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We study a model consisting of particles with dissimilar bonding sites (“patches”), which exhibits
self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both sim-
ulations and theory. We show that, as the energy cost ε j of forming Y-junctions increases, the extent
of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase
diagram thus acquires a characteristic “pinched” shape in which the liquid branch density decreases
as the temperature is lowered. To our knowledge, this is the first model in which the predicted topo-
logical phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is
actually observed. Above a certain threshold for ε j , condensation ceases to exist because the entropy
gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties
of these phase diagrams can be understood in terms of a temperature-dependent effective valence of
the patchy particles. © 2011 American Institute of Physics. [doi:10.1063/1.3605703]

I. INTRODUCTION

In recent years the study of anisotropic interactions in
simple fluids has led to an extraordinary progress in our un-
derstanding of the competition between self-assembly and
phase separation. It is well known that, for particles inter-
acting via isotropic potentials that comprise an excluded-
volume repulsion and a long-range attraction, condensation
occurs when the energy drop associated with forming a high-
density liquid overcomes the concomitant loss of entropy. On
the other hand, anisotropic interactions promote the aggrega-
tion of particles into self-assembled structures, such as chains,
rings, and more complex clusters (e.g., micelles and vesicles).
This aggregation process can compete with the clustering that
drives condensation, giving rise to new phase behaviours. We
will mention here two important examples where the competi-
tion between condensation and aggregation plays a dominant
role.

The first example is provided by Janus colloidal
particles,1 i.e., particles which attract each other via just one-
half of their surface (one hemisphere). The phase diagram
of the disordered phases has been recently revealed,2 show-
ing that, at odds with a standard liquid-vapour phase sep-
aration, the vapour phase is composed of micelles which
have a lower energy than the coexisting liquid. The self-
assembly into micelles increases the stability of the vapour
phase at higher densities with decreasing temperatures, pro-
gressively suppressing the two-phase region. A recent statis-
tical mechanical model3 has indeed confirmed the generality
of this type of phase behaviour for systems where monomers
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assemble into monodispersed clusters with no attractive inter-
actions to other species.

A second example in which the competition between
condensation and aggregation can change the nature of
the phase transition is given by ferrofluids4–8 or electro-
rheological fluids, in which particles have an embedded
permanent magnetic or electric dipole. In this case, the
anisotropy of the dipolar interaction promotes the formation
of long polymer-like self-assembled chains of particles, in
contrast to the isotropic compact clusters observed in sim-
ple fluids. This type of aggregation interferes with the usual
liquid-vapour transition because chain formation tends to sat-
urate the dipolar attractions, leading to an effective screening
thereof. In particular, for dipolar hard or soft spheres (DHSs
or DSSs), the simplest models for dipolar fluids, in which a
hard or soft sphere is complemented with a permanent dipole
at its centre, there is still controversy over whether a liquid-
vapour critical point exists. Numerical simulations9, 10 suggest
that if such a critical point exists, it must be located at very
low temperatures and densities, where the dipoles aggregate
into linear and branched structures, and where the anisotropy
of the interactions plays a dominant role. See, e.g., Ref. 11,
and references therein, for a recent review.

In order to study the interplay between self-assembly
and condensation systematically, a recent line of research has
concentrated on the phase properties of patchy particles.12–14

Patchy particles are particles whose surface is patterned so
that they attract each other via discrete sites (“sticky spots”)
located on their surface. Among the advantages of patchy
particles are their simplicity and the fact that the degree of
anisotropy in the interactions can be fine-tuned by changing
the number, type, size, and strength of the patches. However,
the most important feature that makes patchy particles ideally
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suited for our investigation is the fact that both their thermo-
dynamic and structural properties can be predicted with a high
degree of precision using the thermodynamic first-order per-
turbation theory of Wertheim15, 16 and the Flory-Stockmayer
theory of polymerization.17, 18 It is thus possible to study
the criticality of patchy particles from a standard liquid-
state theory approach, without resorting to phenomenological
theories.

