in the present work are the dimensionless position
z/L, with L the width of the slit, and the dimensionless
velocity profile u= νv/(gR2).
Simulations of fluid flow through two types of obstacles

are considered: random media and gel media.
Random media are modeled as a collection of non-

overlapping spheres of radius R. We average over 50 inde-
pendent random configuration for each volume fraction Φ
considered, in the range Φ= 0.008–0.27.
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Fig. 2: (Colour on-line) Dimensionless permeability as a func-
tion of volume fraction Φ for the random sphere matrix from
MD simulations (circles) and LB simulations (squares). The
LB data is well described by the theoretical prediction of
eq. (3) (continuous line), except at low volume fractions where
the agreement holds with the asymptotically exact result of
Kim and Russel [4] (dashed line). For comparison also the
result of the Brinkman theory [3] (dotted line) is shown. MD
results consistently deviate from hydrodynamic predictions for
Φ> 0.01.

Gel networks are characteristic random structures with
long-range spatial correlations. A gel is usually made
of a network of polymer strands or from self-assembled
colloidal particles. The number of bonds is so high that it is
always possible to move from one gel-forming monomer to
another without ever leaving the network. This interlinked
structure confers the gel its peculiar properties, sharing
characteristics of both liquids and solids. It behaves like
a liquid since it can be made up primarily of fluid and
allow both diffusive and convective transport through its
volume. On the other hand, a gel is also able to support a
shear stress and behave elastically, acting like a solid. In
the present study, we neglect the elastic behaviour of gels,
keeping the monomers fixed and taking advantage of the
rigid framework through which mass transport can occur.
Gel structures are obtained through equilibrium MD
simulations of Patchy particles. Patchy particles are a class
of short-ranged valence-limited particles which can reach
low temperatures without encountering the gas-liquid
phase separation [33]. The corresponding low-T arrested
states are in fact equilibrium gels which we use for the
present study. We follow the procedure described in [34],
for networks with average valence 2.25, equilibrated until
all particles belong to the same spanning cluster. Here, we
generated 50 independent gel configurations at each of the
packing fractions Φ= 0.03, 0.05, 0.075, 0.1, 0.15, and 0.2.
Figure 1 shows snapshots of MD configurations with the
random medium (a) and the gel (b) at Φ= 0.1.

Results. – All obstacles considered in the present
paper are collections of spheres whose hydrodynamic
radius is estimated by measuring the drag force on a
single sphere with periodic boundary conditions and
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Fig. 3: (Colour on-line) Comparison of LB (squares) and MD
(circles) for the random medium at different volume fractions.
Full lines are the theoretical profiles, eq. (2). Agreement
between LB data and theoretical predictions is perfect for all
volume fractions investigated. MD solutions display instead a
different pattern.

comparing the result with the theoretical expression given
by Hashimoto [35]. For LB, this procedure leads to a
hydrodynamic radius of R= 3.05, slighty larger than the
nominal radius (in agreement with previous studies [29]).
For MD we obtain a value of R= 0.44, assuming slip
boundary conditions. The same value, R= 0.44 can be
estimated from the interaction potential for the MD
particles: at 2 ·R= 0.88 the potential energy between two
particles, separated by a distance 2 ·R= 0.88, is approxi-
mately equal to kBT . We conclude that for our atomistic
fluid slip boundary conditions provide a consistent
description of the interactions between obstacles and fluid
particles. We remind that the difference between stick
and slip boundary conditions is included in the Stokes
expression: k0 = 2R2/(9Φ) (stick) and k0 =R2/(3Φ) (slip).
Figure 2 shows the results for the flow through random

porous media (without slit walls) for both MD and LB
simulations. LB results confirm eq. (3), except for the
lowest volume fractions, where the low-density result
of result of Kim and Russel [4] holds. Note that the
agreement with Brinkman theory is also good for low
volume fractions, say Φ< 0.08. The grid-independence of
LB results was checked by doubling the resolution (σ=
12∆x). MD data shows instead significant deviations from
the hydrodynamic solution. While for Φ< 0.01 the agree-
ment between MD and LB seems to hold (within statisti-
cal accuracy), at higher volume fractions the MD results
show visible under-deviations. These can be interpreted as
genuine atomistic effects, where the reduced permeabil-
ity is due to the finite size of the molecules. Indeed, at
Φ=0 .01, the ratio d/σ between the average intermolecu-
lar distance and the molecular effective diameter is of the
order of d/σ∼ 4, whereas for Φ= 0.1, one has d/σ∼ 2.
We have also investigated the effect of slit walls on

