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We study the thermodynamic and structural properties of a five-site tetrahedral molecular model
by means of different Monte Carlo simulation techniques, and the reference interaction site model
(RISM) theory of molecular fluids. Simulations and theory signal the onset, at sufficiently low tem-
peratures, of two different tetrahedral molecular arrangements, with a more open topology progres-
sively giving place to a fully bonded one, as the temperature decreases. The RISM theory reproduces
the splitting of the static structure factor at low temperatures, a feature intimately related to the onset
of the tetrahedral ordering. Less accurate predictions are obtained for the liquid-vapor coexistence
and the short-range correlations. © 2011 American Institute of Physics. [doi:10.1063/1.3582904]

I. INTRODUCTION

Advanced synthesis protocols offer nowadays the oppor-
tunity to produce colloidal molecules with well-defined shape
and tunable patchiness.1–4 This new generation of colloids is
expected to provide the building blocks of self-assembling
materials, and to give rise to a rich and still unexplored va-
riety of supra-colloidal structures.

In parallel with the experimental development, signifi-
cant theoretical and numerical efforts are currently promoted
to predict the structural and collective properties of colloidal
particles5–7 characterized by shape anisotropies or asymmet-
rically patterned interactions.8–10 In order to develop accurate
theoretical methods, effective potentials and more elementary,
“primitive” models, 11–14 often resembling the corresponding
molecular ones15, 16 (see Ref. 17 for a recent review), are un-
der scrutiny. Integral equation theories18 may play in this con-
text a significant role, being relatively simple to implement
and generally providing accurate results when applied to the
description of fluid phase equilibria.19 As an example, the ref-
erence hypernetted chain scheme20 and a thermodynamic per-
turbation theory,21, 22 were used to investigate one- and two-
patch fluid models.6, 14 In the case of the more asymmetric
one-patch model, the theoretical approach does not succeed
in reproducing the system structure, when self-assembly into
micelles and vesicles takes place.7 Similar difficulties were
also experienced in early attempts to reproduce the tetrahe-
dral order observed in associating liquid models,23 with the
split of the main peak of the static structure factor upon
cooling hardly reproduced. An appropriate tool to describe
distributed-site, patchy or patterned interactions is constituted
by the reference interaction site model (RISM) theory, devel-
oped in the early 1970s by Chandler and Andersen24 as a gen-
eralization of the Ornstein-Zernike theory of simple fluids18

able to describe the structure of molecular liquids. In the ini-
tial formulation, molecules were viewed as composed by a
suitable superposition of several hard spheres, rigidly bonded
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together to represent a given molecular geometry.25 Later on,
the theory was extended to deal with more realistic represen-
tation of complex liquids, including associating fluids such as
water,26, 27 methanol,28–30 and their mixtures.31 In the context
of colloids, RISM was used, e.g., to study the thermodynamic
and structural properties of discotic lamellar colloids,32, 33 the
self-assembly in diblock copolymers (modeled as “ultrasoft”
colloids),34 the interaction between colloidal particles and
macromolecules35 and the crystallization and solvation prop-
erties of nanoparticles in aqueous solutions36 (see also the re-
views in Refs. 37 and 38 and Refs. 39 and 40 for recent ad-
vances).

In this work we assess the ability of the RISM to pre-
dict the properties of colloidal systems in which the micro-
scopic interaction combines together bonding effects and the
tendency to form a local tetrahedral network. Our theoreti-
cal predictions are complemented by Monte Carlo (for the
structure), Gibbs Ensemble (for the liquid-vapor coexistence)
and grand canonical Monte Carlo (for the liquid-vapor critical
point) simulations. Simulations, besides providing a micro-
scopic insight of the system, constitute the necessary bench-
mark to assess the accuracy of the theory.