It has been shown19, 20 that the location of the liquid-
vapour critical point of patchy particles, under the single-bond
per patch condition, is controlled by the average number of
patches per particle, also called valence: by decreasing the
valence, the critical point is shifted to lower temperatures and
densities, and disappears for average valences ≤ 2. The pos-
sibility to shift the coexistence line to arbitrarily low densities
has opened up the possibility to obtain stable liquids at van-
ishingly small densities (the so-called “empty-liquids”20, 21),
and most notably provided a means to study the equilibrium
route to gelation.22–24

In order to investigate the interplay of condensation
and different types of self-assembly, models with patches of
two different types (2 A sites and 1 B site) were recently
introduced.25, 26 Different types of criticality were revealed
by varying the relative strengths of the attractions between
like or unlike patches. Of particular interest are the cases
where the self-assembling structures are composed of long
polymer-like chains connected by junctions, as the liquid-
vapour phase separation can then be viewed as the conden-
sation of these junctions. Two types of junctions are possible
in models where AA bonds are responsible for the chaining:
X-shaped junctions, due to B B bonds, and Y-shaped junc-
tions, due to AB bonds. Furthermore, it has been shown that,
whereas X-junctions always (never) yield a critical point if
their formation is energetically favourable (unfavourable), Y-
junction fluids will exhibit a critical point, even if forming
them raises the energy, provided this increase is below a cer-
tain threshold.

This latter type of model behaves as conjectured by
Tlusty and Safran27 one decade ago for understanding the crit-
ical behaviour of DHSs. The dipolar fluid was modelled as
a thermodynamic ensemble of ideal (non-interacting) chains
with two types of defects: free ends and Y - junctions. These
authors concluded that the formation of ends promotes an ef-
fective repulsion between the particles, and the formation of
junctions promotes an effective attraction. As the temperature
is lowered, junctions and ends phase separate into a liquid rich
in junctions, and a dilute vapour of chain ends. The Tlusty-
Safran theory is notable because it (i) explains the unusual
low temperatures and densities at which the DHS or DSS crit-
ical point is thought to be; (ii) offers a mechanism by which
the critical point could disappear (when the energy cost of
forming a chain end is less than three times the energy cost
of forming a Y -junction); and (iii) predicts a re-entrant shape
of the coexistence curve, with the density of the liquid phase
decreasing as the temperature is lowered.

These theoretical predictions were recently (and for
the first time) validated in a patchy particle model specif-
ically designed to reproduce the physics of the Tlusty-
Safran phase transition.28 The characteristic re-entrant (or

“pinched”) phase diagram was calculated, and a study of the
liquid and vapour phases revealed that Y-junctions and chain
ends did indeed phase separate. The first-order perturbation
theory of Wertheim (which, at low densities and temperatures,
is equivalent to the Tlusty and Safran theory25, 28) reproduces
all the ingredients of the pinched phase diagrams.

The present manuscript extends our previous study, fo-
cusing on the phase behaviour as a function of the energy
cost of forming a junction. The critical parameters (temper-
ature and density) decrease as the energy cost of forming a
junction increases, and the critical point disappears at a fixed
value of this energy cost. Both the pinched phase diagram and
the scaling of the critical parameters are shown to follow the
predictions of Wertheim’s thermodynamic first-order pertur-
bation theory. The pinched phase coexistence is sustained by
a balance between two contributions to the entropy: the higher
entropy of junctions in the high-density phase compensates
the lower entropy of chains in the same phase. We show that
this balance is only possible, if the energy cost of forming a
junction is below a certain threshold, at which the critical den-
sity and temperature vanish. Finally, we argue that the model
represents an example of a system in which valence depends
on temperature: the pinching behaviour is related to the de-
crease of the valence towards 2 along the liquid branch of the
coexistence curve, as the temperature decreases.

