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We report accurate calculations of the particle density of states in the dipolar hard-sphere fluid.

Implementing efficient and tailored Monte Carlo algorithms, we are able to explore, in equilibrium, the

low temperature region where a phase separation between a dilute gas of chain ends and a high-density

liquid of chain junctions has been predicted to occur. Our data clearly show that the density of states

remains always single peaked, definitively excluding the possibility of critical phenomena in the

investigated temperature and density region. The analysis of the low temperature configurations shows

that at low densities particles preferentially self-assemble into closed rings, strongly suppressing the chain

ends concentration.
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The dipolar hard-sphere (DHS) model is a paradigm for
the self-assembly of anisotropic particles [1] and a challenge
for present day theories of fluids. For these reasons, signifi-
cant effort has been put into the direction of establishing its
phase diagram. Despite the simplicity of the model (a point
dipole at the center of a hard sphere) contrasting opinions
exist about its putative gas-liquid critical point and on the
location of the associated first-order phase transition. The
pioneering work of de Gennes and Pincus [2] pointed out
that, in the dilute limit, DHS particles experience an effec-
tive isotropic attraction. This effective attraction, being the
magnetic analogue of the molecular van der Waals (vdW)
force, should promote at low temperature T a liquid-gas
phase separation as in ordinary vdW fluids. It was soon
realized that the highly anisotropic character of the dipole-
dipole interaction, which promotes the self-assembly of the
dipoles into chains, could impose a local order significantly
different from the one characteristic of vdW fluids, perhaps
completely suppressing the isotropic phase coexistence
[3–5]. Indeed the first computer simulation studies, although
plagued by equilibration issues, provided evidence of an
extended nose-to-tail chaining and found contradictory evi-
dence of a phase transition [6–8].

The debate on the existence of a critical point in DHS
was rejuvenated by additional simulations studies [9–11]
and by a seminal paper by Tlusty and Safran (TS) [12]. A
new type of phase transition was postulated, sustained,
rather than suppressed, by the self-assembly of the dipoles.
The transition is hierarchical and involves a subtle com-
petition between chain ends and chain junctions, leading to
two coexisting phases with different topology: a ‘‘gas’’ of
chains and a networklike ‘‘liquid’’ rich in junctions. The
possibility of such a phase transition, which depends cru-
cially on the number density of topological defects (chain
ends and junctions) and their scaling with density, results in

a peculiar reentrant phase diagram, in which the density �
of the liquid phase approaches the vanishing � of the gas
phase on cooling. Such a peculiar phase diagram has been
recently observed in models of asymmetric patchy parti-
cles [13,14]. A close mapping between patchy particle
models and DHS has been recently attempted [15]. A
recent thermodynamic perturbation theory [16], in which
chain association is explicitly accounted for, suggests in-
stead the existence of a standard gas-liquid coexistence.
The long relaxation time of the self-assembled structures

and the intrinsic slowness of the long range dipolar calcu-
lations have prevented accurate studies of the DHS low T
behavior. Ingenious numerical studies have evaluated the
critical point of sequences of models which asymptotically
tend to DHS [17–20]. Based on extrapolation of DHS plus
an attractive isotropic Yukawa component [17], binary
mixtures of apolar and dipolar hard spheres [19] or charged
dumbbells [18,20] the location of the putative gas-liquid
critical point has been restricted to the window � & 0:1
and T < 0:16.
In this Letter we use highly efficient simulation tech-

niques and extended computational resources to address
the question of whether a gas-liquid phase transition exists
in DHS. These techniques allow us to access in equilibrium
the T region where theories and previous numerical at-
tempts had predicted a gas-liquid coexistence. We defini-
tively prove that no sign of critical behavior is observed.
The analysis of the low T data reveals the presence of
extended rings of nose-to-tail particles which deplete the
concentration of chain ends.
The pair interaction potential between two dipolar hard

spheres i and j is

uði; jÞ ¼ uHSðrijÞ þ
�i ��j � 3ð�i � r̂ijÞð�j � r̂ijÞ

r3ij
; (1)
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where rij is the vector connecting the centers of particle i

