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We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster
distribution functions for a model of associating colloids, which consists of hard spherical particles
having on their surfaces three short-ranged attractive sites �sticky spots� of two different types, A
and B. The thermodynamic properties are calculated using Wertheim’s perturbation theory of
associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by
the maxima of the specific heat at constant volume. The percolation threshold is derived, under the
no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that
become identical at a critical point, when one exists. Finally, the cluster size distributions are
calculated by mapping the model onto an effective model, characterized by a—state-dependent—

functionality f̄ and unique bonding probability p̄. The mapping is based on the asymptotic limit of
the cluster distributions functions of the generic model and the effective parameters are defined
through the requirement that the equilibrium cluster distributions of the true and effective models
have the same number-averaged and weight-averaged sizes at all densities and temperatures. We
also study the model numerically in the case where BB interactions are missing. In this limit, AB
bonds either provide branching between A-chains �Y-junctions� if �AB /�AA is small, or drive the
formation of a hyperbranched polymer if �AB /�AA is large. We find that the theoretical predictions
describe quite accurately the numerical data, especially in the region where Y-junctions are present.
There is fairly good agreement between theoretical and numerical results both for the
thermodynamic �number of bonds and phase coexistence� and the connectivity properties of the
model �cluster size distributions and percolation locus�. © 2010 American Institute of Physics.
�doi:10.1063/1.3435346�

I. INTRODUCTION

Recent advances in the chemical synthesis and fabrica-
tion of nanometer-to-micrometer sized particles have pro-
duced a wide variety of new designs. One challenge is to
organize them into structures for functional materials and
devices. A promising approach is self-assembly, which is the
spontaneous organization of matter into ordered arrange-
ments. However, fundamental understanding of the basic
principles of self-assembly is lacking and a systematic study
of the phase behavior, vitrification, and gelation is needed.
The goal is to tailor their behavior at the macroscopic level
through the control of the interactions and the self-assembly
process.1–4

Here we investigate the thermodynamic and structural
properties of model patchy colloids, a new generation of col-
loidal particles the surfaces of which are patterned so that
they attract each other via discrete sites of tunable number,
size, and strength. More generally, models consisting of hard

particles with attractive sites, or patches, on their surfaces,
are suitable to investigate the interplay between condensation
and clustering, e.g., in protein solutions or strongly dipolar
fluids,5 and have also been extensively used to model pure or
mixed chain molecules, e.g., in industrial contexts.6 They
provide a route to designing ideal gels,7 as well as robust
control of a wide range of equilibrium self-assembled struc-
tures. Percolation—a prerequisite for gelation—is a geo-
metrical property related to the global connectivity of a sys-
tem, not described by the thermodynamics, hence we require
a statistical theory in order to address this question.

A remarkable theory of interaction site models of asso-
ciation was developed by Wertheim8–11 some 25 years ago.
Although Wertheim’s model is based on site-site interactions,
he avoided a reduction to a level of description where the
sites replace the particles as the primary units.12 The opposite
limit, where the association products are treated as molecules
with internal degrees of freedom, while desirable as it pro-
vides a structural description, very quickly becomes prohibi-
tively complicated.13–15 Wertheim’s original approach is best
described as one in which there are several species of par-a�Electronic mail: piteixeira@cii.fc.ul.pt.
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ticles, each representing a monomeric unit where a specified
type of attraction site is bonded. The decision whether a site
is bonded is not made by appealing to the idea of physical
cluster as in the molecular approaches.16 Instead it relies on
using graph theory after writing the total pair potential as a
sum of core-core and site-site potentials and introducing
Mayer f-functions for the individual terms.8–10 This provides
a simple expression for the free energy of bond formation,
Fb, and lends itself to physically transparent approximations
that are exact in the zero-density, strong-association limit. In
this limit the theory describes a polydisperse mixture of �pos-
sibly branched� polymers;11 for arbitrary association
strengths it yields a versatile description of the thermody-
namics of associating systems.

The statistical or molecular approach, on the other hand,
was used to study percolation in the context of gelation of
polymeric systems. The earliest of these is Flory’s random
model of polymerization, where monomers with f identical
functional groups A, react randomly to form a mixture of
polydisperse branched polymers.13,14 The model may be cast
as a random bond percolation model17–19 and has been
solved exactly. A related model, which has also been solved,
is the random hyperbranched Af−1B polymer model, where
monomers with f −1 functional groups of type A and one
functional group of type B, react randomly with the restric-
tion that the A groups on one monomer react only with B
groups on a different monomer, and vice versa.18,20 Both of
these models are characterized by a single bonding probabil-
ity, p; generalization of the molecular approach to systems
with distinct bonds is quite formidable.

The role of physical clusters of particles in the thermo-
dynamics has been addressed in many different contexts. In
particular, Coniglio21 extended Hill’s original work and pro-
posed a general theory of the equilibrium distribution of
physical clusters, establishing a relation between percolation
�formation of an infinite cluster� and condensation: For sys-
tems with attractive interactions, an infinite cluster of par-
ticles will appear in the gaseous phase as a prerequisite for
condensation.

Patchy colloidal systems open up the possibility of de-
pressing the critical point, thereby providing the means of
controlling the bond lifetime of the percolated networks. In-
deed in a recent line of work,22–24 the phase diagram and
percolation threshold of patchy colloids with identical inter-
action sites have been investigated. This is a site-bond cor-
related model with cluster distribution and percolation
threshold that are well described by the Flory–Stockmayer
theory13,14,18 and bonding probabilities that are given almost
exactly by Wertheim’s thermodynamic perturbation theory
for associating fluids.8–11 Extensive computer simulations es-
tablished that the number of bonding sites per particle �its
functionality or valence�, f , is the key parameter controlling
the location of the liquid-vapor critical point: In the limit of
average functionality, �f�, approaching two, the phase-
separation region shrinks to zero and it becomes possible to
reach low temperatures without encountering phase separa-
tion. Recent calculations suggest that cooling the colloidal
system can freeze in place the empty configuration to give a

glassy state of arbitrarily low density: an ideal �reversible�
gel.22,24

A generalized version of the model allows for a much
deeper understanding of the onset of criticality in low-
functionality systems.25,26 The new model consists of par-
ticles decorated with three interacting sites, which are asso-
ciated with different energy scales, making it possible to go
from independent chains to hyperbranched polymers and to
simple dimer association. Two sites are of type A and inter-
action strength �AA, one is of type B and interaction strength
�BB. Unlike sites also interact with strength �AB. We found
that when two of the three interaction strengths vanish simul-
taneously, there can be no liquid-vapor critical point. These
correspond to the well-known limits of noninteracting linear
chains ��AA�0, �AB=�BB=0�, dimers ��BB�0, �AA=�AB

