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Nanoparticles (NP) functionalized with single-stranded DNA (ssDNA) offer a route to custom-designed, self-
assembled nanomaterials with potentially unusual properties. The bonding selectivity of DNA guarantees one-to-one
binding to form double-stranded DNA (dsDNA), and an appropriate base sequence results in head-to-tail binding
linking NP into networks. We explore the phase behavior and structure of a model for NP functionalized with between
3 and 6 short ssDNA through simulations of a coarse-grained molecular model, allowing us to examine both the role of
the number of attached strands (valency) and their relative orientations. The NP assemble into networks where the
number of NP links is controlled by the number of attached strands. The large length scale of the DNA links relative to
the core NP size opens the possibility for the formation of interpenetrating networks that give rise to multiple
thermodynamically distinct states. We find that the 3-functionalized NP have only a single phase transition between a
dilute solution of NPs and an assembled network state. 4-Functionalized NP (with tetrahedral symmetry) exhibit four
amorphous phases, or polyamorphism, each higher density phase consisting of an additional interpenetrating network.
The two investigated geometries of 5-functionalizedNP both exhibit two phase transitions and three amorphous phases.
Like the 4-functionalized NP, the highest density phase consists of interpenetrating networks, demonstrating that
regular symmetry is not a prerequisite for interpenetration to produce thermodynamically distinct phases. The width
of the coexistence regions for all phase transitions increases with increasing functionality. Finally, for 6-functionalized
NP with octahedral symmetry, the possibility of observing disordered phases with significantly bonded particles is
preempted by the formation of ordered crystal phases. Interestingly, the extreme softness of the potential combined with
the directional interaction allows for the formation of (at least) six distinct crystalline structures (i.e., polymorphism)
consisting of up to six interpenetrating simple cubic lattices.

1. Introduction

The application of biological constructions to artificially
devised complexes holds great promise for the development of
self-assembled nanostructures and materials.1-3 Among the
many choices, DNA is particularly attractive, as the bonding
specificity and “lock-and-key” interactions offer a route to design
highly organized materials through a synthetic bottom-up
approach.4-6 Complex DNA-based networks require the linear
single strands (ssDNA) or double stands (dsDNA) to be linked by
junctions, formed either by a branched DNA structure7-9 or by
linking the DNA to a vertex unit.10 By grafting multiple ssDNA
to core nanoparticles (NP), and an intelligent choice for the base
sequence, DNA-functionalized NP link via the formation of
dsDNA, and the NP act as nodes of a complex network.

Experimentally, most studies of DNA-functionalized particles
have explored uniform coverage of micrometer size colloids11-15

or nanoscale gold NP.16 While there has been success making
ordered crystal structures,15,17-19 such uniform coating makes it
difficult to control the organization of higher order structures. If
one can make an appropriate choice of geometry of the ssDNA
attached to a core NP, or alternatively control the geometry of
preassembled DNA macromolecules (e.g., the Holliday junction
or synthetic junctions20,21), it should be possible to control the
symmetries of the resulting structures.22 Such controlled attach-
ment points to a core NP have been achieved experimentally,23,24

but examination of bulk material properties has so far only been
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realized through computer simulation.25-27 Here, we take advan-
tage of the control offered by simulations to address the role of the
number of attached DNA strands on the macroscopic behavior
via a coarse-grained molecular model.

Unlike uniformly functionalized NP, systems with a limited
bonding coordination, or valency, readily form a homogeneous
low-density state with significant empty space in the network.28

NPwith a specified number of attached ssDNA (i.e., valency) can
have near vanishing densities, since the length scale of the DNA
bonding “arms” can be large as compared with the core NP size,
even when the length of the DNA sequence is below the dsDNA
persistence length. For the case of tetrahedrally functionalized
NP, the units can assemble into a large-scale amorphous network
with locally tetrahedral order.25-27 Moreover, since vast empty
spaces exist and are locally tetrahedral, it is possible to repeat the
motif with a second locally tetrahedral network occupying the
unoccupied space of the first network. Within the investigated
length of theDNA sequences (less than 16base pairs), this process
can be repeated a third time, and at low temperature, these
networked states become thermodynamically distinct phases,
resulting in a phase diagram with 3 critical points and 4 amor-
phous phases. Thismultiplicity of amorphous phases is referred to
as “polyamorphism”,29 in analogy to “polymorphism”, themulti-
plicity of ordered crystal phases, such as occurs in many net-
worked crystals like water and silica as well as in certain classes of
ultrasoft materials like star polymers.30