The model we propose envisions five interaction sites,
rigidly arranged at the center and the four vertices of a regular
tetrahedron. All sites on different molecules interact through a
hard core potential; an additional square-well attractive inter-
action is introduced between the center of one molecule and
any of the four equivalent external sites of another molecule.
The proposed geometry, where four external spheres are par-
tially fused with a central one (see Fig. 1), closely resem-
bles a colloidal molecule recently synthesized by means of
a novel technique, in which cross-linked particles with a liq-
uid protrusion, assemble by coalescence of the protrusion
itself.1 The geometry of the model, combined with the pro-
posed site-site potentials, favor a high directionality of in-
teractions and the formation of a limited number of possible
bonds. Such “limited-valence” class of models has received a
significant attention in the last years; in particular, on decreas-
ing the valence below six, it has been demonstrated that the
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liquid-vapor unstable region progressively shrinks to lower
densities, creating an intermediate region where a stable net-
work may be formed,41, 42 giving rise to equilibrium gels.43

Finally, our model, in which the protrusions repel each other
and are attracted only by the exposed surface of the central
particle, provides also an example of the recently investigated
“inverse patchy colloids.”44

The paper is organized as follows: in Sec. II we describe
the model, the RISM theory, and the plan of simulations. Re-
sults are presented and discussed in Sec. III. Conclusions fol-
low in Sec. IV.

II. MODEL, THEORY, AND SIMULATION APPROACHES

In the tetrahedral model depicted in Fig. 1 we label with 1
the central sphere (with its diameter σ1 constituting the length
scale of the model) and with 2 any of the four equivalent
external spheres (with diameter σ2 = 0.80σ1). The distance
between the center of the molecule and one of the vertices
is L12 = 0.55σ1. In our model, the external spheres partially
overlap with the central one but do not intersect each other.
Hence, the molecular volume VM is given by the total volume
of the five spheres, minus four times the intersecting region
(constituted by the union of two different spherical caps) of
one external sphere with the central one; we obtain for the
proposed geometry VM = 1.3015 σ 3

1 , and we shall use, as a di-
mensionless measure of the density of the system, the packing
fraction η = ρVM, where ρ is the (molecular) number den-
sity of the system. Sites 1 on different molecules interact via
a purely hard-sphere interaction (with diameter σ1), and the
same holds for the interaction among spheres 2 (with diam-
eter σ2); the cross interaction 1-2 contains also a square-well
attraction, immediately next to the hard-sphere repulsion, as-
suming the form:

U12(r ) =

⎧⎪⎪⎨
⎪⎪⎩

∞ if r < σ12 ≡ (σ1 + σ2)/2

−U0 if σ12 < r < λ + σ12

0 if r > λ + σ12

, (1)

where r is the distance between sites 1 and 2 and the (nar-
row) attractive range is fixed at λ = 0.027σ1. The interaction
potential between two generic molecules i and j has a min-
imum −2U0, in the configurations where the central sphere
of i is bonded to an external sphere of j and vice versa.
The model potential parameters have been selected with the
aim of favoring a limited-valence coordination23 via double
bonds. The potential depth U0 constitutes the natural energy
scale of the system, with the reduced temperature defined as
T ∗ = kBT/U0.

In the RISM framework, the pair structure of a fluid
composed by identical molecules, each formed by n inter-
action sites (n = 5 in our case), is characterized by a set
of n(n + 1)/2 site-site intermolecular pair correlation func-
tions hαη(r ) = gαη(r ) − 1, where gαη(r ) are the site-site ra-
dial distribution functions. The hαη(r ) are related to a set of
intermolecular direct correlation functions cαη(r ) by a matrix
equation that in k-space reads

H(k) = W(k)C(k)W(k) + ρW(k)C(k)H(k) . (2)

FIG. 1. Geometry of the molecular model studied in this work; different col-
ors are used for the central core and the four equivalent protrusions.