the permeability k. To this end, we have determined
the velocity profiles vx(z), averaged over all crossflow yz
sections. Inspection of the LB and MD velocity profiles
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Fig. 4: (Colour on-line) Dimensionless permeability as a func-
tion of volume fraction Φ for the gel matrix from MD simu-
lations (circles) and LB simulations (squares). The dashed
line represents the results for the random sphere matrix from
fig. 2. The inset shows the α parameter defined in eq. (4) for
MD (circles) and LB (squares).

in fig. 3 for random media at different values of Φ
shows excellent agreement with the prediction of eq. (2)
for LB. In contrast to that, the MD profiles show a
different pattern from the hydrodynamic solution: again,
this indicates the differences between hydrodynamic and
atomistic flow for Φ> 0.01.
We can conclude that both global (permeability) and

local (velocity profiles) properties of an atomistic flow
show consistent deviations from the hydrodynamic solu-
tion also at relatively low volume fractions. The results
obtained show the limits of applicability of continuum
approaches when dealing with microscopic and structured
fluids.
We now turn to the study of the effects of the correlation

between the obstacles’ positions on the flow properties for
both the hydrodynamic solution (LB) and the microscopic
flow (MD). Differently from random spheres, gel media
is characterized by short-range correlations between the
particles’ positions. Figure 4 reports the results for the
gel media for both MD and LB simulations. This figure
indicates that the permeability of the gel is always higher
than that of the random media for both hydrodynamic
and microscopic flows. Also for the gel, the MD perme-
ability always underestimates the LB solution at packing
fractions Φ> 0.01.
Next, we show that the increased permeability induced

by the correlations between the obstacle particles can
be taken into account by simple renormalization of the
theory for random obstacles. We first observe that the
permeability can be formally written as k=R2f(Φ),
where f(Φ) is a dimensionless function of Φ. Given the
proper expression for the random sphere case (eq. (3) for
the LB data), a formal generalization for the gel case can
be obtained by introducing an effective parameter α(Φ),

k= α(Φ)R2f(Φ). (4)
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The introduction of the parameter α(Φ) formally corre-
sponds to the definition of an effective Stokes radius,
Reff(Φ) =

√
αR, which depends on density. The inset of

fig. 2 shows the value of the parameter α calculated both
for LB (squares) and MD (circles) simulations. For both
types of simulations the effective Stokes radius remains
almost constant at all considered volume fractions, so
that we can conclude that the gel structure results in an
increase of the bare permeability by about 50%, which can
be also interpreted as an increase of the effective Stokes
radius by a factor 1.25.

Summary and conclusions. – We have investigated
nanoflows through disordered media by means of joint LB
and MD simulations. For random media at Φ< 0.01, both
LB and MD provide similar values of the permeability,
confirming that the hydrodynamic approach holds down
to the nanoscale at sufficiently low volume fractions.
For higher volume fractions, the MD simulations reveal
under-departures from the hydrodynamic solution. Since
LB simulations still agree with the eq. (3) prediction,
these under-departures are most naturally interpreted as
genuine atomistic effects, i.e. breakdown of the continuum
hydrodynamic hypothesis at the nanoscale. The same
conclusions result from the study of the velocity profiles
within solid slabs filled with random media, showing that
the MD flow is qualitatively different from LB predictions.
We have then explored the effects of the correlations in
the obstacles positions by studying the flow through a
correlated medium, i.e. gels. We have shown that gels
exhibit a surplus of permeability. This surplus, about 50%,
can be reinterpreted as an increase of the effective radius
of the gel monomers, thereby indicating that, at least for
the cases explored in this work, the hydrodynamic solution
appears to be renormalizable.
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