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Study of the ST2 model of water close to the liquid–liquid critical point
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We perform successive umbrella sampling grand canonical Monte Carlo computer simulations of

the original ST2 model of water in the vicinity of the proposed liquid–liquid critical point, at

temperatures above and below the critical temperature. Our results support the previous work of

Y. Liu, A. Z. Panagiotopoulos and P. G. Debenedetti [J. Chem. Phys., 2009, 131, 104508], who

provided evidence for the existence and location of the critical point for ST2 using the Ewald

method to evaluate the long-range forces. Our results therefore demonstrate the robustness of the

evidence for critical behavior with respect to the treatment of the electrostatic interactions. In

addition, we verify that the liquid is equilibrated at all densities on the Monte Carlo time scale of

our simulations, and also that there is no indication of crystal formation during our runs. These

findings demonstrate that the processes of liquid-state relaxation and crystal nucleation are well

separated in time. Therefore, the bimodal shape of the density of states, and hence the critical

point itself, is a purely liquid-state phenomenon that is distinct from the crystal–liquid transition.

1 Introduction

In 1992, a numerical investigation of the equation of state

(EOS) of the ST2 model1 in the supercooled region suggested

the possibility of a liquid–liquid (LL) critical point in water.2

This initial study has subsequently generated a large amount

of numerical and experimental work.3–12 In addition to the

conceptual novelty of a one-component system with more

than one liquid phase, the existence of the associated LL

critical point can also rationalize many of the thermodynamic

anomalies which characterize liquid water (e.g. the density

maximum and compressibility minimum), and which become

more pronounced in the supercooled regime. Furthermore, the

existence of two distinct liquid phases of supercooled water

can explain the polyamorphism which characterizes the glassy

phase.12–14 Indeed, simulations suggest that the low density

amorphous solid form of water is similar to the structure of the

low density liquid (LDL) phase, while the relaxed very-high

density amorphous solid is related to the high density liquid

(HDL).15

Evidence in support of a liquid–liquid critical point in water,

and in other liquids with a tetrahedral structure, has increased

over time. A number of classical models for water, including

the recently developed and optimized TIP4P/2005,16 exhibit a

van der Waals inflection in their EOS at low temperature T

that is evidence of phase coexistence between two liquid

states.5,17,18 The occurrence of a LL transition has also been

proposed for silica,19 and more recently, evidence for a LL

critical point and its associated thermodynamic anomalies

have been presented for the Stillinger–Weber model of

silicon.20

Indeed, it is notable that the most compelling evidence for

LL critical points has been generated in silico.21 In almost all

cases, LL critical points are predicted to occur in deeply

supercooled liquids, where crystallization (in experiments)

has so far prevented direct observation of such a phenomenon

in bulk systems. Compared to experiments, LL phase transi-

tions are more readily observed in numerical studies because

heterogeneous nucleation is not a factor, and the small system

size (usually less than one thousand molecules) decreases the

probability of observing the appearance of a critical crystal

nucleus in the simulation box on the time scale of typical

simulations. Computer simulations have thus allowed the

study of the liquid EOS under deeply supercooled conditions,

on time scales longer than the structural relaxation time of the

liquid but smaller than the homogenous nucleation time.

Under these conditions, equilibrium within the metastable

basin of the liquid free energy surface can be achieved without

interference from crystal nucleation processes.

Nonetheless, evaluations of the EOS via simulations in the

canonical ensemble, or at constant pressure, do not provide a

way to accurately estimate the location of the LL critical point

found in water models, or to determine its universality class.

Only recently, in 2009, Liu et al.22 reported the first numerical

investigation of ST2 water in the LL critical region, by

performing simulations in the grand canonical ensemble for

different values of T and of the chemical potential m, and
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implementing Ewald sums to account for the long-range

contributions to the electrostatic interactions. In this impor-

tant contribution, the authors provided for the first time

evidence of a density of states that is a bimodal function of

density r, a necessary feature of a LL critical point. The

authors also showed that the fluctuations of the order para-

meter (a combination of density and energy) are consistent

with the expected shape for a critical system in the Ising

universality class.