In Eq. (2), H ≡ [hαη(k)], C ≡ [cαη(k)], and W ≡ [wαη(k)]
are n × n symmetric matrices; the elements wαη(k) are the
Fourier transforms of the intramolecular correlation func-
tions; provided the particles are rigid, we have explicitly

wαη(k) = sin[kLαη]

kLαη

, (3)

where Lαη is the distance between a pair of sites α and η be-
longing to the same molecule. The RISM equation has been
complemented by the hypernetted chain (HNC) closure45 for
the direct correlation functions cαη(r ):

cαη(r ) = exp[−βUαη(r ) + γαη(r )] − γαη(r ) − 1, (4)

where Uαη(r ) is the intermolecular pair potential and the
gamma functions are defined as: γαη(r ) = hαη(r ) − cαη(r ).
We have also tested the Percus-Yevick (PY) closure

cαη(r ) = {1 − exp[βUαη(r )]}gαη(r ). (5)

As it is known, the PY yields an overall good description of
liquid structure and thermodynamics of the atomic square-
well fluids.46, 47

The perfect equivalence of the four external interaction
sites allows one to derive a contracted version of the RISM
formalism,48 where only one of such identical sites is ex-
plicitly considered, and hence the dimension of all correla-
tion matrices reduces from 5 × 5 to 2 × 2. In particular, the
“symmetry-reduced” intramolecular correlations W(k) read
as

W(k) ≡ [w I J (k)] = 1

nI

∑
i∈I

[wi j (k)],

= 1

n J

∑
j∈J

[wi j (k)] = [w J I (k)], (6)

where the indices I and J refer to the non-equivalent types of
interaction sites (i.e., 1 and 2 in this work), and nI and n J are
their corresponding multiplicity (one and four for sites of type
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1 and 2, respectively). The reduced matrix C(k) has elements:
[cI J (k)] = nI [cI J (k)]n J .48

As for the calculation of the free energy and pressure
within the RISM/HNC formalism (to be used for the deter-
mination of the liquid-vapor phase coexistence), closed lo-
cal formulæ (i.e., not requiring a thermodynamic integration)
were derived by Singer and Chandler,49 closely following the
corresponding relations deduced for the HNC theory of sim-
ple fluids:50

− β Aex

N
= ρ2

2

∑
α,β

∫
dr

[
cαβ(r ) − 1

2
h2

αβ(r )

]

− 1

2(2π )3

∫
dk {TrρW(k)C(k)

+ ln det[1 − ρW(k)C(k)]}, (7)

β P

ρ
= 1 − ρ

2

∑
α,β

∫
dr

[
cαβ(r ) − 1

2
h2

αβ(r )

]

+ 1

2(2π )3

∫
dk{ρ−1 ln det [I − ρW(k)C(k)]

+Tr [W(k)C(k)][I − ρW(k)C(k)]−1} . (8)

Occasionally, in order to improve the convergence of the
RISM equation in the low-density regime, we have also
adopted the partially linearized version of HNC, due to
Kovalenko and Hirata,51 which employs a combination of the
mean spherical approximation (MSA) and of the HNC:

cαη(r ) =
{

HNC if gαη(r ) ≤ 1
MSA if gαη(r ) > 1.

(9)

We recall that within MSA{
gαη(r ) = 0 if r ≤ σαη

cαη(r ) = −βUαη if r > σαη.
(10)

The numerical solution of the RISM has been implemented
through a standard iterative Picard algorithm, on a mesh of
212 points with a spacing 
r = 0.005σ1.37