The manuscript is organized as follows. In Sec. II, we
describe our model in detail. In Sec. III, we give an account
of the numerical methods employed: since the liquid-vapour
phase transition occurs at low temperatures and densities (and
more so as the energy cost of junctions increases), special nu-
merical techniques had to be adopted. Section IV summarizes
the theoretical methods employed in the present study and
which are based on Wertheim’s first-order perturbation the-
ory. Results from both simulations and theory are presented
in Sec. V. In Sec. VI, we comment on the analogies between
our model and the phase behaviour of dipolar fluids. We sum-
marize and conclude in Sec. VII. Appendix A goes into the
details of the biased Monte Carlo (MC) moves employed in
the simulations. Appendix B presents a table with the esti-
mated numerical values of the coexistence properties of the
model.

II. MODEL

We focus on a patchy particle model that self-assembles
into chains connected by Y-junctions. It consists of hard
spheres of diameter σ whose surface is decorated with patches
of two types, A and B. Two patches of type A are placed on
the poles, while nine patches of type B are equally spaced
along the equator, as shown in Fig. 1.

The interaction energy Vi j,αβ between patch α, belonging
to particle i , and patch β, belonging to particle j , is given
by the Kern-Frenkel potential.29 Denoting by ri j the vector
joining the centres of particles i and j , r̂i j = ri j/|ri j | and by
r̂iα the unit vector from the centre of particle i to the centre of
patch α on its surface, we have

Vi j,αβ = V SW
αβ (|ri j |) × G(r̂i j , r̂αi , r̂β j ), (1)
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where V SW
αβ is a square well potential,

V SW
αβ (x) =

⎧⎨
⎩

∞ if x < σ,

−εαβ if σ < x < σ + δαβ,

0 otherwise,
(2)

and G is the angle-dependent part,

G(r̂i j , r̂iα, r̂ jβ) =
⎧⎨
⎩

1

{
if

r̂i j · r̂iα > cos θmax
αβ ,

and −r̂i j · r̂ jβ > cos θmax
αβ ,

0 otherwise.
(3)

The free parameters in the model are thus the interaction ener-
gies between patches εαβ , their ranges δαβ , and the angle θmax

αβ ,
the last two of which control the volume available for bond-
ing. We shall henceforth take εAA as our unit of energy, and σ

as our unit of length; all equations will, however, retain these
parameters, for generality. It follows that all temperatures will
be in units of εAA/kB, where kB is Boltzmann’s constant.

In Secs. II A and II B, we provide a qualitative discus-
sion of how the phase behaviour is affected by the choice of
parameter values. Sections III–V are devoted to the quantita-
tive study of this behaviour, as obtained from simulations and
theory.

A. Energy scales of branching and chaining

We do not allow B B interactions and, therefore, we set
εB B = 0. This choice renders X-junctions impossible, leaving
only AA interactions, which promote chain formation, and
AB interactions, which yield Y-junctions. Setting εB B = 0
leaves the ratio r = εAB/εAA as the only parameter control-
ling the energy scales of chaining and branching. As we will
show theoretically in Secs. IV–V, the ratio r is indeed the
fundamental parameter governing the phase behaviour of the
network fluid. By varying r we can in fact change the topol-
ogy of the phase diagram. Let us now show why.

Given a system of linear AA chains, two types of defects
can arise, as shown in Fig. 1. The first of these are chain ends,
which consist of particles with one bonded and one unbonded
A patch. The energy required to cut a chain along one of its
AA bonds is εAA, and since this leads to the formation of two
chain ends, the energy cost of a chain end is εe ≡ εAA/2. The
second type of chain defects are Y-junctions, where a patch of
type A binds to a patch of type B, thus providing a mechanism
to connect two different chains. To form a junction, one first
needs to create a chain end, whose energy cost is εAA/2, and
then connect this chain end to a B patch, with an energy gain
of −εAB : the energy cost of forming a junction is thus ε j ≡
−εAB + εAA/2 = εAA(1/2 − r ).