More recently, Limmer and Chandler23 have questioned the

interpretation of all previously published simulations based on

the ST2 potential, arguing that ‘‘behaviors others have attrib-

uted to a liquid–liquid transition in water and related systems

are in fact reflections of transitions between liquid and

crystal.’’ In the case of the recent calculations of Liu et al.,22

it is proposed in ref. 23 that ‘‘the Liu et al. result is a non-

equilibrium phenomenon, where a long molecular dynamics

run initiated from their low-density amorphous phase and run

at constant T and P will eventually equilibrate in either the low

density crystal or (more likely) in the higher density metastable

liquid.’’ It is thus of paramount importance to independently

check the findings of Liu et al.,22 and at the same time, test

whether or not the LDL phase is truly a disordered liquid

phase characterized by a well-defined metastable equilibrium

that is distinct from the crystal phase.

In this article, we conduct these tests by carrying out an

independent evaluation of the density of states based on the

successive umbrella sampling technique.24 We implement

the original ST2 model, with the reaction field correction for

the long range electrostatic forces, rather than Ewald sums, to

be able to strictly compare our results with previously published

data for ST2,25 as well as to test if the LL transition is robust

and independent of the treatment of the long range interactions.

As we show below, we find that our results are entirely

consistent with those of Liu et al.,22 as well as with earlier

simulation data. We further find that there is no contribution to

the density of states due to crystal formation, confirming the

distinct existence of both the HDL and LDL phases for T less

than Tc, the temperature of the LL critical point.

2 Model and simulation methods

We study the original ST2 potential as defined by Stillinger

and Rahman,1 with reaction field corrections to approximate

the long-range contributions to the electrostatic interactions.

In the ST2 potential, water is modeled as a rigid body with an

oxygen atom at the center and four charges, two positive and

two negative, located at the vertices of a tetrahedron. The

distances from the oxygen to the positive and negative charges

are 0.1 and 0.08 nm, respectively. The oxygen–oxygen inter-

action is modeled using a Lennard-Jones potential with sLJ =
0.31 nm and eLJ = 0.31694 kJ mol�1. We truncate this

Lennard-Jones interaction at 2.5 sLJ, accounting for the

residual interactions through standard long range corrections,

i.e. assuming the radial distribution function can be approxi-

mated by unity beyond the cutoff. The charge–charge inter-

actions are smoothly switched off both at small and large

distances via a tapering function, as in the original version of

the model.1

Our grand canonical Monte Carlo (MC) algorithm is based on

roto-translational moves, insertions, and deletions, each attempted

with ratios 2 : 1 : 1. Our simulation box is cubic with sides of length

2 nm. The displacement move is accomplished by a random

translation in each direction of up to �0.01 nm and a random

rotation of up to�0.2 rad around a random direction, resulting in

an acceptance ratio of about 50%. Insertion and deletion moves

have a much smaller acceptance ratio, of the order of 10�5. The

simulations have thus been performed for more than 1010

attempted insertion/deletion moves. To determine the dependence

of the density of states on T we have investigated four distinct

temperatures, T = 260, 250, 245 and 240 K. Previous numerical

estimates based on the EOS indicate Tc = 247 � 3 K.25,26

To study the phase behavior of the system we implement

successive umbrella sampling (SUS) MC simulations,24 from

which we evaluate the probability density P(r) for the values

of r sampled by the equilibrium system at fixed T, m, and
volume V, and in which the number of molecules N in the

system fluctuates. In the SUS method, the pertinent range of r
to be investigated, written in terms of the lower and upper

number of molecules (respectively, Nl and Nu), is divided

into many small overlapping windows of size DN. For each

window, a separate grand canonical MC simulation monitors

how often a state of N particles is visited. Moreover, the

simulations are constrained using appropriate boundary condi-

tions on N, such that deletions or insertions that would cause N

to vary outside the range assigned to that window are rejected.27

The density histograms for each window can then be combined

to obtain the full P(r) curve, by imposing the equality of the

probability at the overlapping boundary. In our studyNl = 200

(corresponding to a minimum density r = 0.75 g cm�3) and

Nu = 327 (corresponding to r= 1.22 g cm�3). We have chosen

DN= 2, i.e. N is only permitted to take on one of two adjacent

integer values within each window.