Monte Carlo (MC) simulations at constant volume and
temperature have been carried out on a sample composed of N
= 500 molecules enclosed in a cubic box with standard
periodic boundary conditions. We have covered a wide
range of temperatures (0.13 < T ∗ < 2) and packing fractions
(0.013 < η < 0.442). We have also performed Gibbs Ensem-
ble Monte Carlo (GEMC) simulations to map the coexistence
curve. The GEMC method was designed52 to study coexis-
tence in the region where the liquid-vapor free-energy bar-
rier is sufficiently high to prevent crossing between the two
phases. Using GEMC, we have studied a system of (total)
350 particles which partition themselves into the two boxes.
At temperatures much less than the critical temperature, the
vapor phase box contains only a few particles, while the re-
maining particles compose the liquid phase. To locate the po-
sition of the critical point, we have performed grand canon-
ical Monte Carlo (GCMC) simulations53 for a system of

several sizes, up to box length of 10σ1. These calculations
are complemented with histogram reweighting techniques to
match the distribution of the order parameter ρ − se with the
known functional dependence expected for the Ising univer-
sality class critical point.54 Here ρ is the number density, e
is the potential energy density, and s is the mixing field pa-
rameter. In all simulations, translational and rotational moves
consisted in a random translation between ±0.05σ1 and a ran-
dom rotation of ±0.1 rad of a randomly selected particle. De-
pending on the MC method, insertion and deletion moves (or
swap moves) have been attempted, on average every 400 dis-
placement moves, and volume change moves (with volume
changes of the order of 0.5σ 3

1 ) every 2000 motion moves.

III. RESULTS AND DISCUSSION

In order to define the relevant temperature and density
scales of the model, we have first evaluated the GEMC and
RISM liquid-vapor coexistence curves and the corresponding
critical points; results are reported in Fig. 2. The GCMC crit-
ical parameters have been estimated as: T ∗

cr ≈ 0.157 and ηcr

≈ 0.171 (i.e., ρcrσ
3
1 = 0.132). The low value of ηcr is consis-

tent with the presence of a limited-valence mechanism41, 42: as
expected for such systems, the liquid-vapor coexistence curve
appears confined to densities smaller than those generally ob-
served in spherically attractive potentials. This circumstance
suggests the presence of a region, at slightly larger densi-
ties, in which a well-defined network of bonded particles may
be formed. Theoretical predictions have been obtained by re-
peated application of Eqs. (7) and (8) to find the coexisting
densities along several isotherms; we have then estimated the
critical point parameters (T ∗

cr ≈ 0.147 and ηcr ≈ 0.108, i.e.
ρcrσ

3
1 = 0.083) by means of the law of rectilinear diameter

and the scaling law for the densities with a non-classical crit-
ical exponent β = 0.32.53 The RISM approach yields more

0 0,1 0,2 0,3 0,4 0,5
η

0,13

0,135

0,14

0,145

0,15

0,155

0,16

T
*

FIG. 2. GEMC (circles) and RISM (squares) liquid-vapor coexistence curves
with estimates of the corresponding critical points (crosses). Full line is the
interpolating curve drawn according to the scaling law for the densities and
the law of rectilinear diameters. Densities in the horizontal axes are given in
terms of the packing fraction η = ρVM, where ρ is the number density and
VM is the volume of one molecule (see text). Reduced temperature on the
vertical axes are defined as T ∗ = kBT/U0, with U0 the depth of the square-
well attraction, see Eq. (1).
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accurate predictions for the coexisting vapor densities than
for the liquid ones. Similar results have already been ob-
served for other models,26, 27, 30 and reflect the tendency of
the RISM/HNC to overestimate the role of repulsive forces
in the overall interaction potential (and hence to overestimate
the pressure) as the density increases.

We have then selected several state points in the phase
diagram to investigate the local structure of the system,
and the ability of the RISM theory to reproduce the simu-
lated correlation functions. The points include a supercritical
state at low density (labeled hereafter A), with T ∗ = 0.30 and
η = 0.130, and several points along the high-density isochore
η = 0.442, starting from the supercritical temperature T ∗

= 2, and ending in the liquid state at T ∗ = 0.13; we aim, with

0,0

0,5

1,0

1,5

g(
r)

(a)

1 2 3 4

0,0

0,5

1,0

1,5

2,0

g(
r)

(b)

1 2 3 4

1 2 3 4
r/σ1

0,0

1,0

2,0

3,0

g(
r)