The energy cost of forming a chain end is always pos-
itive, and, therefore, the ground state (T = 0) of the model
does not contain any chain ends. On the other hand, the en-
ergy cost of forming junctions can be positive or negative, de-
pending on the fundamental parameter r = εAB/εAA. If r >

0.5, the energy cost is negative, and, therefore, all possible
Y-junction are present in the ground state. In this case, an or-
dinary liquid-vapour transition occurs.25 On the other hand,
if r < 0.5, then ε j > 0 and the ground state is characterized
by the absence of Y-junctions (i.e., only AA bonds, or long –

infinite – chains are present). Because linear chains do not
phase separate, one could speculate that the same happens
in our model for r < 0.5. However, chain defects (both ends
and junctions) are always present at finite temperatures, and,
therefore, the question arises of whether these defects are suf-
ficient to drive a phase separation. Recently we provided an
answer to this question,28 by considering the case r = 0.37.
Specifically, we showed that phase separation does occur be-
tween a high-density phase rich in junctions and a low-density
phase rich in chain ends. Moreover, the binodal line exhibits
a pinched shape, evidence that indeed the topological phase
separation of Tlusty and Safran27 is observed.

In the present manuscript, we will show that phase sep-
aration occurs only if r > 1/3. For r < 1/3, the energy cost
of forming junctions is too high or, alternatively, the entropy
gain is too small to offset the loss of translational entropy of
chains in the liquid phase (a detailed discussion of this topic
is given in Sec. V C).

B. Volume available for bonding

The parameters δαβ and θmax
αβ determine the volume avail-

able for bonding, which in the Kern-Frenkel model can be
written as

vαβ = πσ 3

3
[(1 + δαβ)3 − 1]

[
1 − cos

(
θmax
αβ

)]2
. (4)

vαβ does not fix the topology of the phase diagram (i.e.,
whether a critical point exists or whether the phase diagram
is pinched), only the density/temperature range where phase
separation occurs.

We have chosen the set of parameters: δAA = 0.07,
δAB = 0.545, cos(θmax

AA ) = 0.98, and cos(θmax
AB ) = 0.9461856,

taking into account the following requirements:

� single-bond-per-patch condition, i.e., the patch inter-
action range must be small enough that a patch can be
engaged in at most one bond. This condition is nec-
essary in order to compare the simulation results with
the predictions of Wertheim’s first-order perturbation
theory,15, 16 which rests on this assumption.

� large v AB/v AA ratio (where vαβ is the volume of an
αβ bond, defined more rigorously later). This condi-
tion is necessary in order to observe the pinched phase
diagrams at temperatures accessible to simulations (for
a theoretical discussion see Sec. IV). We have placed
nine patches of type B to effectively increase v AB with-
out violating the single-bond-per-patch condition.

III. SIMULATION METHODS

A. Biased Monte Carlo moves

The interaction potential between two particles is
strongly anisotropic and short-ranged. At low temperature
the system is characterized by bonded configurations,
which are notoriously difficult to sample. In fact, the phase
space associated with bonded configurations is very small,
and the standard Metropolis Monte Carlo algorithm has a
low efficiency in locating them. Moreover, once a bonded
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configuration is found, the underlying Markov chain is likely
to get trapped due to the high-energy penalty of breaking
bonds. At the lowest temperature studied, T = 0.045, for
example, the probability of breaking a AA bond becomes
of the order of exp(1/0.045), thus requiring ≈4 × 109 MC
attempts to break such a bond.

To overcome this difficulty we implemented biased MC
moves, inspired by the aggregation-volume-bias (AVB) MC
Algorithm.30 The idea behind these techniques is to prefer-
entially place a particle into the bonding volume surrounding
another particle and, conversely, to preferentially remove a
bonded particle from the bonding region of its associated part-
ner. The immediate advantage of this scheme is that bonded
configurations are found much faster than with random
sampling.

