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By means of simulations and numerical solutions of the Mode Coupling Theory (MCT), we investigate

the role of intramolecular barriers on the chain dynamics of nonentangled polymer melts. We present

a global picture by studying the relaxation of the Rouse modes for a wide range of barrier strength,

from fully-flexible to stiff chains. Simulations reveal, on increasing the barrier strength, strong

deviations from the Rouse model, as anomalous scaling of relaxation times, long-time plateaux, and

nonmonotonic wavelength dependence of the mode correlators. These highly non-trivial dynamics are

accounted for by the solutions of the MCT equations. We conclude that MCT constitutes a general,

first-principle, approach for chain dynamics in nonentangled polymer melts.
I. Introduction

Moderate or strong chain stiffness is present in the majority of

polymers and biopolymers. The reason is that most molecular

motions in these systems involve jumps in energy over carbon–

carbon rotational barriers and/or chain conformational changes.

The corresponding map of relaxation processes is largely influ-

enced by the barrier strength, which plays a decisive role in, e.g.,

crystallization,1 adsorption in surfaces,2 and rheological prop-

erties.3

Accurate predictions of the effects generated by intra-

molecular barriers constitute a challenge for any microscopic

theory of polymer dynamics. A candidate for the latter is the

Mode Coupling Theory (MCT) for supercooled liquids.4–6 By

starting from the fundamental Liouville equation of motion and

applying the Mori–Zwanzing formalism,7 generalized Langevin

equations are obtained for the time dependence of density

correlators. Within the MCT approximations,4,5 the memory

kernel is factorized in terms of the density correlators, leading to

a closed set of equations that can be solved numerically. Static

correlations enter the memory kernel as external input. These can

be supplied from simulation or experiments. However static

correlations can also be related, at least formally, to the inter-

action potential through liquid state theories,7–9 and in many

cases numerically obtained by solving the equations of such
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theories. In other words, MCT provides a link between the time

dependence of density correlators and the interaction potential.

In this sense, MCT constitutes a first-principle theory for slow

dynamics in complex systems.

Recently, Chong et al. have extended MCT to polymer

melts.10,11 By exploiting the polymer reference interaction site

model (PRISM),8 the MCT equations are considerably simpli-

fied. This is achieved by replacing site-specific intermolecular

surroundings of a monomer by an averaged one (equivalent site

approximation), whereas the full intramolecular dependence is

retained in the MCT equations.10,11 The approach of Chong

et al.10,11 was applied to the specific case of fully-flexible chains,

i.e., without intramolecular barriers. A major success was the

derivation, from first-principles, of the scaling laws predicted by

the phenomenological Rouse model12 for chain dynamics in

nonentangled polymer melts.

Despite the extreme simplifications introduced by the Rouse

model (see below), its predictions are highly successful for fully-

flexible chains.13 However, the presence of strong intramolecular

barriers in many real polymers violates the main assumption of

the Rouse model: the gaussian behaviour of static and dynamic

intrachain correlations at all length scales. Though gaussian

behaviour is recovered at sufficiently large length scales,14–16

significant non-Rouse effects appear at relevant short and

intermediate scales as chains become stiffer.14–16 This observation

suggests the need of a general approach, beyond the fully-flexible

limit, for any microscopic theory of nonentangled chain

dynamics in real polymers.

In this article we show that this general, first-principle,

approach is provided by MCT. We extend our previous study of

the role of intramolecular barriers on the glass transition of

polymer melts,17,18 to a broader range of time and length scales

probing relaxation of the chain degrees of freedom. By means of

simulations and numerical solutions of the MCT equations, we
This journal is ª The Royal Society of Chemistry 2011
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Fig. 1 Temperature dependence of the characteristic ratio Cr
10 for all the