(c)

FIG. 3. MC (symbols and dashed lines) and RISM (full lines) center-to-
center radial distribution function g(r ) at state points A (panel a, T ∗ =
0.30, η = 0.130), B (panel b, T ∗ = 0.30, η = 0.442), and C (panel c, T ∗ =
0.13, η = 0.442).

such analysis, to obtain a detailed picture of the short-range
structuring of the fluid upon cooling. We shall first focus on
two points along the isochore η = 0.442, labeled respectively
B (T ∗ = 0.30, η = 0.442) and C (T ∗ = 0.13, η = 0.442).

RISM and MC data for the center-to-center radial distri-
bution functions g(r ) at points A, B, and C are reported in
Fig. 3. Theoretical and numerical results agree for distances
larger than r = 1.45, the upper value separating bonded and
non-bonded pairs (see below), whereas a clear discrepancy
emerges for smaller distances, especially at r = σ1, where the
RISM g(r ) attains non-zero values in contrast with the MC ev-
idence of vanishing correlations at those distances. Such evi-
dence has to be ascribed to the known difficulty of the RISM
to properly cope with steric effects not explicitly embodied
into “atomic” site-site closures such as the envisaged HNC
approximation. As a consequence, the theory allows for the
(physically forbidden) possibility that two central spheres get
in contact, without properly accounting for the excluded vol-
ume constraints generated by the four protruding spheres; ge-
ometrical evaluations indeed show that two central spheres
cannot get closer than r � 1.09. Comparing the g(r ) in A and
B (see again Fig. 3), packing effects also become apparent in
the progressive modulation of the radial distribution function
at large r and in the structuring of the system at short range,
witnessed by the presence of a small peak at r ≈ 1.2 (absent
in point A), and by the increase of g(r ) at r ≈ 1.42. Upon
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T*=0.40
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T*=0.20
T*=0.18
T*=0.16
T*=0.13

(a)
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T*=0.40
T*=0.30
T*=0.25
T*=0.20
T*=0.18
T*=0.16
T*=0.13

(b)

c

FIG. 4. MC (panel a) and RISM (panel b) g(r ) at η = 0.442 and different
temperatures.
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decreasing the temperature (point C), the fluid becomes more
and more structured, as indicated by the transformation of
the relatively small feature at r = 1.2, observed in B, into a
well-defined peak in the same position. At larger distances, an
additional weak peak around r = 2.5 is also visible in the
MC data.

The emergence of a complex local order, suggested by
the presence of two peaks in g(r ) at two close small distances,
occasions a more extensive investigation of the descent in
temperature along the isochoric path at η = 0.442. A com-
parison between MC and RISM g(r ) at several different tem-
peratures, starting from T ∗ = 2, is thus reported in Fig. 4. At
high temperatures, the g(r ) essentially reproduces a standard
liquid structure, characterized by a main peak at r ≈ 1.5 (this
distance being slightly larger than 1.35σ1, i.e. the diameter of
an equivalent hard sphere with volume VM). As the tempera-
ture decreases, the progressive structuring of the fluid is sig-
nalled by the appearance of the peak at r = 1.2, as mentioned
before, and by the splitting of the high temperature peak into
two progressively sharper, different contributions, eventually
placed, when T ∗ ≤ 0.25, at r = 1.42 and 2.

PY results for g(r ) (not shown) turn out to be more accu-
rate than the HNC ones in the contact region, where hard-core
exclusion effects are important; however, when the attractive
contributions become significant, namely upon lowering the

FIG. 5. MC (panel a) and RISM (panel b) coordination number N (r ) and
g(r ) at state points B (T ∗ = 0.30, η = 0.442) and C (T ∗ = 0.13, η = 0.442).