The bonding region is defined as the volume of phase
space where another particle can form a bond according to the
Kern potential previously defined. For an AA bond defined by
the Kern potential in Eq. (1), this volume VAA equals

VAA = 4π f A
2v AA, (5)

where f A is the number of A-type patches on each particle
( f A = 2 in our model), and v AA is the bonding volume of an
A site, given by Eq. (4).

Because we have εAA > εAB , AA bonds are always much
stronger than AB bonds. We will therefore consider only bi-
ased moves inside VAA, and leave the weaker AB bonds to
the ordinary Metropolis moves (we have also run simulations
with biased moves for AB bonds without any appreciable
speed gain).

Two different types of biased moves are used in our simu-
lations. The first type of bias is an implementation for patchy
particles of the move described in Ref. 30, which is called
an AVB move. The AVB move is not very effective at the
lowest temperature considered in the present study. We have
then designed a new biased move, which allows the different
chains to effectively exchange particles at low temperatures,
and which we call End Hopping move. Both moves are de-
scribed in depth in the Appendix A.

In summary, a MC step comprises grand-canonical in-
sertion/removal moves, bias moves, and ordinary Metropolis
translational and rotational moves (the frequency of the moves
is, respectively, 1:500:500).

B. Phase behaviour

To study the phase behaviour of the system we run suc-
cessive umbrella sampling (SUS) MC simulations,31 from
which the full density probability, P(ρ), can be extracted at
fixed temperature T and chemical potential μ.

In the SUS method, the pertinent range [0, Nmax ] of par-
ticles is divided into many small windows of size 
N . For
each window i , in the interval N ∈ [Ni , Ni + 
N ], a grand-
canonical MC simulation is performed, avoiding the deletion
or insertion of particles outside the window’s range.32 This
allows the calculation of Hi (N ) which monitors how often a
state with N particles is visited in the i th window. The full

probability density P(N ) is then estimated recursively

P(N )

P(0)
= H0(1)

H0(0)
· · · H0(2)

H0(1)
· · · H0(
N )

H0(
N − 1)
· · · Hi (N )

Hi (N − 1)
.

The free energy profile is calculated from f (N )
= −kB T log P(N ) + cost.

The advantages of the SUS method are manifold. The
use of small windows allows an effective sampling of all
the microstates without the use of biasing functions. Be-
cause the windows are independent, all the simulations can be
run in parallel, with a speed gain which scales linearly with
the number of processors. Once the full density probability
has been obtained at fixed T and μ, histogram reweighting
techniques33 can be applied to obtain the density probability
at different chemical potentials. Keeping track of the energy
histogram during the SUS simulations allows also tempera-
ture reweighting. Histogram reweighting techniques are fun-
damental to locating both the critical point and the coexis-
tence points.

Evaluation of the critical points starts with grand-
canonical simulations searching for a temperature which dis-
plays critical-like density fluctuations. A SUS simulation is
then run at such T , and the resulting density and energy his-
tograms are reweighted until the best possible fit to the uni-
versal Ising distribution is obtained. We have not performed
a finite-size study since we are only interested in the trends
with varying r , but we have studied systems of different sizes
L , up to L = 25 σ .

The coexistence points at fixed T are obtained by
reweighting the densities histogram until the two peaks (for
the low- and high-density phases) have the same area and their
average density provide precise estimates of the coexistence
densities.

IV. THEORY

The theory of Wertheim,15, 16 developed in the context
of associating fluids, provides a powerful tool for investi-
gating, with parameter-free calculations, the thermodynamic
properties of patchy particle models,17, 20, 23 including mod-
els with dissimilar patches,18, 28 such as the present one. The
quality of the theory is almost quantitative concerning the
energy scale and semi-quantitative concerning the density
scale.17, 20, 23 One can therefore use the theoretical expressions
to guide the design of the model as well as the choice of the
relevant geometric parameters.