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ita

' d
i R

om
a 

L
a 

Sa
pi

en
za

 o
n 

06
 M

ay
 2

01
1

Pu
bl

is
he

d 
on

 0
4 

Ja
nu

ar
y 

20
11

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

0S
M

00
86

1C
View Online
study relaxation of the Rouse modes in a polymer model with

intramolecular barriers of tunable strength. We investigate

a wide range of barrier strength between the limits of fully-flex-

ible and stiff chains. Simulations reveal highly non-trivial

dynamic features for the Rouse modes, as anomalous scaling of

relaxation times, long-time plateaux, and nonmonotonic wave-

length dependence of the mode correlators. These features are

accounted for by the numerical solutions of MCT. Thus we

conclude that MCT constitutes a general, first-principle,

approach for dynamics in nonentangled polymer melts, for

a wide range of barrier strength. The corresponding time and-

length scales extend from the caging regime prior to the a-

relaxation (as shown in17,18), to the relaxation of the slowest

Rouse mode (as shown in this article).
investigated state points.
II. Methods

We simulate bead-spring chains of N¼ 10 identical monomers of

mass m and diameter s. Monomers at a distance r interact

through the potential V(r) ¼ 43[(s/r)12 � 7c�12 + 6c�14(r/s)2],

which is cut-off at r/s ¼ c ¼ 1.15. Connected monomers also

interact through a bonding potential21 Vbond(r) ¼ �3bondln[1 �
(r/R0)2], with 3bond/3 ¼ 33.75 and R0/s ¼ 1.5. We implement

intramolecular barriers by means of the bending (VB), and

torsion (VT) potentials proposed by Bulacu and van der Gies-

sen.19,20 These are defined for each i-momomer (i ˛ [1,N]) as:

VB(qi) ¼ (3KB/2)(cosqi � cosq0)2, and VT(qi, qi+1, fi,i+1) ¼
3KTsin3qisin3qi+1

P
3
n¼0ancosnfi,i+1. Chain stiffness is tuned by

varying KB and KT. qi is the bending angle defined by the set (i �
1, i, i + 1). fi,i+1 is the dihedral angle between the planes defined

by the sets (i�1, i, i + 1) and (i, i + 1, i + 2). Following19,20 we use

q0 ¼ 109.5�, a0 ¼ 3.00, a1 ¼ �5.90, a2 ¼ 2.06, and a3 ¼ 10.95.

Simulations for this simple model of intramolecular barriers

reproduce qualitative features observed in real polymers.19,20 For

example, they rationalize non-trivial trends exhibited by the

exponents z for the N-dependence of the diffusivity, D � N�z,

below and above the entanglement length, as well as by the

temperature dependence of such exponents (see the discussion in

Ref. [19,20]).

Temperature T, time t, and length are given respectively in

units of 3/kB (where kB is the Boltzmann constant), s(m/3)1/2, and

s. Simulation units can be qualitatively mapped to real units as s

� 5–10 �A, s(m/3)1/2 � 1–10 ps, and 3/kB � 300–500 K (see the

discussion in, e.g., Ref. [21,22]). We simulate a fixed monomer

melt density rs3 ¼ 1. Additional numerical details can be found

in Ref. [17,18].
III. Results

The investigated range of barrier strength corresponds to

a strong variation of the chain stiffness. This can be quantified by

the characteristic ratio Cr
N ¼ hR2

eei/(Nhb2i) (in this case N ¼ 10),

where Ree and b denote respectively the chain end-to-end radius

and the bond length. Brackets denote ensemble average. Fig. 1

displays the obtained values of Cr
10 at all the investigated state

points (KB, KT, T). As expected, chain stiffness is enhanced by

increasing the strength of the barriers and by decreasing

temperature. Moreover, the effect of temperature is much more

pronounced in chains with strong barriers than in fully-flexible
This journal is ª The Royal Society of Chemistry 2011
chains, for which Cr
10 is nearly T-independent. The investigated

state points cover a broad range of stiffness, with values of Cr
10

varying from Cr
10 z 1.3 for fully-flexible chains up to Cr

10 ¼ 4.3

for the strongest barriers, (KB, KT) ¼ (35, 4), at the lowest

investigated T.23,24

In the Rouse model12,25 a tagged chain is represented as a string

of N beads (with position vectors rj) connected by harmonic

springs of constant 3kBT/b2. The effective interaction of the

tagged chain with its surroundings is given by a friction coeffi-

cient z and a set of d-correlated external random forces fj,

hfj(t)$fk(t0)i ¼ 6zkBTdjkd(t � t0). The chain motion is mapped

onto a set of N normal modes (Rouse modes) labelled by p ¼
0,1,2,.,N � 1, of wavelength N/p, and defined as Xp(t) ¼P