FIG. 6. Pictures of two molecules bonded in different tetrahedral arrange-
ments, corresponding to pair interaction energies of Ei j = −1 (panel a) and
Ei j = −2 (panel b). A fully bonded configuration of four particles surround-
ing the central particle i (Ei = −8), with particle i indicated by different
colors, is reported in panel c.

temperature and increasing the density, the PY predictions
tend to be progressively less accurate, failing to reproduce the
two peaks at r ≈ 1.2 and r ≈ 1.42 and showing convergence
problems about T ∗ � 0.15.

It is instructive at this stage to examine the behavior of
the coordination number N (r ) of central spheres: as shown in
Fig. 5, for distances corresponding to the second minimum of
g(r ), N (r ) goes from ∼ 3 to 4, as the temperature decreases.
Although g(r ) slightly increases after the minimum, so that
a bonding region can only be roughly defined, a clear indi-
cation of a limited coordination emerges, further supporting
our hypothesis that the model belongs to the class of low-
valence systems. Actually, further RISM calculations (not re-
ported here) demonstrate that N (r ) has a well-defined plateau
∼ 4 for T ∗ ≈ 0.05, a temperature prohibitively low to be in-
vestigated via standard simulation techniques.

The sequence of the peaks visible in Fig. 4 and the evo-
lution of N (r ) from point B to C in Fig. 5 appear compati-
ble with the superposition of two different short-range orders.
The first one, depicted in panel (a) of Fig. 6, consists in a
collinear arrangement of two central spheres, separated by an
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FIG. 7. Distribution of single (Ei j = −1) and double (Ei j = −2) bonds at
fixed η = 0.442 and different temperatures.

external one placed between them, consistently with the pres-
ence of a peak in g(r ) at r = 1.42. In this case, the pair inter-
action energy is Ei j = −U0. A second tighter arrangement,
shown in panel (b) of Fig. 6, is obtained when two central
spheres approach to each other down to r = 1.2 (the posi-
tion of the main peak), i.e., almost to the minimum allowed
distance 1.09, discussed above. In this configuration the in-
teracting pair forms two bonds, involving simultaneously the
two central spheres and two external spheres and thus the pair
interaction energy is Ei j = −2U0. Interestingly enough, the
third and fourth peak in g(r ) are at about 1.63 times the values
r = 1.2 and 1.42, respectively, suggesting that both configu-
rations favor a local tetrahedral arrangement.

The distribution of single (Ei j = −U0) and double bonds
(Ei j = −2U0) at η = 0.442, reported in Fig. 7, suggests that
progressively more and more single bonds turn into double
bonds as the temperature decreases.

Additional information on the bonding geometries can be
obtained from the distribution of the energy per particle, cal-
culated as the sum of the pair interaction energies of all j
neighbors of a given i molecule, i.e., Ei ≡ ∑

j Ei j . Results
are shown in Fig. 8: at high temperatures, the distribution has
a maximum at E(i) = 0, testifying the practical absence of
bonding in the system. The maximum shifts towards higher
energies as the temperature decreases, and attains the value
≈ 0.3 at Ei ≈ 6 for T ∗ = 0.13, signaling the onset of a geo-
metrical arrangement where one molecule is coordinated with
four neighbors, two of which linked with a single bond and
the other two with a double bond (giving, as already stated, a
total energy value of −6U0). The progressive shift of the max-
imum position towards greater energies suggests that a fully
tetrahedral network (in which a molecule is involved in four
double bonds, with a resulting energy of −8U0) might be real-
ized at even lower temperatures; this expectation is consistent
with the RISM indication we have alluded to, of a sharply de-
fined tetrahedral coordination at T ∗ = 0.05. A graphical rep-
resentation of five molecules involved in a fully bonded con-
figuration is shown in panel (c) of Fig. 6.