In Wertheim’s approach, the free energy of a system with
N particles is written as a sum of the reference hard sphere
free energy (given by, e.g., the Carnahan-Starling form) and a
bonding contribution,

βFb

N
= 2 log X A + fB log X B − X A − fB

2
X B + 1

2
(2 + fB),

(6)
where fB is the number of B patches in each particle, β

≡ (kBT )−1, T is the temperature, and X A and X B are, respec-
tively, the fractions of sites A and B which are not engaged in
a bond. X A and X B can be related to temperature and density
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through the laws of mass action,25

{
X A + 2η
AA X2

A + fBη
AB X A X B = 1,

X B + 2η
AB X A X B = 1,
(7)

where η ≡ vsρ is the packing fraction, vs = π
6 σ 3 is the par-

ticle volume, ρ is the number density, and the quantities 
αβ

(α, β = A, B) are given by


αβ = 1

vs

∫
gH S(r)[exp(βεαβ) − 1] dr, (8)

where gH S(r) is the HS radial distribution function, and the in-
tegral extends over the bonding volume. The 
αβ are density
dependent, via the density dependence of gH S . If we consider
a linear approximation for gH S(r ),34, 35 then


αβ = 
̄αβ gαβ(η), (9)

where


̄αβ = vαβ

vs
[exp(βεαβ) − 1] (10)

is density independent, and vαβ is the volume of an αβ

bond, given by Eq. (4). For our choice of parameters, v AA/vs

= 1.800344 × 10−4 and v AB/vs = 1.55685717 × 10−2 so
that the AA bonding volume is significantly smaller than the
AB bonding volume.

The function gαβ that contains the η (packing fraction)
dependence is

gαβ = A0(η) + A1(η)xαβ, (11)

with

A0 = 1 − η/2

(1 − η)3
, (12)

A1 = 9

2

η(1 + η)

(1 − η)3
. (13)

Notice that A0(η) is the contact value of gH S . The second term
in Eq. (11) depends on the range δαβ of the square well of
bond αβ:

xαβ = 1 − 3

4

(1 + δαβ)4 − 1

(1 + δαβ)3 − 1
. (14)

In the limit of short ranges, i.e., when δαβ → 0, one has
xαβ → 0 and gαβ → A0(η), as expected.

Differentiation of the free energy with respect to the vol-
ume yields the pressure, P . From the T and ρ dependencies
of P one can locate, by standard methods, the critical point
and the liquid-vapour coexistence curve. As shown below, for
r < 0.5 the liquid-vapour binodal is re-entrant (or pinched):
on cooling, the density of the coexisting liquid phase de-
creases, approaching the coexisting vapour density. This con-
trasts with the more usual behaviour that the densities of the
two coexistence phases become more different as T → 0,
which is also found in the present model when r > 0.5.

A. Choice of the geometric parameters defining
bonding

The dependencies of X A and X B on T help to understand
the basic physics behind the pinching. Indeed, at high T , both
X A and X B approach 1, since all sites are unbonded. At low

FIG. 1. (a) Schematic representation of the patchy particles. Two patches
of type A are placed on the poles, while nine patches of type B are equally
spaced along the equator. Two types of bonds are allowed: AA bonds, which
are responsible for the formation of chains; and AB bonds, which form junc-
tions connecting the different chains. (b) Schematic representation of a X-
junction and a Y-junction. Only Y-junctions can form in our model since B B
bonds are forbidden.