=0�, and hyperbranched polymers ��AB�0, �AA=�BB=0�.
The detailed fashion in which the critical temperature van-
ishes as the bonding energies, �AB and �BB, decrease toward
zero depends on the order in which the limits �AB→0 and
�BB→0 are taken, which in turn determine the type of net-
work that is formed. Our choice of two A sites and one B site
is the simplest that allows exploration of the three above
limits, as well as detailed investigation of the interplay be-
tween condensation26 and percolation27 in these systems.
Further generalizations are possible to any number of sites of
any number of types, but which are beyond the scope of this
paper.

More recently, some of us have calculated the percola-
tion threshold and the lowest-order moments of the cluster
size distribution of the general model.27 The problem was
solved exactly under Flory’s no-loop assumption and Wer-
theim’s theory was used to provide the connection with equi-
librium thermodynamics. Here, we obtain explicit results for
a system of colloidal particles with three distinct sites, two of
type A and one of type B. The onset of self-assembly, defined
by the locus of the maxima of the specific heat at constant
volume,28 is investigated, and a hierarchy of ordering pro-
cesses is established: At the highest temperature and lowest
density, it starts with the self-assembly process of the domi-
nant bonds, followed by self-assembly of the subdominant
bonds. The latter process is a prerequisite for the develop-
ment of a spanning cluster. We find that the percolation tran-
sition driven by attractive interactions is a prerequisite for
the emergence of criticality and condensation. In all cases it
is two percolated phases that become identical at the critical
point, when one exists. Farther from the critical point, coex-
istence is between a dense percolating system and a low-
density gas of clusters.

We calculate the cluster size distributions by mapping
the model onto an effective model, characterized by

a—state-dependent—functionality f̄ and a unique bonding
probability p̄. The mapping is based on the asymptotic limit
of the cluster distributions functions of the generic model,
and the effective parameters are defined through the require-
ment that the equilibrium cluster distributions of the true and
effective models have the same number- and weight-
averaged sizes, at all densities and temperatures. Finally, we
report numerical simulations of the model for the case �BB
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=0, for several values of the temperature, density, and
�AB /�AA ratio, to provide an accurate test of the theoretical
predictions.

This paper is organized as follows: In Sec. II we describe
our model �Sec. II A�, Wertheim’s thermodynamic perturba-
tion theory as applied to it �Sec. II B�, and our treatment of
percolation and cluster size distributions �Sec. II C�. Details
of the simulations are given in Sec. III. Our results for the
phase diagrams, critical parameters, percolation lines, and
cluster size distributions are presented and discussed in Sec.
IV. In Sec. V we conclude and place our results in the con-
text of the wider study of associating fluids, in particular,
strongly dipolar fluids. Some useful analytical expressions
not found in literature are collected in Appendixes A and B.

II. THEORY

A. The model

Our model is a fluid of N hard spheres �HSs� of diameter
� and volume vs= �� /6��3, each decorated with three bond-
ing sites �or sticky spots� on its surface. Two of these spots
are identical and labeled A, while the third is different and
labeled B. In general, two spheres may form bonds of types
AA, BB, or AB. Each bond corresponds to a short-ranged
attractive interaction between two bonding sites, which is
treated as a perturbation of the HS potential. We assume that
these potentials are square wells, with depths ���

�where � ,�=A ,B�, and the interaction range is chosen to be
�=0.1196�, the same for all sites. This is the largest value
that still ensures, for geometrical reasons, that each bonding
site can only take part in one bond. The theory does not
actually require us to specify the positions of the bonding
sites over the surface of the sphere, only that they should be
arranged in such a way that it is not possible to have more
than one bond between any two particles. Of course, in the
simulations one needs to specify the site positions. Selecting
the A sites on the two poles and the B site on the equator of
the particle, the system would form linear chains of AA
bonds, branching orthogonally via AB bonds. Since se-
quences of closed bond loops are not accounted for in
Wertheim’s first-order perturbation theory8,9—and should
therefore be avoided when testing its quality—we decided to
locate the sites in a geometry that would rule against the
formation of, at least, small bond loops, i.e., against triangu-
lar and square arrangements of bonded particles. For this
reason, we have increased the angle between the A and B
sites from 90° �which would favor the formation of perfect
squares� to 105°. Hence, if we take the particle center as the
origin of an axes frame, the two A sites are located
at ��� /2�sin�� /12� , � �� /2�cos�� /12� ,0� and the B site at
�−�� /2� ,0 ,0�. We stress that a different site geometry would
not have made any significant difference to the results24 af-
fecting mostly the persistence length of the chains.

B. Thermodynamics

For the present model, a fluid of identical spheres with
two A and one B bonding sites satisfying the assumptions of
Wertheim’s theory,8,9,29 the bonding free energy, Fb, is given
by29

�fb �
�Fb

N
= 2 ln XA + ln XB − XA −

XB

2
+

3

2
, �1�

where ��1 / �kBT�, T is the temperature, kB is the Boltzmann
constant, and X� is the probability of having a sticky spot of
type � not bonded. p�=1−X� ��=A ,B� is thus the fraction
of bonding sites of type � that do take part in bonds. The
variables X� are related to the density and temperature
through the laws of mass action that are derived by treating
bond formation as a chemical reaction. We recall that this is
equivalent to disregarding loops in finite branched clusters,
thus preserving only pair correlations.13 The latter are not
independent if there is more than a single bonding probabil-
ity but the bonding sites remain uncorrelated; longer-range
correlations, including intracluster self-avoidance, are ne-
glected. The intercluster excluded volume is taken into ac-
count through the reference fluid entropic term. It should be
noted that more general versions of Wertheim’s theory exist
that are able to deal with ring formation30 and bond
cooperativity,31 but these are not consistent with our analysis
of cluster sizes and percolation.32