N
j¼1Pjprj(t), with Pjp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� dp0Þ=N

q
cos½ðj � 1=2Þpp=N�.

X0ðtÞ=
ffiffiffiffiffi
N
p

coincides with the chain center-of-mass position. The

mode correlators, the central quantities of the present investi-

gation, are defined as Cpq(t) ¼ [hXp(0)$Xq(t)i �
d0,p�qhXp(0)$Xq(0)i]/3N. Furthermore we define the quantities

Ĉpq(0) ¼ Cpq(0) for p,q > 0. The properties of the random forces

in the Rouse model lead to orthogonality and exponentiality of

the Rouse modes,12 i.e., Cpq(t) ¼ Ĉpq(0)exp[�t/sp], with Ĉpq(0) ¼
dpq(b2/24N2)sin�2[pp/2N] and sp ¼ (zb2/12kBT)sin�2[pp/2N].

Thus, according to the Rouse model, for p � N, Ĉpp(0) and sp

scale as �p�2.

In Fig. 2 we show the effect of the barrier strength on intra-

chain static correlations. We compute the terms Jpq ¼
hXp(0)$Xq(0)/(Xp(0)Xq(0))i, where Xp(0) is the modulus of the

vector Xp(0). By construction Jpq ^ 1 for p ¼ q. Data for fully-

flexible chains (not shown) exhibit small deviations from

orthogonality, indeed |Jpq| < 0.05 for all p s q, independently of

T. Instead, orthogonality is clearly violated for strong intra-

molecular barriers, as shown in the contour plot of Fig. 2a.

Moreover, deviations are enhanced by decreasing T. Having

noted this, modes p,q of distinct parity fulfil |Jpq| < 0.1, i.e., they

are approximately orthogonal even for the stiffest investigated

system. Fig. 2b shows the diagonal terms Ĉpp(0) normalized by

Ĉ11(0). Data for fully-flexible chains approximately follow

gaussian behaviour, Ĉpp(0) � p�2.2.13 The introduction of chain

stiffness leads to strong non-gaussian behaviour, which can be

quantified at intermediate and low p by an approximate power

law Ĉpp(0) � p�x, with higher x-values for stronger barriers.15,26
Soft Matter, 2011, 7, 1364–1368 | 1365
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Fig. 2 Static intrachain correlations computed from simulations. For

each value of (KB, KT) (see legends) results include data at the highest and

lowest investigated T. (a): For stiff chains with (KB, KT)¼ (35, 4), contour

plot of Jpq (see text). (b): Diagonal terms Ĉpp(0) (see text) normalized by

Ĉ11(0) for the sake of clarity. Each data set corresponds to a fixed value of

(KB, KT) and T (see legend). Dashed lines indicate approximate power-

law behaviour �p�x. From top to bottom, x ¼ 2.2, 2.7, 3.1, and 3.8.

Fig. 3 Relaxation time s1 of the mode p ¼ 1 versus the characteristic

ratio C r
10 at fixed temperature T ¼ 1.5. The respective values of (KB, KT)

are indicated on top of each symbol.