Since the emergence of polyamorphism in the tetrahedrally
functionalized NP is a consequence of the possibility to repeat
interpenetrating tetrahedral structures, it is natural to askwhether
such interpenetration can be effective when the network structure
does not have a regular, repeating form. Toprobe this question, in
this article we explore amodel ofNP functionalizedwith 3, 5, or 6
ssDNA with various directional arrangements. We find poly-
amorphous phase behavior for 5-armed NP with two different
choices for the attachment orientation of the ssDNA, only one of
which can form a geometrically regular space-filling network. For
the 3-armed NP, we find only a single phase transition. For the
6-armed NP with octahedral symmetry, we find a hierarchy of at
least six distinct crystal phases (polymorphism) and no stable
amorphous phase transitions. This confirms that the cubic
symmetry of the particle bonding sites imposes the same local
bonding geometry on the crystal state, significantly lowering the
nucleation rate.31,32 Again, the possibility of nucleating a very
open cubic crystal does not prevent the possibility of filling the
remaining space with other interpenetrating ordered identical
structures.

We demonstrate that the polyamorphism and polymorphism
in all systems is the result of the interpenetration of multiple
networks or lattices. Our findings are based on a series of Monte
Carlo simulations of a generalization of the previously studied
model for 4-armedNP complexes.25,34We describe themodel and

calculations in section 2. In section 3 we describe the results of the
3-, 4-, and 5-armedNP, which yield a phase diagram occupied by
amorphous states, and in section 4 we examine the octahedral NP
that exhibit hierarchies of cubic crystals. Our findings confirm
that the extreme softness of these particles opens new possibilities
for designing materials with interpenetrating networks in a very
flexible structure.

2. Model and Simulation Methods

2.1. Model. To mimic nanosized particles grafted with a
number of single strands of DNA studied experimentally,23,24

ref 25 introduced a model of DNA dendrimer that has four single
strands of DNA (ssDNA) tethered to a nanoparticle hub in a
tetrahedral orientation. This model, which has also been adapted
to describe complex DNA architectures like the Holliday junc-
tion,33 captures the base-pair selectivity between two ssDNA and
the bonding selectivity which ensures that each base can only
bond to one other base. In this model, each DNA base, also
described by a force site, is identified as either type A, T, C, or G,
the standard abbreviation for the bases of DNA. Bases of type
A can only bond with bases of type T; similarly, bases of type
C can only bondwith bases of typeG. By choosing a palindromic
base sequence, two ssDNA can bond in a head-to-tail order to
form dsDNA. Strands are tethered to a nanoparticle hub that
interacts via a short-ranged, purely repulsive potential to capture
excluded volume effects. See ref 25 for a complete description.

This detailed model of base-base interaction is computation-
ally costly for studying the bulk behavior due to the large number
of force sites required. Therefore, an effective potential model was
introduced througha coarse-graining study to simplify theoriginal
model.34 This effective bonding potential between two ssDNA
armsparametrizes the interactions of theoriginalmodel using only
the separation of the two nanoparticle cores and the relative
angular orientation defined by the position of the DNA arms.
With an additional lock-and-key condition imposed to mimic the
bond selectivity that each arm combines with only one other
ssDNA, this parametrized potential quantitatively reproduced the
structure and phase behavior of the more complex model of NP
functionalized with four ssDNA in a tetrahedral orientation.27,34

We use this effective nonadditive pair potential as a starting
point and use the same form of the potential between DNA
strands. To examine the effect of valency, we consider several
choices for the number of ssDNA tethered to the nanoparticle
cores, ranging from three to six, with distinct geometries. The
DNA length is fixed to four bases. To reiterate, the model we
use here is identical to that of ref 27, except for the number and
direction of attached strands. Figure 1 summarizes the geometries
of the macromolecular complexes we study: (a) the triangular
planar (3-TP) are tethered with three ssDNA geometrically
distributed on the same plane, 120� apart pairwise; (b) the
tetrahedral geometry resembles the bond orientation of a carbon
atom in a diamond lattice; (c) the square-based pyramid (5-SBP)
structure has five ssDNA pointing to five vertexes of the square-
based pyramid; (d) the triangle-based bipyramid (5-TBP) has the
shape of sp3d hybridized orbitals, equivalent to adding two
additional ssDNA perpendicular to the previous 3-TP geometry;
(e) the octahedral unit aligns six arms along orthogonal axis. The
tetrahedral geometry has been discussed previously;27 here we
focus our attention on the other four geometries to investigate the
valency dependence of phase behavior. The phase diagram
corresponding to geometries (a)-(d) will be discussed in section 3,
while the behavior of the octahedral units will be discussed in
section 4. For reference, the total computational time for our
study is estimated to amount to ≈15 months.
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2.2. Simulation Methods. For the amorphous systems, we
first perform a series of Monte Carlo simulations in the grand
canonical ensemble (fixed chemical potential μ, volume V, and
temperature T) to coarsely map out the phase diagram from
isotherms in the F-μ plane. Here we use reduced units defined by
the effective potential.35 Discontinuities of F indicate the approx-
imate phase boundaries of a first-order phase transition. These
results serve as a guide for more refined calculations, which we
describe in the following.