The law of mass action then yields the following two
equations:8,9,29

XA + 2�	AAXA
2 + �	ABXAXB = 1, �2�

XB + �	BBXB
2 + 2�	ABXAXB = 1, �3�

where ���N /V�vs is the packing fraction and

	�� =
1

vs
�

v��

gref�r��exp������ − 1�dr . �4�

This integral is calculated over v��, the volume of bond ��,
and gref is the pair correlation function �PCF� of the reference
system. f�f�	�� / �1+���� �with fA=2 and fB=1 the numbers
of A and B sites per particle and ��� the Kronecker delta�
plays the role of the equilibrium constant for the reaction
between sites � and �.33 These equations yield the probabil-
ity p�=1−X� that a site of type � is bonded, as a function of
density, temperature, and the interaction strengths. As we
shall see, this enables us to calculate structural properties—
the percolation threshold—in addition to thermodynamic
properties—the self-assembly line, given by the locus of
maxima of the specific heat at constant volume.

Here, we shall take all bonds to have the same volume,
v��=vb. The reference system is chosen to be the HS fluid,
and the following linear approximation34 is used for the PCF
in the range where bonding occurs ��
r
�+��,

gref�r� =

1 −
�

2
−

9

2
��1 + ��	 r − �

�



�1 − ��3 . �5�

This was used in an earlier work on the model with identical
sites, and shown to yield good agreement with
simulation.22,24 Within these two approximations, Eq. �4�
becomes
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	�� =
vb

vs
�exp������ − 1�

1 − G1� − G2�2

�1 − ��3 , �6�

where

G1 =
5

2

3 + 8
�

�
+ 3	 �

�

2

15 + 4
�

�

, �7�

G2 =
3

2

12
�

�
+ 5	 �

�

2

15 + 4
�

�

. �8�

The free energy per particle is, therefore,

�f = �fHS + �fb, �9�

which is a function of �� ,T� only. In what follows we shall
use the Carnahan–Starling approximation for fHS.35 Once in
possession of the free energy, we can derive expressions for
the pressure and the chemical potential and use them to find
the phase diagram �binodal and spinodal lines� and critical
point, as described in our previous papers.25,26 The only dif-
ference is that we now also require the first three derivatives
of 	�� with respect to the packing fraction; these are easily
evaluated and are listed in Appendix A, for completeness.

C. Percolation and cluster size distributions

1. Definitions

In a previous paper27 we generalized the Flory theory of
percolation to a model of associating �patchy� colloids con-
sisting of hard spherical particles with f short-ranged attrac-
tive sites of m different types on their surfaces. Here, using
the same theoretical framework,27 we carry out a more de-
tailed calculation for the case of 2A+1B sites �the simplest
nontrivial case of dissimilar bonding sites�, which corre-
sponds to m=2, fA=2, fB=1, and f � fA+ fB=3.

We start by assuming that the finite clusters formed by
the self-assembling particles are treelike �i.e., they have no
loops� and define two sets of probabilities.

�i� p�→�, the probability that a given site of type ���
=A ,B� is bonded to a site of type ���=A ,B�. These
pair probabilities are related to the singlet probabili-
ties pA and pB through the normalizations p�

=��=A,Bp�→� and can be written as functions of n��,
the number of bonds between sites of type � and sites
of type �,

p�→� =
�1 + ����n��

f�N
. �10�

�ii� Q�, the probability that a given particle is not bonded
to the infinite �percolated� cluster through one of its
sites of type �; as a consequence, the probability to
have a particle in a finite cluster is Ps=��=A,BQ�

f�.

Given these probabilities, we proceed to derive equations for
the geometric or structural properties of the system: the per-

colation threshold, the probability that a given particle be-
longs to a finite cluster, the mean size, or number-averaged
size, of the �finite� clusters, Nn, and the mean size of the
�finite� cluster to which a randomly chosen particle belongs,
or weight-averaged cluster size, Nw. We will then show how,
through the laws of mass action, p�→� and Q� can be ob-
tained as functions of the density and temperature of the
model fluid. We note that the patchy particle model consid-
ered here is known in literature of random networks as a
“colored random graph”36 and some of the results derived
below may be derived using the methods of random graph
theory.

2. Percolation threshold

We start by noting that the probability that a given par-
ticle is not connected to the infinite cluster is QA

2QB since it is
not connected through any of its three independent bonding
sites. The probabilities Q� may be written in terms of p� and
p�→�. As an example let us calculate QA. Consider a random
particle and one of its A sites. The particle is not connected
to the infinite cluster, through this site, if

�1� the A site is not bonded �with probability 1− pA�;
�2� the A site is connected to another particle through an

AB bond �with probability pA→B� and the other two A
sites of the second particle are not connected to the
infinite cluster �with probability QA

2�;
�3� the A site is connected to another particle through an

AA bond �with probability pA→A� and the remaining A
and B sites of the second particle are not connected to
the infinite cluster �with probability QAQB�.

Then,

QA = �1 − pA� + pA→BQA
2 + pA→AQAQB. �11�

Likewise, we find for QB,

QB = �1 − pB� + pB→AQAQB + pB→BQA
2 . �12�

These equations have the trivial solution QA=QB=1. When
this is the only solution, there is no infinite cluster and the
system is in the nonpercolated phase. When a second, non-
trivial, solution exists, there is a nonzero probability of find-
ing the particle in the infinite cluster, and the system is in the
percolated phase. The percolation threshold may be found
from a bifurcation analysis of the solutions of Eqs. �11� and
�12�. In what follows, however, we shall use a different
method, which is also used to calculate Nw.

The finite treelike clusters can be constructed as a se-
quence of levels: Once a random particle is chosen as the
“origin” of a �finite� cluster, each level is characterized by
the number of bonded sites that connect it to the previous
level �see Fig. 1�. On a given level i there are sA,i and sB,i

bonded sites of types A and B, respectively. The number of
bonded A sites on level i+1 is calculated as follows. There
are three distinct ways to connect level i of a finite cluster to
a site A on the next level i+1.
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�1� Starting at a B site on level i, through an A→A bond,
given that the first A site of this bond is not connected
to the infinite cluster, there are two A sites from where
to start this bond.

�2� Starting at an A site on level i, through an A→A bond,
given that the first A site of this bond is not connected
to the infinite cluster.