Fig. 4 The p-dependence of the relaxation times sp of the mode corre-

lators. Filled symbols: simulations. Empty symbols: MCT numerical

solutions. Each data set corresponds to a fixed value of (KB, KT) and T

(see legends). For clarity, each set is rescaled by its respective s1. Dashed

and dotted lines indicate approximate power-law behaviour �p�x. From

top to bottom, simulations (dashed): x ¼ 2.0, 2.4, 2.8; MCT (dotted):

x ¼ 2.2, 2.7, 3.1.
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In the case (KB, KT) ¼ (35, 4), at the lowest investigated T, we

find x ¼ 3.8. The most local effects of intramolecular barriers are

manifested by flattening of Ĉpp(0) at large p. The non-gaussian

behaviour in the systems with intramolecular barriers is observed

for all p-values, i.e., it persists over all the length scale of the

chain. For the same barrier strength, gaussian statistics will be

recovered at values of the mode wavelength, N/p, that can only

be probed by chains longer than those (N¼ 10) investigated here.

See, e.g., Ref. [15,16] for a realization, in longer chains, of this

crossover from anomalous to Gaussian scaling in Ĉpp(0).

The introduction of chain stiffness also has dramatic effects in

the dynamics. Fig. 3 shows results for the relaxation time s1 of

the mode p ¼ 1 versus the characteristic ratio of the investigated

systems at fixed T ¼ 1.5. Relaxation times sp for the different p-

modes are operationally defined as Fpp(sp) ¼ 0.3, where Fpp(t) ¼
Cpp(t)/Ĉpp(0) is the normalized Rouse correlator. The obtained

time s1 at T ¼ 1.5 increases by about two decades over the

investigated range of stiffness.

Fig. 4 displays, for several values of (KB, KT) and T, the p-

dependence of the times sp. The latter show analogous trends to

those observed in Fig. 2 for the static amplitudes Ĉpp(0). Fully-

flexible chains exhibit approximate Rouse scaling sp � p�2.
1366 | Soft Matter, 2011, 7, 1364–1368
Strong deviations are instead observed as chains become stiffer.

We again quantify the latter by effective power-laws sp � p�x. As

observed for Ĉpp(0), x is weakly dependent on T27 but strongly

dependent on the barrier strength, taking higher values for stiffer

chains. The x-values for Ĉpp(0) and sp at the same (KB, KT) and T

are similar, indicating that the structural origin of the observed

dynamic anomalies is mainly controlled by intrachain static

correlations.

Fig. 5a displays simulation results of the normalized mode

correlators Fpp(t), for (KB, KT) ¼ (35, 4), at T ¼ 1.48. Several

salient features are revealed. First, the unambiguous presence of

a long-time plateau for the modes p¼ 3 and p¼ 5, followed by an

ultimate slow decay. Note that this is not related to the structural

a-relaxation associated to the proximity of the glass transition.

Indeed it arises at times far beyond the a-time scale (�5 � 10�3s1

at this T). This feature is instead intimately connected to the

relaxation of the internal torsional degrees of freedom of the

chain. Indeed we observe (not shown) that for fixed bending

constant KB, the long-time plateau tends to vanish as the value of

the torsional constant KT is decreased.
This journal is ª The Royal Society of Chemistry 2011
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Fig. 5 Normalized mode correlators Fpp(t) for stiff chains with (KB, KT)¼
(35, 4). Panel (a): simulation results at T¼ 1.48. Panel (b): MCT numerical

solutions at T ¼ 0.63. In both panels, the absolute time is rescaled by the

relaxation time s1 of the mode p ¼ 1.
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The long-time plateau constitutes a clear breakdown of the

Rouse model, which predicts single, purely exponential decays of

the mode correlators. Its origin can be tentatively understood as

follows. Relaxation of the pth-mode is equivalent to relaxation of

a harmonic oscillation of wavelength N/p. For strong torsional

barriers, the wavelengths of some particular modes probe char-

acteristic lengths over which chain deformation involves a strong

energetic penalty (due to the presence of the barriers). Thus, at

the time scales for which the barrier amplitudes are probed,

relaxation of such modes becomes strongly hindered, leading to

the observed long-time plateau regime and ultimate slow relax-

ation. Another intriguing feature of Fig. 5a, also inconsistent

with the Rouse model predictions, is the nonmonotonic p-

dependence of the mode correlators at intermediate times prior

to the long-time plateau (see data for p > 4).
IV. Discussion

All these highly non-trivial dynamic features can be rationalized

in terms of the PRISM-based MCT approach of Chong et al.