To accurately locate the critical point, we select a state point
that exhibits a bimodal density distributionP(F), asP(F) is known
to be bimodal close to a second order critical point. Moreover,
since the order parameter distribution P(M) at the critical point
for our system should follow the Ising universality class,27 we
apply a histogram reweighting scheme36 to estimate the critical
temperature Tc and critical chemical potential μc where P(M)
takes the expected form.HereM=F- su; u is the potential energy
density and s is the field-mixing parameter. We carry out an
additional simulation at the estimated Tc and μc and refine the
estimate of Tc and μc again from histogram reweighting. We
iterate this process until P(M) converges to the form of the Ising
class to within a very narrow tolerance.

Starting from the critical point and going down in T, we
calculate P(F) at phase coexistence using multicanonical sampling
to preweight the sampling and artificially enhance the occurrence of
switching between coexisting phases.36 This requires that we first
use histogram reweighting again to determine the appropriate μ for
phase coexistencewhenwe changeT. The initial estimate for μmay
require further refinement after performing an initial simulation.
The densities of the coexisting phases can then be determined from
the peaks of the P(F) distribution at coexistence.

3. Amorphous Systems

3.1. Phase Behavior. We evaluate the phase behavior using
the numerical procedure described in section 2 and locate the

phase boundaries in the T-F plane for the 3-TP, 5-TBP, and
5-SBP complexes (Figure 2) and include data for the tetrahedral
dendrimer previously studied for comparison.27 We find that
3-TP systems exhibit only one phase transition between unasso-
ciated molecules and a networked fluid state, analogous to a
gas-liquid phase transition. We cannot formally rule out an
additional phase transition atTe 0.07 (the lowestT investigated),
but we do not expect any additional transition based on the
relative transition temperatures for the 4- and 5-armed systems,
which we now examine.

Both the 5-SBP and 5-TBP systems exhibit two critical points
and three amorphous phases, as in the tetrahedral system, which
has one more critical point and phase than the 5-armed systems.
Simulations at larger F and low T for systems of both 5-armed
nanoparticles show a rather sharp crossing between two states of
different F, but we were unable to uncover unambiguous evidence
that this crossover is discontinuous (i.e., not an additional first-
order transition). In the previous study of the tetrahedral system,
the occurrence of multiple critical points was explained by the
formation of multiple interpenetrating networks. Our results
indicate that multiple phase transitions can also occur for other
geometries. But the question remains: do the multiple transitions
occur in the 5-armed systems by constructing interpenetrating
networks or by someothermeans.Wewill address this question in
the next section examining the structure.

The locations of the critical points of both the gas-liquid and
liquid-liquid phase transitions decrease in both F and T as the
valency decreases, and coexistence regions become smaller. These
findings are in agreement with previous findings for the li-
quid-gas transition of systems with limited valency γ.28,37 To
our knowledge, this is the first time the effect of valency on the
liquid-liquid transitions has been examined. The decrease of Tc

with decreasingγ can be understood from the fact that, with fewer
bonding arms, the total binding energy of a networked state is
smaller. Accordingly, less thermal energy is required to break up
the network into a gaslike phase. The decrease of Fc with
decreasing γ can be understood from the fact that, with fewer
bonding arms, fully bonded structures require lower densities.
The decrease of density for low valency particles was suggested to
provide an equilibrium route, as opposed to phase separation,38

Figure 1. Cartoon of the geometries of the DNA-functionalized
nanoparticles studied: (a) triangular planar (3-TP), (b) tetrahedral,
(c) square-based pyramid (5-SBP), (d) triangle-based bipyramid
(5-TBP), (e) octahedral. The central sphere indicates the NP, while
the cylinder represents the sequence of DNA base pairs tethered to
the central core at the small sphere locations.