�3� Starting at an A site on level i, through a B→A bond,
given that the B site is not connected to the infinite
cluster.

We then find

sA,i+1 = sA,i�pB→A
� + pA→A

� � + 2sB,ipA→A
� , �13�

where p�→�
� is a conditional probability: the probability to

find an �→� bond given that site � is not connected to the
infinite cluster. Since the fraction of � sites that is bonded to
a � site and, through it, not bonded to an infinite cluster, is
p�→�Ps /Q�, p�→�

� becomes

p�→�
� = p�→�

Ps

Q�Q�

. �14�

Notice that when the system is in a nonpercolated state �i.e.,
when Q�=1, ∀��, then p�→�

� = p�→�. Consequently, Eq. �13�
may be rewritten as

sA,i+1 = sA,i�QApB→A + QBpA→A� + 2sB,iQBpA→A. �15�

Likewise, we find

sB,i+1 = sA,i	QApA→B +
QA

2

QB
pB→B
 + 2sB,iQApA→B. �16�

These two recursion relations are linear and may be written
in matrix form,

si+1 = Tsi, �17�

where si is a two-component column vector with entries sA,i

and sB,i, and T is a 2�2 matrix whose entries are the coef-
ficients of Eqs. �15� and �16�.

The matrix equation �17� is equivalent to two �identical�
decoupled equations for the components of si,

s�,i+2 − Ts�,i+1 + Ds�,i = 0, �18�

where T and D are the trace and the determinant of T, re-
spectively, and �=A ,B. Equations �18� are “difference equa-
tions” that are easily solved to obtain s�,i, in terms of the

eigenvalues of T���=T /2�T2−4D /2�. We distinguish the
following two cases:

�i� Degenerate eigenvalues, �+=�−=�,

s�,i = �C� + B�i��i. �19�

�ii� Nondegenerate eigenvalues, �+��−,

s�,i = C��+
i + B��−

i . �20�

In both cases, C� and B� are constants that depend
on s�,0 and s�,1, and which are calculated using s�,0

=��=A,Bf�p�→�Ps / �Q�Q�� and s1=Ts0. When ����1 both
series �19� and �20� converge and the clusters are finite. It is
easily shown that �+�0 and �+� ��−�, and thus the percola-
tion threshold occurs when

�+ = 1. �21�

3. Cluster size distributions

The self-assembled finite clusters may be characterized
by a size distribution r�n�, defined as the number of clusters
of size n divided by the total number of particles in the
system. For models with a single bonding probability �e.g.,
particles with f identical sites that bond with probability p�,
this distribution is known.13,18,37 Some of its moments, how-
ever, may be calculated without knowledge of the form of
r�n�.19,38 The probability that a particle belongs to a finite
cluster, �nnr�n�, the mean cluster size,

Nn �
�nr�n�
�r�n�

, �22�

and the mean size of a cluster to which a randomly chosen
particle belongs,18

Nw �
�n2r�n�
�nr�n�

, �23�

are three key physical quantities, related to the moments of
r�n�, which may be calculated directly.

The probability that a particle belongs to a finite cluster
is simply QA

2QB �and thus �nnr�n�=QA
2QB�. The calculation

of Nn proceeds by recalling that under the no-loop assump-
tion, the number of clusters is decreased by one when a bond
is formed. Consequently, Nn=1 / �1−nb�, where nb is the
mean number of bonds per particle in the finite clusters; be-
cause

nb =
1

2 �
�=A,B

f� �
�=A,B

p�→�

Ps

Q�Q�

, �24�

then, using also Eqs. �11� and �12�, we get

Nn =
2

2 − 2	QA − 1 + pA

QA

 − 	QB − 1 + pB

QB

 . �25�

Calculation of Nw starts by choosing a particle randomly and
considering the levels of the cluster to which the particle
belongs �see Fig. 1�. The number of particles on each level
equals the number of bonded sites on that level, so

FIG. 1. Schematic representation of a tree cluster split into levels. The large
circles are the particles, while the small circles �two black and one gray on
each particle� represent the bonding sites �A and B, respectively�. The lines
between sites represent bonds that may occur with a prescribed probability
p�→� �see the text�. The arrows have no physical meaning: They just indi-
cate the “direction” for counting cluster levels and particles.
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Nw = 1 + �
i=0

�

�sA,i + sB,i� . �26�

To proceed, we need to distinguish the cases of degenerate
and nondegenerate eigenvalues. It is straightforward to show
that degenerate eigenvalues �+=�− occur when pA→A=0,
corresponding to hyperbranched polymers or dimers, which
we will not consider here. For the generic case of nondegen-
erate eigenvalues, we find, using Eq. �20�, that the mean size
of a cluster to which a randomly chosen particle belongs, Eq.
�26�, is

Nw = 1 +
sA,0 + sB,0 − 3

2D

1 + D − T
, �27�

where sA,0+sB,0=��=A,B��=A,Bf�p�→�Ps / �Q�Q��. As ex-
pected, Nw diverges at the percolation threshold as �+→1.
Note that both averages, Eqs. �25� and �27�, have much sim-
pler expressions in the nonpercolated regime �i.e., when QA

=QB=1�.
The cluster size distribution, r�n�, may be calculated �at

least formally� using the generating function formalism.36,38

This is simply done in the limiting cases of random graphs
�particles with identical bonding sites� or bipartite graphs
�particles with distinct sites A and B and a single bonding
probability�, which correspond to the randomly branched and
hyperbranched polymer models of Flory and Stockmayer, re-
spectively. However, derivation of the cluster size distribu-
tion for random colored graphs �particles with distinct sites
with two or more bonding probabilities� is far from trivial.

In what follows, we propose an ansatz for the distribu-
tion r�n�, which consists in mapping the model with distinct
bonding sites of arbitrary functionality, onto an effective
model, characterized by a—state dependent—functionality
and a unique bonding probability. The mapping is defined
through the requirement that Nn and Nw are the same for both
models. These ratios of moments have been calculated above
for our model; for models with arbitrary functionality and a
single bonding probability, they are known �as well as the
cluster size distribution function�.