Note that the PRISM approximations retain their validity not

only in the fully-flexible limit,28 but also when strong intra-

molecular barriers are present.18 We solved the MCT equations

for the mode correlators,11

€CpqðtÞ þ
kBT

mN
d0pd0q þ

kBT

m

XN�1

s¼0

EpsCsqðtÞ

þ kBT

m

XN�1

s¼0

ðt

0

dt0mpsðt� t0Þ _Csqðt0Þ ¼ 0; (1)

which are derived from the respective MCT equations for the

self site-site density correlators in the limit of wave vector k /

0 (see Ref. [11]). In eqn (1) Epq ¼ (1 � d0,p�q)Ĉ�1
pq (0)/N, with
This journal is ª The Royal Society of Chemistry 2011
Ĉ�1
pq (0) the inverse matrix of Ĉpq(0). The memory kernel reads

mpq(t) ¼ (r/6p2)
Ð

dkk4S(k)c2(k)
P

N
i,j¼1PipFs

ij(k, t)Pjqf(k, t). The

coherent density correlators f(k, t) and self site-site density

correlators Fs
ij(k, t) are calculated by solving the associated MCT

equations for the density fluctuations (see Ref. [11]). The static

structure factor, S(k), and the direct correlation function, c(k),

enter the former equations as external inputs. They were evalu-

ated18 by combining simulation results of the chain form factor,

u(k), with the PRISM8 rc(k) ¼ 1/u(k) � 1/S(k) and the Percus–

Yevick7 closure relations. The static quantities Ĉpq(0) and Ĉ�1
pq (0),

which also enter eqn (1) as external inputs, were directly

computed from the simulations. MCT equations were numeri-

cally integrated as described in Ref. [29].

Fig. 5b shows the MCT solutions for the normalized mode

correlators of the stiffest investigated chains at T ¼ 0.63. The

separation parameter 3T ¼ T/Tc � 1 ( 0.2 is the same as the

simulated T ¼ 1.48 [data in Fig. 5a] for the same barrier

strength.30 A full correspondence with the simulation trends is

obtained, including the long-time plateaux for p ¼ 3 and 5, as

well as the sequence in the complex, nonmonotonic p-depen-

dence for p > 4 at intermediate times. Fig. 4 shows the p-

dependence of the relaxation times sp (as defined above) of the

mode correlators obtained from solving the MCT equations.

These are compared with simulation data for several values of

(KB, KT), at common 3T ( 0.2. Again, MCT solutions are in

semiquantitative agreement with the anomalous trends of

simulations, with similar exponents for the effective power-laws.

Thus, changes in the static intrachain correlations (induced by

increasing stiffness) enter the MCT equations and yield the

corresponding changes in the dynamic correlations. Slaving the

dynamics to statics is indeed the essence of MCT.31 It is worth

noting that, since mode correlators are well described by MCT,

the agreement with simulations is similar for other observables

probing chain dynamics as, e.g., the orientational bond corre-

lator (not shown). The reason is that such observables can be

formally expressed as combinations of the mode correlators.12
5. Conclusions

We have presented a global picture of the chain dynamics of

a realistic model for nonentangled polymer melts, which incor-

porates intramolecular barriers of tunable strength. By

increasing the barrier strength between the limits of fully-flexible

and stiff chains, strong deviations from the Rouse model are

revealed. MCT accounts for the anomalous scaling of the

relaxation times, the long-time plateaux, and the nonmonotonic

wavelength dependence of the mode correlators. Thus, MCT is

established as a first-principle theory for dynamics of non-

entangled real polymers, for a wide range of barrier strength. It

describes a broad dynamic range, from the caging characteristic

time to the relaxation time of the slowest Rouse mode.
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