The SUS method has a number of advantages. The use of

narrow windows in N allows an effective sampling of the

microstates without the use of biasing functions. Since the

windows are independent, all the simulations can be run in

parallel, with a gain in throughput that scales linearly with the

number of processors employed. In our case, approximately

130 processors are used for the calculations at each T, one for

each window. At the lowest T, more than two months of

simulation time for each window is required for good sampling.

Once we obtain P(r) at fixed T and m, histogram reweighting

techniques28 can be applied to obtain P(r) at different values
of m. Keeping track of the coupled density-energy histogram

during the SUS simulations also allows us to estimate P(r) at
different T via temperature reweighting. Finally, each window

provides accurate information on a specific density, allowing

us to compare the results with EOS data from previous

simulations in the canonical ensemble.

To facilitate comparison of our data with future studies,

in the following we will report the activity as z* �
LxLyLzexp(bm)/l

3 (in units of nm�3), where m is the chemical

potential, b is (kBT)
�1, kB is the Boltzmann constant,

La �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pIakBTÞ

p
=h, Ia is the principal moment of inertia in

the direction a, h is the Planck constant and l is the De Broglie

wavelength. z* is the quantity that enters the MC acceptance

probability in the insertion–deletion moves.
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3 Comparison with previously published data

Before discussing the behavior of P(r), we compare our results

for the liquid EOS as obtained from our SUS simulations, with

the best available published data. In particular, we focus

on the potential energy E and pressure P. The pressure is

evaluated from the virial using configurations sampled at each

density. Fig. 1 shows results from ref. 25, obtained from

molecular dynamics (MD) simulations, compared with our

MC grand-canonical SUS results. At all T and r, we find

excellent agreement between these two completely inde-

pendent numerical methods.

It is worth noting the prominent minimum observed in

E near r = 0.83 g cm�3, the so-called optimal network

density.29,30 At this density the system has the possibility to

be able to satisfy all possible bonds, reaching at low T the ideal

random tetrahedral network state. At lower densities, gas–

liquid phase separation intervenes, while at larger densities

closer packing prevents the system from satisfying the angular

and distance constraints required to form linear hydrogen

bonds between all pairs of molecules.

4 Liquid-state equilibrium

In order to establish that the LL phase transition is a genuine

liquid-state phenomenon, we must confirm (i) that all our

simulations are carried out over a time scale that is much longer

than the structural relaxation time of the liquid; and (ii) that the

time scale for crystal nucleation is much longer than the time

scale for liquid-state relaxation. The separation of these two

time scales provides the ‘‘window’’ within which the equilibrium

behavior of a supercooled liquid can be defined and quantified.

The ability of modern computer simulations to establish

liquid-state equilibrium in simulations near a LL critical point

is well documented.16–18,20,25,30 In particular, ref. 30 presents

the dynamical behavior of the same ST2 model as is studied

here, as determined from MD simulations. In Fig. 2(a) of

ref. 30, it is shown that the self-diffusion constantD for oxygen

atoms is greater than 10�8 cm2 s�1 at T = 240 K for all

densities from 0.87 to 1.2 g cm�3. This density range spans the

same range within which we find bimodal behavior for P(r) at
T= 240 K (see below). For the ST2 system, D4 10�8 cm2 s�1

corresponds to a range of a-relaxation times ta o 20 ns.31

Time scales well in excess of 20 ns are readily accessible in

current MD simulations, especially for a small system of a few

hundred molecules, as is studied here.