Next, we compare in Fig. 9 RISM and MC results for
the center-to-center static structure factor S(k). The panel (a)
shows the MC data. At high temperatures, the MC S(k) dis-
plays a main peak at k ≈ 4.5 that tends to decrease upon cool-

0 2 4 6 8 10
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P
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T*=0.40
T*=0.30
T*=0.25
T*=0.20
T*=0.18
T*=0.16
T*=0.13

FIG. 8. Histogram of the total energy per particle Ei at fixed η = 0.442 and
different temperatures.

ing, eventually evolving into two separate peaks, namely a
small feature at k = 4.5 and a well-defined peak at k = 6.5.
The RISM/HNC S(k) (panel b) qualitatively reproduces the
MC trends, including the presence and the evolution of the
two peaks at k = 3.7 and 6.5; the former appears more pro-
nounced and shifted towards lower k, in comparison with MC
data. In the low-k region, S(k) is relatively small, consistently
with the fact that the investigation is carried relatively far from
the binodal region. Conversely, we have verified that the PY
closure is not able to reproduce the splitting of the main peak
of S(k).
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FIG. 9. MC (panel a) and RISM (panel b) center-to-center static structure
factor S(k) at fixed η = 0.442 and different temperatures.
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IV. CONCLUSIONS

We have investigated a system of tetrahedrally shaped
molecules, constituted by five partially fused hard spheres, by
means of Monte Carlo simulations and the RISM theory of
molecular fluids. The intermolecular arrangement arises from
the competition between hard-core excluded volume effects
and a (short-range) square-well attraction acting between the
central sphere of one molecule and the four outer spheres of
another molecule.

Simulation and theory signal the onset, at sufficiently
low temperatures, of two different tetrahedral arrangements,
namely, (i) a fully bonded configuration, where the central
sphere of a given molecule is in contact with two outer spheres
of each of the neighbour molecules and (ii) a more open struc-
ture, where a central sphere of a given molecule is in contact
with only one outer sphere of each of the neighbours. The two
arrangements coexist in the temperature range we have inves-
tigated, with the open structure progressively giving place to
the fully bonded one as the temperature decreases.

The self-assembly of colloidal systems in tetrahedral
structures is of interest for the synthesis of colloidal crystals
with a diamond structure, a property of crucial importance for
innovative photonic applications.55, 56 For this reason it would
be interesting to ascertain whether the present model is able
to form a tetrahedral crystalline structure upon approaching
freezing, and, if so, whether the twofold packing evidenced
in the liquid could be traced also in the solid phase. We are
currently planning appropriate strategies to investigate this
point.

As for the accuracy of the RISM, theoretical predic-
tions appear qualitatively satisfactory. Indeed, the theory
reproduces the split of the main peak of the structure factor
at low temperatures, a feature intimately related to the
onset of the tetrahedral order. This result does not appear
as an obvious outcome and in fact, previous theoretical
attempts were unsuccessful in this respect: one based on a
Percus-Yevick description of a two-component fluid system,
mimicking the envisaged colloidal model,23 and another
one—yet unpublished—where we have employed the more
sophisticated modified-hypernetted chain scheme. It is worth
noting that the RISM evidence for the split of the structure
factor turns out to be restricted to a relatively narrow range of
the thermodynamic parameter space; hence, the onset of the
tetrahedral order depends on rather peculiar combinations of
temperature and density.

On the other hand, the RISM predictions for the liquid-
vapor coexistence and for the short-range correlations are
less satisfactory. As for the binodal, liquid-branch densities
appear generally underestimated, testifying the tendency of
the theory to overtake the repulsive interactions; as for the
radial distribution functions, the theory allows for a forbidden
contact between the inner spheres of two different molecules,
a well-known inconsistency related to the “atomistic” nature
of closures such as the HNC employed in this work. Such
intrinsic limitations could be possibly overcome through
more sophisticated variants of the basic RISM formalism,
such as the “diagrammatic proper” formulation of the
theory57 or the use of so-called “molecular closures,” already

successfully implemented for the contracted formalism
known as pRISM58 We are currently investigating the
possibility to extend such schemes to the present context.
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