T , if r < 0.5, X A approaches 0, since all A sites are bonded,
whereas X B again approaches 1. This behaviour can be under-
stood by realizing that breaking two junctions (AB bonds) to
form one AA bond (leaving the B sites unbonded) is energet-
ically favourable (
E = + 2εAB − εAA < 0) when r < 0.5.
X B thus depends non-monotonically on T , as shown in Fig. 2
for a specific choice of the parameters. Hence, the number of
junctions present in the system, n j = fB N (1 − X B), is also
non-monotonic with T , being 0 both at high and low T . The
maximum number of branching points depends on the smaller
value assumed by X B . As branching is a pre-requisite for the
onset of a critical point,36 it is important to select geometrical

FIG. 2. Theoretical X A and X B vs T at ρ = 0.05, for three different r values.
Note the non-monotonic behaviour of X B .
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parameters for bonding, such that a sufficient number of AB
bonds develop in the T window where equilibrium numer-
ical simulations are possible. Indeed, despite the significant
speedup obtained by implementing the algorithms discussed
in Sec. III A, a complete evaluation of the density of states
is still limited to T > 0.045. Since the T -dependence of X A

and X B is mostly controlled by the bonding volumes, we have
chosen large values of VAB/VAA (i.e., small values of δAA

and cos(θmax
AB ) and large values of δAB and cos(θmax

AA )), both
still within the one-bond-per-patch limit.37 For the same rea-
son, we have chosen to work with fB = 9. We stress that the
choice of fB and of the geometric parameters defining bond-
ing does not alter the topology of the phase diagram (i.e., does
not suppress or generate a critical point) but only the T -scale
where condensation occurs. As we discuss in the following,
the parameter that controls the presence of a critical point in
the system is r , which does not depend on the bonding vol-
umes.

B. Asymptotic expression for the bonding free energy
in the strong-association limit

In this section, we rederive an asymptotic analytic ex-
pression for the bonding free energy in the strong-association
limit, by generalizing the work in Refs. 25 and 26 to arbitrary
fB values and ρ-dependent 
αβ . This extension is required to
properly represent the low-T behaviour of the Wertheim free
energy (Eq. (6)).

As in Ref. 25, we consider the bonding free energy
fb ≡ Fb/N in the limit of strong AA association, i.e., y
≡ (η
AA)−

1
2 � 1, and in which we also have r < 1 or α

≡ (
AB/
AA) � 1. We further consider α ∼ y2. Under
these hypotheses, the bonding free energy for the present
patchy model can be expanded to first order in y, with the
result (see also Eq. (34) of Ref. 25)

β fb = 2 ln y −
√

2y −
√

2 fB
α

y
. (15)

This expression incorporates density-dependent 
αβ through
the linear approximation for gH S(r ), the key idea being that
the appropriate expansion variable is α/y.

To obtain an asymptotic expression for the bonding con-
tribution to the pressure, we proceed as follows: (i) calculate
βpbvs ≡ η2(∂β fb/∂η) and (ii) expand p = pH S + pb to sec-
ond order in η. The result reads

βpvs = a0η
1
2 − a1η

3
2 + (B2 − a2)η2, (16)

where B2 = 4 is the second virial coefficient of HSs (in units
of the HS volume vs), and

a0 = 1√
2
̄AA

, (17)

a1 = a0

(
f 
̄AB − a2

2

)
, (18)

a2 = 5

2
+ 9

2
xAA. (19)

By equating the first and second derivatives of the pressure
(Eq. (16)) to zero, we obtain expressions for the critical point.

After some manipulation, these can be rewritten as

ηc = a0,c

a1,c
= 1

fB
̄AB,c − a2
2

, (20)

[
fB
̄AB,c − a2

2

] 3
2 = 
̄

1
2
AA,c2

√
2(B2 − a2), (21)

where the subscript c denotes quantities evaluated at the criti-
cal point. These expressions reduce to the asymptotic expres-
sions of Ref. 25 (where a zero-density approximation for gH S ,
viz., gH S = 1, was used), if a2 = 0. As we shall see later, it
is important to account for the density dependence of gH S to
properly describe, with these asymptotic results, the theoreti-
cal predictions as well as the numerical MC data.