Correspondingly, MC simulations of the kind reported here

can also easily be run for the number of MC steps required to

access equilibrium liquid properties. To demonstrate this, we

show in Fig. 2 the P(r) histograms generated in our simula-

tions as a function of the computing time invested, for T =

245 K at a fixed value of activity z*. We find that P(r)
converges to well-defined values for all densities considered

here. In addition we also check that the energy autocorrelation

function decays to zero, in all SUS windows, in a number of

steps smaller than the simulation length.

We also note that ref. 30 demonstrates that the dynamical

properties of the liquid state of ST2 in the low density region near

the optimal network density (0.83 g cm�3) have a very simple and

well-defined dependence on T, including in the region where T

approaches Tc and the LDL emerges as a distinct phase.

Fig. 1 Consistency of results with previously published MD simula-

tion data.25,30 Shown are isotherms of the (a) potential energy and (b)

pressure. Open symbols indicate data obtained from the individual

SUS windows. Curves show previous MD results, starting from T =

230 K and spaced every 5 K. Curves are thicker for T matching the

SUS simulations.

Fig. 2 Example of the convergence of the density of states during

SUS MC simulations. Shown is P(r) for T = 245 K and z* = 1.46 �
10�4 nm�3 at various times over 19 CPU-days of simulation time.
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5 Analysis of the structure of the liquid in relation

to the crystal

Having shown in the previous section that liquid equilibrium is

established in our simulations, we next test if crystal nuclea-

tion is occurring on the MC time scale of our runs. This is

particularly relevant in view of the conclusions presented in

ref. 23, in which it is argued that the LDL phase does not exist

and that the only well-defined state of the system at low

density is the crystal. We therefore must quantify the degree

of crystalline order in our system at low T, especially in the

LDL region, where crystallization might occur on a shorter

time scale due to the similarity between ice and the liquid in

terms of density and local structure.

The degree of crystalline order can be quantified using the

Steinhardt bond order parameters32 based on spherical

harmonics of order l = 3 and l = 6, which are particularly

suited for discriminating disordered fluid configurations from

the open structure of a hexagonal (as well as cubic) ice. For

each particle we define the complex vector,

qlmðiÞ ¼
1

NbðiÞ
XNbðiÞ

j¼1
Ylmðr̂ijÞ; ð1Þ

where the sum is over the Nb(i) neighbors of particle i. Ylm is a

spherical harmonic of order l and m, and r̂ij is a unit vector

pointing from the oxygen atom on molecule i to that on

molecule j. In the case of l = 3 two molecules are considered

neighbors if their oxygen–oxygen distance is smaller than

0.34 nm, the position of the first minimum of the radial

distribution function. In the case of l = 6, to be consistent

with ref. 23, we assume Nb(i) = 4 and neighbors are defined as

the four closest particles. The dot product,

c
ij
l ¼

Xl
m¼�l

q̂lmðiÞq̂�lmðjÞ; ð2Þ

where

q̂lmðiÞ ¼ qlmðiÞ=
Xl

m¼�l jqlmðiÞj2
� �1=2

ð3Þ

and q̂�lmðiÞ is its complex conjugate, determines the degree of

orientational correlation between neighboring particles i and j.

Fig. 3 shows the distributions of cijl for l = 3 and l = 6, for

several densities at T = 240 K. The distributions have a single

broad peak at higher r, and become more bimodal at lower r
with a peak forming near cij3 = �1. However, the distribution

goes to zero at cij3 = �1. The bimodal shape of the cij3
distribution at low r is characteristic of liquids with well formed

tetrahedral networks.33 The figure also shows the same distri-

bution evaluated in a hexagonal ice configuration at the same T.

The crystal is characterized by a large peak centered at cij3 E �1
and a smaller peak located approximately at cij3 E �0.1, with
1/3 being the area of the large peak.34 In cubic ice, only the peak

at cij3 E �1 is present. The distribution of cij6 is rather density

independent, but again very different from the crystalline one.