The cluster size distribution function of the effective
model is given by14,18

r�n� = p̄n−1�1 − p̄�� f̄−2�n+2�n, �28�

where

�n =
f̄��� f̄ − 1�n + 1�

��n + 1���� f̄ − 2�n + 3�
�29�

and � is the Gamma function. The size distribution, Eq. �28�,
is that of a model of particles with f̄ identical sites and bond-

ing probability p̄;13,14,18,37 f̄ and p̄ thus play the roles of ef-
fective functionality and effective bonding probability. Note

that f̄ need not be an integer18 and, in general, it is not. The
expressions for Nw and Nn within the effective model are �see
Appendix B for a derivation�

Nn =
2

2 − f̄ p̄Q̄ f̄−2
�30�

and

Nw = 1 +
f̄ p̄Q̄ f̄−2

1 − � f̄ − 1�p̄Q̄ f̄−2
, �31�

where Q̄f̄ is the probability that in the effective model, a

particle belongs to a finite cluster; Q̄ is related to p̄ and f̄
through �e.g., Ref. 18�

Q̄ = 1 − p̄ + p̄Q̄ f̄−1. �32�

p̄ and f̄ are now found by requiring that the sizes Nw and Nn

from the effective model distribution equal those of the true
model, i.e., by matching Eqs. �30� and �25�, and Eqs. �31�
and �27�, and using Eq. �32�; we obtain p̄ , f̄ �hence also Eq.
�28�� as functions of the probabilities defined in Sec. II C 1.
For the effective functionality we find

1

f̄
= 1 +

1

Nw − 1
−

Nn

2�Nn − 1�
, �33�

which is thus independent of p̄ and Q̄. Notice that by match-
ing of Nw, we ensure that the percolation threshold of the
effective model will coincide with that of the true model. On
the other hand, in the percolated phase, the normalization of

the effective distribution Q̄f̄ is not the same as that of the true
distribution QA

2QB.

4. Connection with thermodynamics

The geometrical percolation threshold, Eq. �21�, Nn and
Nw are exact, under the no-loop assumption, for a given set
of probabilities p�→� �see Sec. II C 1�. The model considered
here is a fluid, and therefore the knowledge of the equilib-
rium bonding probabilities as functions of the density and
temperature is required. An approximate relation between
these probabilities and equilibrium thermodynamics results
from regarding bond formation as an equilibrium chemical
reaction.27 For an �� bond between �independent� sites of
types � and �, �+�↔�� and chemical equilibrium imply

n��

�N� − n���N� − n��
=

���

V
, �34�

where ��� is the equilibrium constant of the reaction, ��
=AA ,AB ,BB. N� is the total number of bonding sites of type
�, and n� is the number of sites of type � that are bonded.
Notice that NA=2NB=2N, pA=nA /NA, and pB=nB /NB. Sub-
stituting the probabilities p�→�, given by Eq. �10�, and p�

into Eq. �34�, we find

pA→A = 2�
2�AA

vs
�1 − pA�2, �35�

pB→B = �
2�BB

vs
�1 − pB�2, �36�
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pA→B = �
�AB

vs
�1 − pB��1 − pA� , �37�

and pB→A=2pA→B. The equilibrium constants ��� are now
obtained by requiring consistency between the normalization
of these probabilities �i.e., pA= pA→A+ pA→B and pB= pB→B

+ pB→A� and the laws of mass action of Wertheim’s thermo-
dynamic theory, Eqs. �2� and �3�. A necessary and sufficient
condition for this is25

	�� =
���

vs
�1 + ���� , �38�

where 	�� are given by Eq. �4�. We note that Wertheim’s
laws of mass action are nothing more than the normalization
conditions of the probabilities p�→�, with a specific approxi-
mation for the equilibrium constants.

In conclusion, once the density and temperature �and
therefore 	��� are fixed, the laws of mass action, Eqs. �2�
and �3�, provide the equilibrium probabilities p�; the equilib-
rium probabilities p�→� then follow from Eqs. �35�–�38�.
The “geometric” or structural properties derived in this sec-
tion can thus be calculated, at equilibrium, in terms of the
fluid density and temperature.

III. MONTE CARLO SIMULATION

Data reported in this article are based on an extensive
numerical study of the model introduced in Sec. II over a
wide range of temperatures and densities. All results are for
�BB=0 and variable �AB /�AA. We employ several different
methodologies. We perform standard Monte Carlo �MC�
simulations in the NVT ensembles, using N=6000 particles,
to elucidate the structure of the system and its connectivity.
We perform grand canonical Monte Carlo �GCMC�
simulations39 to locate the liquid-vapor critical point. These
calculations are complemented with histogram reweighting
techniques to match the distribution of the order parameter
�−se with the known functional dependence expected for the
Ising universality class critical point.40 Here � is the number
density, e is the potential energy density, and s is the mixing
field parameter. We have not performed a finite-size study
since we are only interested in the trends with varying �AB,
but we have studied systems of different sizes, up to L
=15�. For each �AB /�AA between 0.7 and 1.5, we calculated,
using the methods described in Ref. 41, the critical tempera-
ture kBTc /�AA and critical density �c.

We have also performed Gibbs-ensemble Monte Carlo
�GEMC� simulations to map the coexistence curve. The
GEMC method was designed42 to study coexistence in the
region where the liquid-vapor free energy barrier is suffi-
ciently high to prevent crossing between the two phases. Us-
ing GEMC, we have studied a system of �total� 350 particles
which partition themselves into the two boxes. At T�Tc, the
vapor phase box contains only a few particles, while the
remaining particles compose the liquid phase. We have also
run tests with a total of N=1000 particles finding no differ-
ences. Equilibration at the lowest reported T required several
months of computer time. The lowest T at which it is pos-
sible to reasonably equilibrate the system is set by the ratio

max���AA� , ��AB�� /kBT. Indeed, the exponential of this ratio
provides an indication of the number of attempts required to
break an existing bond. With current numerical facilities, the
boundary is around exp�20��5�108. For this reason it was
impossible to find coexistence for �AB
0.7 or �AB�1.5.

In all simulations, translational and rotational moves
consisted of a random translation of �0.1� and a random
rotation of �0.1 rad of a randomly selected particle. Depend-
ing on the MC method, insertion and deletion moves �or
swap moves� have been attempted, on average of every 500
displacement moves, and volume change moves �with vol-
ume changes of the order of 0.5�3� every 100 motion moves.