and j, uHSðrijÞ is the hard-sphere potential, and �i is the

dipole moment of particle i. In the following, the
Boltzmann constant kB ¼ 1, � ¼ 1=T, lengths are mea-
sured in units of the particles diameter � and energy in
units of �2=�3. In these units, the DHS pair potential has
an absolute minimum u ¼ �2 in the nose-to-tail contact
geometry and a relative minimum u ¼ �1 in the side-to-
side antiparallel geometry. The difficulty in simulating this
model arises from the long range nature of the dipolar
interaction and by the low T. To provide an idea of the
computational effort requested, consider that the
Metropolis acceptance probability of extracting a particle
belonging to an infinite linear chain at the lowest studied T
is less than 10�12. To speed up the calculations we intro-
duce special Monte Carlo (MC) moves specifically de-
signed for DHS, or adapted from state-of-art techniques.
To sample the conformations of the self-assembled struc-
tures we implement a version of the aggregation-volume-
bias (AVB) algorithm [21], in which we define two virtual
bonding regions (BR) on the poles of the particles, shaped
as truncated cones. We then encode special moves in which
a particle located inside the BR of a randomly selected
particle moves out of the BR or a particle outside the BR
moves into the BR, accepting the move with the proper
acceptance probability. To speed up the insertion and re-
moval of particles from the system we adopt the technique
introduced by Caillol [9] [and adapted for grand canonical
MC (GCMC) by Ganzenmüller et al. [17] ] which takes
into account the value of the local electric field to bias
GCMC moves. Finally, to uniformly sample the particle
density of states (despite the large free energy difference
between low and high-density phases at fixed activity), and
to effectively parallelize our simulations, we perform suc-
cessive umbrella sampling (SUS) simulations [22]. With
this method, the region to be explored is partitioned in
overlapping windows of �N particles. Each region is
sampled with GCMC simulations with appropriate bound-
ary conditions [23], providing a speed up proportional to
the number of windows explored in parallel (200 in our
case). The SUS method allows us to obtain the distribution
of density fluctuations Pð�Þ at fixed activity z ¼ e��

(where � is the chemical potential). We then evaluate
Pð�Þ at different z and nearby T by means of histogram
reweighting techniques [24]. We investigate a system of up
to N ¼ 1000 particles in a box size of L ¼ 19:26 via
windows, overlapping by one particle, of width �N ¼ 6.
This corresponds to the density region � 2 ½0; 0:14�. We
have investigated three different T, namely T ¼ 0:125,
0.140, and 0.150, all below the lowest estimate T ¼
0:153 at which the critical point is predicted to exist
[11,16,17,19,20]. Long range dipolar interactions are taken
into account using Ewald sums with conducting boundary
conditions [25]. We have also carried out complementary
NVT simulations for a system of N ¼ 5000 particles at

four equispaced T (from T ¼ 0:125 to T ¼ 0:170) for six
different �, ranging from � ¼ 0:007 to � ¼ 0:140. In the
GCMC simulations, the frequency of insertions (or dele-
tions), AVB moves, and regular rotations (or translations)
is, respectively, 1:50:50. In the NVT ensemble simulations
the frequency between AVB moves and rotations (or trans-
lations) is 50:50.
In order to investigate the local connectivity and be able

to classify particles into specific local geometries a crite-
rion to define a bond between two particles is needed.
Criteria found in the literature are based on cutoff distances
[17,26] or pair interaction energy thresholds [6,17,27,28].
We combine these criteria by considering particles i and j
to be bonded if rij < rb and uði; jÞ< 0, where rb is the

position of the first minimum of the gðrÞ. Because the
position of the minimum is found to be only slightly
dependent on T and �, we choose rb ¼ 1:3 throughout
this work. We use this bonding criterion to compute cluster
size distributions, to partition clusters into chains, rings,
and branched structures as well as to evaluate the concen-
tration of chain ends and junctions. We also use it to
evaluate the bond-bond autocorrelation function to verify
that the length of the NVT simulations is large enough for
the bonding pattern to completely lose memory of its
original state.
Figure 1 shows the main result of this Letter, Pð�Þ for

several values of z and T. On decreasing T, the noise level
increases, signaling the difficulty of properly sampling
configuration space, despite the length of the simulation
(extending to ten months of computation for each of the
200 Xeon 5550 CPU cores). For all T, the shape of Pð�Þ
excludes the presence of a gas-liquid coexistence down to
T ¼ 0:125. Two minor peaks are also found, both located
at very low densities. A peak at N � 10–15 (corresponding
to �� 0:0015–0:002) is observed at all T. One further
peak around N � 20–25 appears at T ¼ 0:14 and
becomes prominent at the lowest T, as shown in the inset
of Fig. 1(c). To identify the nature of these two peaks we
perform a finite size study of the low density region,
confirming that the first peak is always located at
N � 10–15, while the position in N of the second peak
scales linearly with the box size. The presence of constant
N peaks is typically associated with self-assembly pro-
cesses of aggregates with a preferential size, which does
not depend on the system volume [29,30]. The second peak
reflects the presence of linear chains which percolate via
boundary conditions. Compared to chains of the same size,
they are energetically stabilized by the presence of one
additional bond.
To clarify the origin of the self-assembly peak we in-

vestigate in detail the structure of the fluid at low T,
analyzing NVT configurations. The number of particles
employed (N ¼ 5000) and the large box sizes, beside
improving the quality of the data, suppress any finite size
effects associated with percolating chains. Based on the
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bonding criterion adopted, we partition particles into
chains, rings, or branched clusters [6,17,26,28], according
to their topology. We find that clusters with s & 40 are
mostly rings or chains, i.e., only a few junctions are present
in small clusters. Beyond a certain �, the system is always
percolating, that is, more than 50% of its equilibrium
configurations contains a spanning (infinite) cluster.
The percolation � becomes as small as � � 0:01 when