Figure 2. T-F phase diagram of geometries 3-TP, tetrahedral,
5-TBP, and 5-SBP. The density is scaled by the cube of the bonding
distance d3 such that the density is comparable to the density of
hard-sphere systems.

(35) The reduced units are defined in terms of the detailed model in ref 25, where
length is in units of an effective base diameter, energy is in units of base-pair
attraction ε, and T is in units of ε/kB.
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to gel formation in the context of short-range particle interac-
tions.39,40 This work demonstrates that a strong thermodynamic
driving force for phase separation;competing with the forma-
tion of equilibrium gels;may be present even for densities larger
than the gas-liquid typical densities when the softness of the
potential allows for formation of interpenetrating fully bonded
networks via the onset of additional phase separations.Moreover,
our results suggest that this unexpected phenomenon does not
require a specific valence or a specific orientation and can be
exhibited by nanoparticles with more complex interactions.

The two geometrieswithγ=5exhibit phase boundaries that are
nearly quantitatively identical, indicating that the phase behavior
is not sensitive to geometric differences of the molecular units we
have studied. This result agrees with previous study of systems of
hard-sphere patchy particles with either fixed or random location
of the patches.28 However, in the patchy hard sphere system;
where nearest-neighbor distances are controlled by the hard-core
diameter and not by the bonding;only one phase transition is
observed. If binding can occur in any direction, it will be possible
to form all bonds at nearly any liquidlike F. With specific
orientation of the arms, not all bonds may be possible in some
density ranges, potentially creating a thermodynamic drive to
separate into coexisting phases which are each fully bonded. In
other words, the specificity in distances and orientations required
for bonding introduces a strong coupling between the energy of
the systemand its density, thus establishingoptimal density values
where fully bonded states can be achieved.41 To assess how the shape of the coexistence curves depends on

valency, we examine a scaled version of the phase diagram in
Figure 3. Specifically, we first scale T by the respective critical
temperature of each transition. We then shift F by Fc for each
transition separately; we then scale by critical density of the first
phase transition so that the widths of the coexistence regions are
comparable. Results from ref 28 are also added to Figure 3a to

Figure 3. T-F phase diagram with density shifted by respective
critical densities and scaled by first critical density; the temperature
is scaled by the respective Tc. The solid lines are guides to the eye.
(a) The first phase transition, analogous to a gas-liquid transition,
for geometries 3-TP, tetrahedral, 5-TBP, and 5-SBP. In addition,
we show results from patchy colloids from reference with either 3,
4, or 5 patches.28 (b) The second phase transition, a liquid-liquid
phase transition, for geometries 5-TBP, 5-SBP, and tetrahedral.
(c) The third phase transition for tetrahedral geometry.

Figure 4. Radial distribution function g(r) as a function of scaled
distance r/d, where d is the typical bonding distance. For visual
clarity, g(r) for 5-SBP, tetrahedral, and 3-TB are shifted vertically
by 1, 2, and 3, respectively. (a) g(r) of the first liquid, including
geometries 3-TB (T=0.08, Fd3=0.28), tetrahedral (T=0.073, Fd3=
0.64), 5-SBP (T=0.0826, Fd3=0.86), and 5-TBP (T=0.0825, Fd3=
0.82). (b) g(r) of the second liquid, including tetrahedral (T=0.073,
Fd3=1.29), 5-SBP (T=0.0826,Fd3=1.43), and 5-TBP (T=0.082 50,
Fd3=1.44).

Figure 5. g(r) restricted to bonded neighbors up to a specific
chemical distance D for the second liquid of (a) tetrahedral
geometry (T=0.073, Fd3=1.29), (b) 5-SBP (T=0.0826, Fd3=
1.43), and (c) 5-TBP (T=0.0825, Fd3=1.44).

(39) Zaccarelli, E.; Buldyrev, S. V.; La Nave, E.; Moreno, A. J.; Saika-Voivod,
I.; Sciortino, F.; Tartaglia, P. Phys. Rev. Lett. 2005, 94, 218301.
(40) Bianchi, E.; Largo, J.; Tartaglia, P.; Zaccarelli, E.; Sciortino, F. Phys. Rev.