Ref. 23 specifically investigated the global metric,

Ql;m ¼
XN
i¼1

qil;m ð4Þ

and the related m-independent rotational invariant,

Ql ¼
1

N

Xl
m¼�l

Ql;mQ
�
l;m

 !1=2

: ð5Þ

Fig. 3(c) shows Q6 at T = 240 K evaluated from the different

windows of densities as well as for hexagonal ice. Again, the

configurations sampled in our SUS simulations do not show

Fig. 3 Characterization of crystallinity in our system at T = 240 K.

Panel (a) shows the distribution of bond correlation dot products P(cij3)

obtained using order l = 3 spherical harmonics for different SUS

windows spanning our density range. Legend labels indicate r in

each window. Also shown is the distribution for hexagonal ice at

r = 0.87 g cm�3. Panel (b) is the equivalent of (a), only using l = 6.

Panel (c) shows Q6 as a function of r for our simulations, as well as for

hexagonal ice. Also shown is the average fraction of crystalline

particles in our system, using criteria based on both l = 3 and l = 6.
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any sign of crystalline order. The value of Q6 in the liquid

state, expected to be zero in the thermodynamic limit, is

always small (Q6 E 0.06) and is one order of magnitude

smaller than the crystal value.

It is possible that a crystallite large enough to affect system

properties, but too small to significantly affect a global measure

of crystallinity such as Q6, may be present in the system. To

test for this, we estimate the number of crystal-like particles in

the system ncrys. We label particles as being crystal-like using

two definitions. For l= 3, we define a particle as crystal-like if

it has at least three dot products with neighboring particles

satisfying cij3 r �0.87. This criterion has been used in nuclea-

tion studies of tetrahedral systems33,35 and in our system the

value of�0.87 is rather generous, in that the cij3 distribution for

the cubic and hexagonal crystals near cij3 E �1 falls to zero

before reaching �0.87. For l= 6, we similarly define a particle

to be crystal-like if it has three neighbors with cij6 Z 0.70, a

low estimate for the value at which the crystal distribution

crosses the liquid distributions near cij6 E 1. We plot the

average fraction ncrys/N of crystal-like particles using l = 3

and l = 6 at T = 240 K in Fig. 3(c). The largest value for

ncrys/N E 0.024 suggests that the average crystal cluster size, in

our system of about 200–300 molecules, is not larger than

roughly six molecules, again confirming the lack of crystallinity

over the entire density range studied. Even if we do not resort to

average values, the largest number of crystal-like particles that

we ever observe in our system, considering all of the configura-

tions we sample, is ncrys = 19, found when using l = 3.

Our observation that crystal-like particles are rare at all

densities, including in the range of the LDL phase, demon-

strates that the crystal nucleation process occurs on a much

longer time scale than that required for liquid-state relaxation.

Further, the fact that those small clusters of crystal-like particles

that do occasionally form subsequently disappear shows that a

finite and non-trivial nucleation barrier separates the liquid

phase from the crystal phase at all densities. This demonstrates

that the liquid phases simulated here are associated with free

energy basins that are distinct from that of the crystal phase.

6 Density of states

Fig. 4(a) shows P(r) for all studied temperatures, at the

chemical potential for which the density fluctuations are

maximal. The data show the onset of a bimodal distribution

around T = 250 K, consistent with the existence of a LL

critical point, and suggest the occurrence of two thermo-

dynamically distinct liquid phases associated with well-separated

free energy basins. The inset shows the same data on a semi-log

scale, to highlight the ability of the SUS method to provide an

accurate estimate of P(r) for over 50 orders of magnitude.