To compute the cluster size distributions and connectiv-
ity properties, we define as bonded any pair of particles with
a negative interaction energy, regardless of whether it is an
AA or an AB bond. This choice is unambiguous due to the
square-well �on-off� nature of the attractive interaction. Par-
ticles connected by an uninterrupted sequence of bonds are
said to belong to the same cluster. Standard algorithms have
been coded to partition all particles into different clusters. A
cluster is said to be spanning if, taking into account periodic
boundary conditions, it has an infinite mass. This is achieved
by duplicating the system in each direction and checking that
the cluster increases its mass. A state point is defined as
percolating if more than 50% of its equilibrium configura-
tions contain a spanning cluster.

IV. RESULTS

In this section we present results for fluids with �BB=0
and a range of �AB /�AA values, for which MC simulations
were performed. Theoretical expressions for the phase dia-
grams and critical points have been calculated as described
in our earlier papers,25,26 except that we now use Eq. �5� for
the radial distribution function rather than the simpler low-
density approximation gref�r�=1, in order to improve the
quality of our predictions. We note that in the case under
study ��BB=0� one has pB→B=0, and, consequently the nor-
malization relations allow calculation of the p�→� as func-
tions of p�. In fact, since pB= pB→A and, by definition,
pB→A=2pA→B, one has

pA→A = pA − pB/2 = 1/2 − XA − XB/2 �39�

and

pB→A = pB = 1 − XB. �40�

We start by comparing, in Fig. 2, the predicted temperature
and density dependence of XA and XB with corresponding
quantities evaluated via MC simulations. Overall agreement
is excellent, except for �AB /�AA=1.5, where small differences
between theory and simulation are observed at low T; these
differences are possibly caused by the formation of closed
loops of four AB-bonded particles, which are favored by the
bonding geometry. It is important to stress the difference
between the cases �AB /�AA
0.5 and 0.5
�AB /�AA
1. In
the former case, XB is always close to one, and indeed the
theory predicts that it approaches one when T→0. Hence in
this limit very few B sites are bonded. In the latter case,
theory predicts �and MC data confirm� that XB will instead
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approach zero on deep cooling, and therefore that all B sites
are bonded at low T. This difference can be rationalized by
focusing on the lowest-energy state which can be achieved
by the system. For �AB /�AA
0.5, this is an infinite chain of
AA bonds, with no branching, whereas if 0.5
�AB /�AA
1
the formation of all possible AB bonds is favored. This can
be understood by noting that the system loses an energy �AA

when an AA bond breaks, but gains 2�AB if both free A ends
join with two distinct B sites. Hence, the lowest-energy state
of an N-particle system is N�AB+ �N /2��AA, which is indeed
lower than the chain energy, N�AA, when 0.5
�AB /�AA
1.26

Next we focus on the �AB-dependence of the liquid-vapor
critical parameters. Indeed, according to the theory,26 by
varying �AB /�AA the system evolves from an ensemble of
polydisperse AA-chains �when �AB /�AA�1� to a nonpercolat-
ing assembly of hyperbranched aggregates �when �AB /�AA

�1�. As a result, the critical density and temperature are
expected to depend nonmonotonically on �AB. Figure 3 com-
pares the theoretical and numerical results �also reported in
Table I�. The theory underestimates the density of the coex-
isting liquid phase but predicts the critical temperatures very
accurately. The same type of agreement �on Tc� and disagree-
ment �on �c� was reported in the previous investigation on
the functionality dependence of the critical parameters,22

supporting the view that such behavior is intrinsic to the
Wertheim approach. Moreover, the theory yields the correct
nonmonotonic dependence of both the critical density �c and
the critical activity zc on �AB. The significant drop in the
critical density on decreasing �AB is reminiscent of the analo-
gous trend observed in the study of the role of the
functionality.22 The analogy is not casual since decreasing
�AB does make AB bonds less favorable, and thus acts as a

reduction in the effective functionality. Only at very low T
and for �AB /�AA�0.5, when almost all AA bonds have al-
ready formed, does XB also approach zero �as shown in Fig.
2�c�� and the effective functionality of the particles go back
to three. This reduction is also apparent in Fig. 3�b�, where
we plot the effective functionality, given by Eq. �33�, calcu-

lated at the critical point. When �AB /�AA�1, f̄ c�3, whereas

when �AB /�AA�1, f̄ c→2. Finally, the energy per particle at
the critical point Ec /N �see Fig. 3�c�� is underestimated �in
absolute value� by theory, which also appears to predict a
weak maximum.

Next we look in detail at the case �AB /�AA=0.8, starting
with the potential energy in the system as a function of T and
�. The energy per particle E /N can be written, in terms of XA

and XB, as

E

N
= �AA	1

2
− XA +

XB

2

 + �AB�1 − XB� , �41�

where we have used Eqs. �35�–�37�. The sigmoidal inflection
in the T dependence of XA and XB previously discussed thus
carries through to the T dependence of the energy, as shown
in Fig. 4�a�. This sigmoidal shape implies the presence of a
maximum in the constant volume specific heat CV,

Cv = 	 �E

�T



V

= − �AA	 �XA

�T



V

+ 	1

2
�AA − �AB
	 �XB

�T



V

.

�42�

As can be seen in Fig. 4�a�, the theory predicts the internal
energy very accurately. Figure 4�b� shows the specific heat
calculated by differentiating numerically the theoretical
curves �lines�, and from fluctuations in the potential energy
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FIG. 2. Degrees of nonassociation of A and B. sites, XA and XB, vs temperature for �BB=0 and �a� �AB /�AA=0.45; �b� �AB /�AA=0.55; �c� �AB /�AA=0.8; �d�
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during the course of the MC runs �symbols�. Again agree-
ment is remarkably good.

The full phase diagram for �AB /�AA=0.8 is shown in Fig.
5. Besides the liquid-vapor critical point and the coexisting
densities, we also plot the percolation line and the line of
maxima of the specific heat at constant volume, CV. The
percolation line was determined as described in Sec. II. Also
marked are the state points where, according to the MC

simulation, the system percolates, in full agreement with the
theoretical estimates for the percolation line. We further note,
for future reference, that the critical point is located inside
the percolation region, and that the line of CV maxima, for
�AB=0.8, is located above the percolation curve.