Lett. 2006, 97, 168301.
(41) De Michele, C.; Gabrielli, S.; Tartaglia, P.; Sciortino, F. J. Phys. Chem. B

2006, 110, 8064.

http://pubs.acs.org/action/showImage?doi=10.1021/la903031p&iName=master.img-003.jpg&w=194&h=230
http://pubs.acs.org/action/showImage?doi=10.1021/la903031p&iName=master.img-004.jpg&w=167&h=223
http://pubs.acs.org/action/showImage?doi=10.1021/la903031p&iName=master.img-005.jpg&w=192&h=230


DOI: 10.1021/la903031p 3605Langmuir 2010, 26(5), 3601–3608

Dai et al. Article

facilitate the comparison of the phase boundary of the ssDNA-
armed nanoparticles with that of the colloids functionalized with
3, 4, or 5 geometrically distributed “sticky patches” that serve as
bonding sites.28

For the DNA system, the shape of the liquid-gas phase
boundary near Tc is largely insensitive to the number of arms.
Further from the critical point, the 3-armed system appears
widest, consistent with the patchy colloid system (although the
difference in width for the patchy colloidal system occurs further
from the critical point, outside our plot range). The phase
boundary for the second transition (in the 5-TBP, 5-SBP, and
tetrahedral systems) appears largely insensitive to the number or
orientation of the arms. However, we should be careful to point
out that the data only cover a small range near the critical point;
further from Tc, the phase boundaries may differ. For reference,
we also show the third transition for the tetrahedral system.

We note that there is a clear difference in phase boundaries of
the DNA and patchy colloid systems, which can be explained by
the nature of DNA bonding. In our model, the DNA arm
bonding process requires simultaneous bonding of a sequence
of four DNA bases. This high degree of cooperativity in bonding
yields a much larger enthalpy and entropy change on bonding
than for the patchy colloids. Accordingly, the phase separation
occurs over a very narrowwindow, flattening the phase boundary
near the critical point.
3.2. Structure.We now examine the fluid structure to deter-

minewhether the second phase transition in the 5-SBP and 5-TBP
systems arise through network interpenetration, as previously
shown for the tetrahedral system.27As a first step in this direction,
we calculate the radial distribution g(r), where r is the separation
between the centers of particles. We show g(r) for the first
networked liquid (i.e., for the phase coexisting with the gas) for
all geometries in Figure 4a; we show g(r) for the second network
liquid for the tetrahedral, 5-SBP, and 5-TBP systems inFigure 4b.
The separation r is scaled by d, the typical bonding distance, so
that the first peak (the separation of the first bonded neighbor) is
at r/d=1. For the tetrahedral system, the second-neighbor peak
occurs at 4/

√
6 ≈ 1.63 times the position of the first-neighbor

peak, typical for an ideal tetrahedral coordination. In contrast,
g(r) for the single network formed by 3-TP has a broader second
peak at r/d ≈ √

3 ≈ 1.8, consistent with the 120� angle between
two arms. For the 5-SBP and 5-TBP systems there is a very weak
and broad second peak at r/d ≈ 1.5. This clarifies that the 3- and
5-armed systems do not form networks with a locally tetrahedral
order.

The structural difference between single networks of tetrahe-
dral and the other geometries can also be observed in the region

r/d < 1. Specifically, for the tetrahedral structure, g(r) is identi-
cally zero for r/d j 0.8, while 3-TP, 5-SBP, and 5-TBP have a
small amplitude for 0.25 j r/d j 0.8, signifying the presence
of molecules at distance closer than first-bonding neighbors.
Accordingly, the structures of these networks are far less regular
than the tetrahedral system.

For the second liquid of the polyamorphous systems
(Figure 4b), we observe a significant increase in g(r) for the region
r/d < 1. The large increase of particles at distances less than the
first-neighbor binding distance is consistent with the presence of a
complementary network that interpenetrates the first one. Such
interpenetration is possible due to the short-range of core repul-
sion compared to the bonding distance. Structural features similar
to those of the first liquid can be observed in the second liquid: the
second peaks of tetrahedral geometries, 5-SBP, and 5-TBP occur
roughly at the same positions as the first liquids of each geometry
but become slightly broader. The preservation of signatures of
g(r) suggests a similar structure of each of the interpenetrating
networks.