From the energy-density probability density P(r, E) obtained
from the SUS simulations, all possible thermodynamic quan-

tities can be calculated, for all values of chemical potential

(limited only by the noise quality of the data). It is interesting to

determine the behavior of the isothermal compressibility KT,

which in terms of the fluctuation in the number of particles is,

kBTrNKT ¼
hN2i � hNi2

hNi ; ð6Þ

where rN is the number density. Fig. 4(b) shows the compres-

sibility at several T. As expected, and in agreement with

previous estimates for the KT extrema locus based on MD

simulations,25 the line of KT maxima moves to smaller densities

(and hence lower pressure) as T increases away from the

critical point.

The statistical quality of our estimate for P(r, E) allows us
to predict P(r) down to approximately T = 225 K via

temperature reweighting. The reweighted P(r) in Fig. 5 shows

two well-resolved peaks, with a very shallow minimum

between them, indicating that the free energy barrier for the

system to jump from the LDL to the HDL phase and vice

versa, even in a system of only a few hundred particles, is

becoming significantly larger than the thermal energy. In the

inset to Fig. 5, we plot �lnP(r) to highlight this growing free

energy barrier. While the density of the HDL phase progres-

sively increases on cooling, the density of the coexisting LDL

remains essentially constant. This highlights that the thermo-

dynamic stabilization of the LDL phase (i.e. the establishment

of an equilibrium network of tetrahedrally bonded molecules)

Fig. 4 (a) Probability distribution function of the density P(r)
obtained from SUS MC simulations at activity values of z* =

1.145 � 10�4 for T = 240 K, z* = 1.46 � 10�4 for T = 245 K,

z* = 1.85 � 10�4 for T = 250 and z* = 2.88 � 10�4 at 260 K

(all in nm�3). The corresponding values of P are, respectively, P =

223, P = 192, P = 172 and P = 130 MPa. Below T = 250 K,

bimodality of the distribution emerges, signaling the appearance of two

liquid phases with distinct densities. (b) Isothermal compressibility as a

function of the average density along isotherms, obtained using eqn (6).

The location of the peaks matches the data presented in ref. 25.
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requires a very precise density to be achieved. This strong

coupling between the density, local tetrahedral geometry, and

free energy is at the heart of the physics of water.

7 Discussion

The results reported in this article are consistent with the

previous calculations of Liu et al.,22 and show that the

evidence for the proposed critical phenomenon in ST2 water

is independent of the way the long range interactions are

modelled. In addition, our results are also consistent with

the possibility that the free energy of this model, projected

onto the density, at low T is characterized by two basins, both

of which correspond to disordered liquid phases. We also

show that even though the location of the proposed LL critical

point lies on the extension of the liquid free energy surface that

is metastable with respect to crystal formation, the time

required for homogeneous nucleation is sufficiently long in

our system to allow for local equilibration in phase space. In

sum, the evidence presented here continues to point to the

existence of a LL phase transition in supercooled ST2 water.

To further test for behavior consistent with a LL phase

transition, a number of additional questions should be

addressed. In particular, in a finite-sized system, a bimodal

density of states can occur in a non-critical system if the

correlation length of the order parameter (here, the density)

exceeds the system size. A finite-size scaling analysis of the

density of states, using a range of system sizes, would therefore

provide an important test for the proposed LL transition in the

ST2 model. It would also be valuable to test if the free energy

barrier for crystal nucleation is strongly affected by the system

size, and by the constrained cubic geometry of the simulation

cell, in order to more fully understand the relationship between

the time scale for equilibrating the liquid and for crystal

formation. We recommend such studies for future work.
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Fig. 5 Density distributions P(r) at low T obtained by a reweighting

of the T = 240 K energy-density distribution P(r,E). The high density

peak moves to higher r with decreasing T, reflecting the behavior of a

simple liquid, while the location of the low density peak stays fixed

because the geometric constraints for a well-formed random tetra-

hedral network depend sensitively on the density. Note that the

numerical noise (see e.g. the apparent minimum at r E 0.89 g cm�3)

is progressively amplified reweighting at smaller and smaller T.
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