Figure 6 shows the phase diagrams and percolation lines
for all �AB /�AA values studied. Despite the fact that the theory
underestimates the critical density and does not reproduce
well the shape of the binodal curves close to the critical
point, all relevant trends are recovered. Interestingly enough,
according to both theory and numerical experiments, the
density of the liquid phase converges toward a constant value
��0.4 when T�Tc. This value is expected to be controlled
by the density of a fully bonded equilibrium network of
three-functional particles, in which all possible bonds are
formed and the ground state of the system has been reached.
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FIG. 3. Critical parameters for �BB=0 and �AB /�AA=0.8. Symbols are from
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TABLE I. Estimated critical parameters based on GCMC simulations
complemented with histogram reweighting for the studied �AB /�AA values.
The last column gives the edge length of the simulation box.

�AB /�AA Tc �c zc L

0.75 0.064 0.064 0.000 22 13
0.80 0.074 0.093 0.001 14 14
0.90 0.084 0.134 0.003 79 13
1.00 0.092 0.147 0.005 81 12
1.20 0.101 0.146 0.003 81 12
1.50 0.106 0.137 0.000 45 11
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vertical dashed lines�. Lines are from theory and symbols are from simula-
tion; the latter are solid in the one-phase region and dashed in the two-phase
region. In the inset we plot the specific heat calculated from an appropriately
weighted internal energy in the two-phase region; it shows the typical dis-
continuity associated with the phase transition.
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Furthermore, as remarked in Refs. 24–26 and 43, the perco-
lation line always intersects the vapor branch of the coexist-
ence curve, i.e., at a density lower than the liquid-vapor criti-
cal density. This observation, which stresses that a
percolating path of interactions is an essential ingredient for
the development of critical fluctuations,44 implies that the
criticality of these systems involves two networked phases
becoming identical, as previously suggested by Coniglio and
co-workers.21

The maxima of CV occur where the energy changes fast-
est with temperature at constant density; physically, they
should signal the formation of a large number of interparticle
bonds. Interestingly, the line of CV maxima can be located
either in the unpercolated region of the phase diagram �for
�AB /�AA=0.8 and 1.5� or in the percolated region �for
�AB /�AA=0.9, 1.0, and 1.2�, whereas naively one would ex-
pect the onset of aggregation to always precede �i.e., occur at
higher temperature for a fixed density� percolation. One pos-
sible explanation might be that for larger �smaller� �AB /�AA,
the bonds that are formed in largest numbers are AB�AA�
bonds, which give rise to nonpercolating structures. These
observations are consistent with results for the phase dia-
gram of particles with varying number of identical sites:24,43

It was found that on decreasing functionality, the CV maxima
move into the nonpercolating region. Indeed, in the case of
equilibrium polymerization �functionality two�, a line of CV

maxima is also present in the phase diagram33 even though
percolation is not possible owing to the absence of branch-
ing. Thus, in a first approximation, one can associate the

modulation of �AB /�AA to a modulation of the effective func-
tionality, consistently with the arguments presented when
discussing the evolution of the critical parameters.

Figures 7 and 8 compare the cluster size distribution
functions from simulation with the theoretical ansatz, Eq.
�28�, in both the nonpercolated and percolated states, going
from the Y-junction ��BB=0, �AB /�AA�1� to the hyper-
branched ��BB=0, �AB /�AA�1� limit.

In the nonpercolated state agreement is remarkable. No-
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FIG. 6. �a� Phase diagrams for �BB=0 and �from bottom to top� �AB /�AA
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FIG. 8. Same as Fig. 7, but for �AA=1, �BB=0, and �a� �AB=0.8, kBT /�AA

=0.12; �b� �AB=1.5, kBT /�AA=0.17.
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tice, however, that the quality of this agreement is better for
small clusters �for which the no-loop hypothesis is more ac-
curate and the simulation results have less scatter�. More-
over, very close to percolation �e.g., in Fig. 7�a�, for �
=0.2,0.4�, the deviations between theory and simulation are
due to the slight misprediction of the location of the perco-
lation line, as well as to our neglect of critical fluctuations.

As mentioned earlier in Sec. II C 3, in the percolated
states the effective distribution, Eq. �28�, does not have the
same normalization as the true model. This inconsistency
was circumvented in the comparison between theory and
simulations, by letting the number of clusters of size n be

NQA
2QB / Q̄f̄r�n� �where N is the number of particles in the

simulation box�.

V. CONCLUSIONS

The present article reports an extensive comparison be-
tween theoretical and numerical results for a very simple but
quite rich model of interacting patchy particles with distinct
interacting sites. The modeled particles have three attractive
sites, two of type A and one of type B, interacting with en-
ergies �AA ,�BB and �AB. The richness of the model arises
from the possibility of generating very different structures
according to the relative values of �ij. We have focused on
the case �BB=0, for which, on varying the ratio �AB /�AA, the
system evolves from an ensemble of linear polymers �whose
exponential cluster size distribution is controlled by � and T�
to an ensemble of nonpercolating hyperbranched polymers.
In both these limits, a vapor-liquid transition is absent, in line
with the impossibility of forming a percolating cluster. Con-
sistently, the theory predicts that both on increasing and de-
creasing �AB /�AA the critical density should approach zero.
For �AB /�AA=0.7, the smallest value of the �AB /�AA ratio for
which we have been able accurately to estimate the critical
parameters, �c=0.063. This depression of the critical density
is quite remarkable if compared to �c�0.15 for �AB /�AA

�1, or with �c�0.47, which is found for a �spherically sym-
metric� square-well potential with the same interaction
range.45 It should, however, be noted that all critical tempera-
tures kBTc /�AA
0.2, and might therefore lie below the triple
point temperature. To our knowledge, no studies of the phase
diagram of the present model including crystal phases have
been performed; hence it is impossible to know if here, the
liquid state exists as a stable thermodynamic state or is only
metastable. For the case of tetrahedral patchy particles, it
was found that the vapor-liquid critical point becomes meta-
stable with respect to the diamond crystal structure when the
interaction range becomes about 20% of the particle
diameter.46,47 Similarly, it has been shown that a reduction in
the patch width also favors the metastability of the crystal
phase.48

According to theory, the case �AB /�AA=0.5 plays an im-
portant role. This value sets a crossover in the lowest-energy
state that the system can achieve. Indeed, the ground state
energy is N�AA for �AB /�AA
0.5 �an infinite chain of AA
bonds, or equivalently XA=0 and XB=1� and N�AB

+ �N /2��AA, when 0.5
�AB /�AA
1.26 In the latter range, all
possible bonds in the system are formed �both XA and XB

equal zero�. As shown in Fig. 2, the ground state energy is
almost reached at low T for all densities studied. Thus, as
predicted theoretically and observed numerically, in this re-
gion the low T limit of the liquid branch of the vapor-liquid
coexistence curve is found to be independent of the specific
value of �AB, reflecting the lowest density which allows the
formation of a fully bonded state.