To demonstrate that interpenetrating networks preserve their
structure locally, we examine the g(r) restricted to nanoparticles
that are separated by a specific number of bonds, referred
as chemical distance D (Figure 5). More specifically, g(r) for
D = 1 only shows the correlations with the nearest bonded
neighbors, whileD=2 includes both the first and second bonded
neighbors, etc. In this way, we can calculate the correlation only
among the bonded neighboring particles that are separated by
no more than D bonds. The ordinary g(r) is recovered in the
limit D f ¥.

The difference between the networks formed by the tetrahedral
system and the two 5-armed systems is best demonstrated by
examining g(r) for D=2. For the tetrahedral system, the second
bonded neighbor has a well-defined peak position, determined by
the tetrahedral network. For the 5-SBPand 5-TBP systems, g(r) at
D=2 shows two distinct peaks for the possible location of the
second bonded neighbor. This further demonstrates that these
systems form a less sharply defined network than the tetrahedral
system. Differences in the network geometries can also be
observed in g(r) for region r/d < 1. Since the restricted g(r) only
considers bonded neighbors, the increase at region r/d < 1 is a
contribution from particles of the same network that loop back to
very small physical distance r. For tetrahedral networks, a
significant increase of g(r) at region r/d < 1 only occurs at D g
4, whereas for 5-SBP and 5-TBP systems, the increase takes place
at D g 3. This shows that the 5-armed particles loop back more
easily than the tetrahedral geometry, consistent with a more
distorted network.

Figure 6. Visualization of the two interpenetrating networks up to chemical distanceD=1,D=2, andD=3 for 5-SBP at T=0.0826, Fd3=
1.44. We assign two different colors to illustrate the two distinct interpenetrating networks. The arrows indicate locations where the two
networks intersect each other as a result of distortion.
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Finally, we can explicitly show the interpenetration by drawing
two neighboring but disconnected DNA complex cores with the
associated networks up toD=1,D=2, andD=3 for a system of
5-functionalized NP at the region of high F and low T (Figure 6).
The two different colors indicate two interpenetrating networks.
For D=1, the two interpenetrating networks separate cleanly
(Figure 6a). However, whenD=2, two networks are connected at
five points.We can also observe a closed loop in the blue network
on the top right in Figure 6b. The two networks are further
distorted at D=3. Some red NP are connected to multiple blue
bonds, and vice versa, suggesting the interconnectedness of the
two networks. Nonetheless, a large portion of the two networks
are distinct and can be easily identified. From the rapid growth of
the entanglement, it is clear that the interpenetration of two
networks is a local trait which looses sharpness at long range.

4. Crystal System

Unlike the other geometries whichmake disordered networked
states, the system of DNA complexes with octahedral geometry
(Figure 1e) readily forms an ordered crystal lattice. The octahe-
dral geometry naturally lends itself to the formation of networks
with cubic symmetry, as noted previously in studies of patchy
colloids with six interacting sites.32,31 Simulations indicate a
transient amorphous phase is possible, but it rapidly crystallizes.

The lowest density crystal phase,whichwe call crystal I, hasFd3=1.
This cubic geometry has a complementary lattice of holes that is
also cubic, which should allow for the possibility of interpenetrat-
ing crystal networks. Indeed, Figure 7 shows that, by increasing
μ at fixed T, we can observe a series of up to six thermodynami-
cally distinct polymorphous phases. Each subsequent crystal has
density equal to integer multiples of the density of crystal I,
suggesting repetitions of the crystal I lattice. The visualization
of each crystal shows that the system is indeed forminghierarchies
of interpenetrating simple cubic lattices (Figure 8). The density of
each crystal state stays nearly constant throughout a range
of μ, followed by a sudden jump at a threshold μ, making a
higher density crystal. This suggests only a very narrow range of
stable densities for each crystal. Crystal VI is the highest density
crystal we obtained. High-density crystals beyond crystal VI
might exist, but as more cores of the particle reside in a lattice
unit cell, the core-core interactions may frustrate the formation
of higher density crystals.

Tomap out the phase behavior of these crystals, we estimate an
upper bound for the melting temperatures of each crystal. We
anneal the crystal at a series of increasing T at fixed density until
there is a discontinuous melting (Figure 9). This likely over-
estimates the thermodynamic melting temperature. Using the
estimated melting temperatures, we plot the phase diagram in
Figure 10. The shadedareas between the narrowstable regions are
phase coexistence regions. The phase boundaries of other geo-
metries are partially drawn in scale on thebottom left corner in the
graph for comparison.