T ¼ 0:125, as shown in the inset of Fig. 2(a). The �
dependence of the cluster size distribution nðsÞ is shown
in Fig. 2(a). A peak atN � 10–15, i.e., at the same location
as the one observed in Pð�Þ, is present at all T, confirming
that such a peak arises from the preferential self-assembly
of the particles in particular clusters. Separating nðsÞ in its
ring [nrðsÞ, Fig. 2(b)], chain [ncðsÞ, Fig. 2(c)], and

10
0

10
1

10
2

10
3

10
4

s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

n(
s) 0.00 0.04 0.08 0.12

0.12
0.13
0.14
0.15
0.16
0.17

T

(a)

T = 0.140

10
0

10
1

10
2

10
3

10
4

s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n r(s
)

T = 0.125
T = 0.140
T = 0.155
T = 0.170

0 0.04 0.08 0.12
0.0

0.1

0.2

0.3

N
r / 

N

(b)

T increasing

0 50 100 150 200 250 300 350
s

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

n c(s
)

T = 0.125
T = 0.140
T = 0.155
T = 0.170

0 0.04 0.08 0.12
0

0.1

0.2

0.3

0.4

0.5

N
c / 

N

(c)

T increasing

FIG. 2 (color online). (a) Number of clusters nðsÞ of size s at
T ¼ 0:140 and different � in a system of N ¼ 5000 particles
[
P

ssnðsÞ ¼ N]. Clusters with s > 3000 (disconnected points)
are percolating. The inset shows the percolating (black circle)
and nonpercolating (red squares) state points. Number of rings
nrðsÞ (b) and of chains ncðsÞ (c) of size s at � ¼ 0:007 and
different T. The inset shows the fraction of particles in rings
Nr=N (b) and in chains Nc=N (c) as a function of �. Note the
inverted order with T of Nc=N and Nr=N as well as the
exponential tail only for large s in ncðsÞ. Lines are guides for
the eye.
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FIG. 1 (color online). Distribution of density fluctuations Pð�Þ
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branched components, allows us to identify the rings as the
structures responsible for the peak. Indeed, nrðsÞ is non-
monotonic, shows a tail which becomes progressively ex-
tended on cooling and is peaked at N � 10–15. ncðsÞ is
monotonic, and decays exponentially only for large s,
suggesting that the free energy cost of adding a particle
to a chain becomes independent of the chain length only
for s * 20. The slope of the exponential tail decreases on
cooling, signaling the progressive increase of the average
chain length [6,28].

At the lowest T rings of size 10 & s & 100 become
more probable than chains of the same size and the total
number of particles in ringsNr [inset of Fig. 2(b)] becomes
larger than the number of particles in chains Nc [inset of
Fig. 2(c)]. Such an increase in Nr on lowering T and �
offers a possible hint on why the critical phenomenon is not
observed. Indeed, rings are characterized by a small net
total dipole moment, resulting in a small effective ring-ring
interaction. The low density DHS thus progressively turn
into a fluid of weakly interacting aggregates, providing an
example of phase separation suppressed by self-assembly
[31,32]. A snapshot of the � ¼ 0:007 system is shown in
Fig. 3.

Finally, we examine the � dependence of the concentra-
tion of chain ends �e (particles with just one bonded
neighbor) and of junctions �j (particles with three bonded

neighbors). In the mean-field TS theory both �e and �j

follow a power law in � with exponents 1=2 and 3=2,
respectively. These exponents play a major role, control-
ling the � dependence of the system free energy. Figure 4
shows �e and �j for all the studied state points. Only for

� > 0:007, do �e and �j follow a power law, but with a

T-dependent exponent. Moreover, the exponents appear to

approach the values assumed in the TS theory only at the
highest T studied. This strongly suggests that the competi-
tion between topological defects is not a viable mechanism
for sustaining a critical point in DHS.
In conclusion, using powerful computational tech-

niques, we have shown that the DHS system does not
exhibit any sign of gas-liquid criticality in the window
0:125< T < 0:150 and 0< �< 0:14, i.e., even well be-
low the region where such critical point was predicted to be
located. We have also shown that at low T and low � there
is an explosion of rings which appear to become the
dominant topological clusters. We speculate that the ab-
sence of gas-liquid criticality is related to the fact that the
low � nonpercolating fluid, being very rich in rings, is in a
state in which all particles are close to their ground state
energy and which has a larger translational entropy com-
pared to the percolating phase.
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