The investigated model provides not only a test bed for
the Wertheim theory but also allows one to identify the es-
sential ingredients required for generating a liquid phase:
Clearly an attraction between particles is a necessary, but not
sufficient, condition for generating a critical point. The pos-
sibility of generating a percolating structure in the self-
assembly process is indeed a prerequisite for vapor-liquid
condensation.49

The present model is characterized by a clustering pro-
cess which involves two types of bonds, generating a com-
plex percolation problem. We have addressed this issue un-
der the hypothesis that there are no closed loops of bonds in
finite clusters. Interestingly, in this model in three dimen-
sions, the number of closed loops of bonds is negligible,
which allows us to perform a detailed comparison between
numerical and theoretical expectations for the connectivity
properties. The absence of intracluster bonds is a conse-
quence of the low valence and arises from the entropic cost
associated with the reduction of explored configurational
space on closing the loop.43 Because the strength of the AB
interaction can be varied, the percolation process must be
modeled with bonds of two different types. While a formal
solution is possible for several average connectivity quanti-
ties �e.g., the mean cluster size and the mass of the infinite
cluster�,27 an exact expression for the cluster size distribution
has not been yet derived. In this manuscript we have shown
that by mapping the percolation problem onto an equivalent
one with a �state-dependent� average functionality and
unique bonding probability, perfect agreement is found, in
the unpercolated state, between theoretical predictions and
numerical results for all cases in which bond loops are miss-
ing. The mapping is built by imposing the correct values for
Nn and Nw at all densities and temperatures.

Finally we draw attention to a possible analogy between
the present model and the dipolar hard sphere �DHS� fluid.
Recent studies50 suggest that DHSs are characterized by a
low T-low � critical point as found here. Moreover, the struc-
ture of the system, as revealed by simulations, can be de-
scribed in terms of long dipolar chains with thermally acti-
vated defects, providing branching points �Y-junctions�
between chains, as in the present model. Zilman and Safran51

suggested that the progressively lower concentration of
Y-junctions on cooling may engender a phase diagram that
pinches off at low temperature, i.e., in which at low T the
density of the liquid branch decreases and approaches zero
when T→0. Interestingly, in the limit where �AA�0, �BB

=0, and �AB→0 �Y-junction limit26�, our bonding free en-
ergy, Eq. �1�, reduces, for sufficiently low temperatures, to
the free energy of Zilman and Safran �compare Eq. �34� of
Ref. 25 and Eq. �23� of Ref. 51, taking into account that
Zilman and Safran’s energy parameters are related to ours25

via �e=�AA /2 and � j =−�AB+�AA /2�. In this respect, it will be
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particularly interesting to study some case where the present
model might behave as proposed by Zilman and Safran, es-
pecially because the evaluation of the free energy based on
the Wertheim theory does not require any fitting parameter.
Work in this direction is underway.
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APPENDIX A: DENSITY DERIVATIVES OF ���

In this appendix we collect the density derivatives of the
bond strengths 	��, which are used in calculations of the
phase diagram and critical point,

�	��

��
=

3	��

�1 − ��
−

vb

vs
�exp������ − 1�

G1 + 2G2�

�1 − ��3 , �A1�

�2	��

��2 =
3	��

�1 − ��2 +
3

�1 − ��
�	��

��
−

vb

vs
�exp������ − 1�

�
3G1 + 2G2�1 + 2��

�1 − ��4 , �A2�

�3	��

��3 =
6	��

�1 − ��3 +
6

�1 − ��2

�	��

��
+

3

�1 − ��
�2	��

��2

−
vb

vs
�exp������ − 1�

12�G1 + G2�1 + ���
�1 − ��5 . �A3�

APPENDIX B: Nn AND Nw IN THE PERCOLATED
REGION FOR THE MODEL WITH f IDENTICAL SITES

In this appendix we derive Eqs. �30� and �31� since we

have not been able to find them in literature, in terms of f̄ ,
for the percolated phase �in Ref. 18 there are expressions for

the particular case f̄ =3�. This derivation is based on the re-
sults of Ref. 14 for the nonpercolated phase and on the defi-

nition, Eq. �32�, of Q̄.18

Let us write the size distribution, Eq. �28�, as follows:

r�n� =
�1 − p�2

p
s�n� , �B1�

where

s�n� = �nxn, �B2�

with �n given by Eq. �29� and

x = p̄�1 − p̄� f̄−2. �B3�

In Ref. 14 the moments of s�n�, Si=�n=1
� ni�nxn, are found for

p̄
 �pc�1 / � f̄ −1��, i.e., for nonpercolated systems. Calcula-
tion of the moments of r�n� for p� pc is done by taking into

account the properties of the function x�p̄� �Eq. �B3��: x�0�
=x�1�=1 and a single maximum at p̄= pc. Hence for p̄� pc

there exists a p� such that 0
 p�
 pc, x�p̄�=x�p��, and
Si�p̄�=Si�p��. The first moment of the distribution function
r�n�, i.e., the probability that a particle belongs to a finite
cluster, can then be calculated for p̄� pc using the expression
for S1�p�� of Ref. 14 and Eq. �B3�,

�
n=1

�

nr�n� =
�1 − p�2

p
S1�p�� = 	 1 − p̄

1 − p�
 f̄

. �B4�

Combining Eq. �32�, which relates Q̄, f̄ , and p̄, with the

identity �n=1
� nr�n�� Q̄f̄, a relation between p̄ and p� is ob-

tained,

p� = p̄Q̄ f̄−2. �B5�

Using this expression and the moments Si�p�� from Ref. 14,
Eqs. �30� and �31� follow.
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