Themelting temperatures increase as the system reaches higher
density with more interpenetrating lattices, contrary to other
polyamorphous geometries which have lower Tc for transitions
between phases with more interpenetrating networks. This would
be expected if the higher density crystals were able to form with
fewer defects and hence a lower energy per site. However, our
numerical data show that the energy per site for the higher density
crystals is progressively higher and hence less energetically stable.
Instead, we can understand the density dependence from the
perspective of the Lindemann criterion,42 i.e., that a crystal
typically melts when its vibrational amplitude reaches a critical
fraction of the bond length. The repeated interpenetration of
disconnected networks reduces the available space and corre-
spondingly decreases the vibrational amplitude, while the bond
length remains unchanged. As a result, the higher density crystal
will only melt at higher T. In contrast, for other polyamorphous

Figure 7. F-μ diagram of six crystals at T=0.083 11. The density
is scaled by d3, where d is the typical bonding distance. The line is a
guide to the eye.

Figure 8. Visualization of the interpenetrating lattices of (a) crys-
tal I (T=0.083 11, Fd3=1.0), (b) crystal II (T=0.083 11, Fd3=2.0),
(c) crystal III (T=0.083 11, Fd3=3.0), (d) crystal IV (T=0.083 11,
Fd3 =4.0), (e) crystal V (T=0.083 11, Fd3 =5.0), and (f) crystal VI
(T=0.083 10, Fd3=6.03). Specifically, in (b), the core of a DNA
complex locates roughly in the center of the other lattice unit cell, a
result of two interpenetrating lattices. Because of the large amount
of empty space, this motif can be repeated.

Figure 9. Percentage of intact bonds as a function ofT on heating
for crystals I-V. The discontinuity provides an upper limit on the
melting temperature.

(42) Lindemann, F. A. Z. Phys. 1910, 11, 609.
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geometries, the formation of the second interpenetrating network
unavoidably distorts and destabilizes the first network, making
both networks more susceptible to high temperature, thereby
depressing Tc.

To quantify the crystal structure, we calculate the structure
factor S(q) (Figure 11). The sharp peaks exhibited by all densities
of crystals are indicators of ordered crystals, consistent with the
interpenetration of well-defined crystal I in higher density crys-
tals. Specifically, based on the visualization snapshots (Figure 8)
and the fact that octahedral geometry tends to construct simple
cubic lattice, we expect crystal I to be simple cubic lattice and
crystal II to haveDNAcomplex cores located at BCC lattice sites.
This is confirmed by including the theoretical values for the peak
positions for a simple cubic lattice for crystal I and the theoretical
values for peak positions of a BCC lattice for crystal II.43 In the
region q j 2.8, the peak locations of both crystal I and II match
the predicted q values for SC and BCC lattice. Furthermore, the
amplitude of S(q) for crystal II is around twice that of crystal I
at corresponding q values, in agreement with the theoretical

prediction. There are peaks in S(q) of crystal II at region
q j 2.8 which are not predicted by the theoretical calculation.
They occur at q values predicted for crystal I but have much
smaller amplitude, suggesting that they are residual traits of
crystal I, which did not die out completely due to the imperfec-
tions of crystal II.

5. Discussion and Conclusions

We have demonstrated that DNA-functionalized nanoparti-
cles with several different numbers of DNA-arms and different
directionalities exhibit a rich phase behavior: the tetrahedral
geometry forms four amorphous phases accompanied by
three first-order critical points; the 5-SBP and 5-TBP have
three amorphous phases accompanied by two critical points;
the octahedral geometry makes at least six polymorphous crys-
tals. The common motif for all geometries is the repetition of
networks that utilize the empty spaces in other networks and
therefore interpenetrate each other. Indeed, such interpenetrating
lattices occur in nature in crystal forms, such as in ice VI, VII, and
VIII.44 This interpenetration likely also plays a secondary role in
the hypothesized liquid-liquid transition ofwater.45,46We expect
the interpenetration of networks is more limited in traditional
molecular systems than in ourDNA-functionalized nanoparticles,
since, unlike the DNA system, the range of attraction between
molecules is only slightly larger than the core repulsion size. Such
short bond distances (as compared to the repulsive core size)
provides limited empty space, and significant hard-core interac-
tions frustrate the formation of additional interpenetrating net-
works. Conversely, for longer ssDNA (provided the length is
shorter than the persistence length), even further repetition of the
interpenetration process may be possible.

In our system we find the phase coexistence region shrinks as
the valency γ decreases, in agreement with previous studies.28,37

As a result, the limited valency opens a large region of densities
that can be occupied by the complementary networks. The
emergence of thermodynamically distinct phases at higher
density appears to rely on the specific directionality of bonding
interactions. Indeed, systems with only limited valency do not
show additional phase transitions. The directionality is further
enhanced by the lock-and-keymechanism ofDNA that ensures
one bond per bonding site, as opposed to systems where
multiple bonding sites may form simultaneous pairs of bonds.
Such multiple bonding would lead (i) to a more crowded local
environment with associated distortion of the network and
absence of the empty space and (ii) to the possibility of
additional interactions between distinct networks. Indeed,
the lock-and-key interaction is a fundamental ingredient since
it is responsible of the inertness of the network which con-
denses from the phase separation process. Experimentally,
DNA strands have a weak electrostatic repulsion. It has been
argued47 that weak repulsion between bonding strands would
favor more ordered structures and reduce the probability of
self-assembling into an undesirable structures. This should
reduce distortions of the network, thereby facilitating the
interpenetration process. Additionally, due to the helical pitch
of≈10 base pairs of DNA, it may be experimentally important
to consider multiples of 10 bases to avoid stress that might
distort the regularity of the structure.

Figure 10. T-F phase diagram of multiple crystals formed by
octahedral nanoparticles. The density is scaled by d3. The gray
regions indicate phase coexistence between crystals, except for the
smallest density,where crystal I coexistswith the gas phase.Crystal
VI is observed, but we are not able to obtain a reliable melting
temperature, and therefore represented by the dashed lines. For
comparison, we also show phase boundaries of the amorphous
systems obtained in Figure 2: red squares are for the tetrahedral
orientation; blue triangles are for the 5-SBP; green diamonds are
for the 5-TBP.

Figure 11. S(q) for octahedral geometry. For clarity, lines are
shifted vertically so that each crystal is 7 units apart. The black
squares below crystal I are the theoretically expected locations for
the peaks of a perfect simple cubic lattice; similarly, the red circles
below crystal II are the expected locations for the peaks of a perfect
BCC lattice.

(43) Kittel, C. Introduction to Solid State Physics; Wiley Publishers: Hoboken,
2005.

(44) Fletcher, N. H. The Chemical Physics of Ice; Cambridge University Press:
Cambridge, 1970.

(45) Poole, P. H.; Sciortino, F.; Essmann, U.; Stanley, H. E. Nature 1992, 360,
324–328.

(46) Mishima, O.; Stanley, H. E. Nature 1998, 392, 164–168.
(47) Licata, N. A.; Tkachenko, A. V. Phys. Rev. E 2006, 74.

http://pubs.acs.org/action/showImage?doi=10.1021/la903031p&iName=master.img-010.jpg&w=185&h=134
http://pubs.acs.org/action/showImage?doi=10.1021/la903031p&iName=master.img-011.jpg&w=187&h=133


3608 DOI: 10.1021/la903031p Langmuir 2010, 26(5), 3601–3608

Article Dai et al.

The regularity of the tetrahedral and octahedral systems
facilitates interpenetration. For the 5-SBP system, there is no
regular space-filling network possible, and thus the distortion
obstructs the formationof other complementarynetworks.None-
theless, the system can still undergo two amorphous phase
transitions and construct two interpenetrating networks due to
the ample empty space. The system can potentially form a third
network, but unlike the tetrahedral system, we did not observe a
clear phase separation in the corresponding high-density region.
In principle, the 5-TBP system could form connected hexagonal
sheets, although we never observed such an ordered state. While
this structure could tile space, it does not promote interpenetra-
tion, since the voids of such a network are dissimilar from the
original network.As a result, we observe behavior nearly identical
to that of the 5-SBP system. For the octahedral system, a well-
defined ordered lattice allows the interpenetration of networks to

occur more easily. We observed 6 interpenetrating simple cubic
lattices, compared with only 3 and 2 networks found in the
amorphous 4-armed and 5-armed systems, respectively.

The formation of low-density NP assemblies with crystalline
order is expected to be an important step toward the development
of newmaterials with unusual optical or electronic properties.48,49

Moreover, the possibility of multiple distinct networks should
expand the potential applications. For example, increasing the
number of interpenetrating networks changes the lattice spacing
and thus the scattering properties. Alternatively, distinct net-
works might serve as separate, but interwoven, change transfer
conduits for electronic materials.
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