Interestingly enough, the conditions for the existence (or
absence) of a critical point do not depend on a2; hence, this
improved expansion also confirms that no critical point exists
when r < 1/3. Indeed, let us consider Eq. (21) in the low-
temperature limit. In this limit, the −1 in Eq. (10) can be
dropped, and f 
̄AB � a2/2. Then, from Eq. (21), we have

kBTc = 3εAB − εAA

ln C
, (22)

with C = 8(B2 − a2)2v AAv2
s /( fBv AB)3. Hence Tc > 0, only if

3εAB > εAA (r > 1/3). In the same limit,

ln ρc = −βcεAB − ln fBv AB, (23)

which provides a linear relation between ln ρc and εAB
kBTc

(or,
in other words, an exponential decrease of ρc with r ). These
equations for the critical parameters are the same as those of
the Tlusty-Safran theory, which also predicts that there is no
critical point for r < 1/3.

A comparison between the full solution of the Wertheim
theory and the asymptotic expansion is presented in Fig. 3. It
is important to notice that while Tc and ρc vanish at r = 1/3,
Tc does so much more steeply than ρc. Thus, the (exponential)
vanishing of ρc becomes more readily observable on decreas-
ing r .

We can improve the above asymptotic results by includ-
ing terms of order y2 in the expansion (Eq. (15)). These terms

FIG. 3. Comparison of the critical parameters Tc and ρc from Wertheim the-
ory (Eq. (6)) and from the asymptotic expressions (Eqs. (20) and (21)). Note
the pronounced change in slope of the lines around r = 1/3.
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FIG. 4. Phase diagram of the model for several values of r . (a) Numerical MC data. (b) Theoretical predictions.

are

β fb,2 = y2

4
+ fBα

2
+ fB

2

(
fB

2
+ 4

) (
α

y

)2

. (24)

Proceeding as before to obtain their contribution to P , we
conclude that they only affect the coefficient multiplying η2:

βpb,2vs =
[

− 9

4
− 9xAA + 1

2
a2

2 + 9 fB
̄AB

2
(25)

+ fB
̄2
AB

(
fB

2
+ 4

) ]
η2

2
̄AA
. (26)

Inclusion of this term in P improves only marginally the pre-
vious asymptotic expressions.

V. RESULTS

A. Phase diagram

As discussed in Sec. II, the energy cost of forming a
junction is given by ε j = εAA(1/2 − r ). We performed sim-
ulations at different values of r . The critical point was de-
termined for r = 0.336, 0.34, 0.35, 0.37, 0.40, 0.45. The full
phase diagram was calculated for r = 0.35, 0.37, 0.40, 0.45.

Results for the simulations are shown in Fig. 4(a), which
displays several interesting features. We start by noting that
for all r values a clear pinching is observed, which becomes
more and more apparent on decreasing r towards 1/3. This
pinching indicates that on cooling along a constant-density
path that crosses the two-phase region, the system evolves
from a homogeneous to a phase-separated to a homogeneous
state again. We also note that, on decreasing r , both Tc and ρc

decrease. Likewise, the liquid branch of the coexistence curve
moves to lower densities. This is consistent with the progres-
sive decrease in the amount of branching in the system, and
bears strong resemblance to the drop in Tc and ρc observed
in fluids of particles with identical patches on decreasing the
average valence (i.e., the mean number of patches per parti-
cle). Consequently, empty liquids (i.e., liquids with vanishing
densities20) can also form in the present system, for small r .
As in the case of systems of fixed valence,17 these liquid states
consist of long chains of AA-bonded particles occasionally
branching at the rare AB bonds, as shown in Fig. 5. The fig-
ure shows both the decrease of the density and the decrease

in the number of junctions as the temperature is lowered from
T = 0.065 to T = 0.045.

Figure 4(b) shows the corresponding coexistence curves
calculated theoretically (Eq. (6)). As already found in previ-
ous patchy-particle models,17, 20 the theory correctly predicts
the T -scale of the condensation, but significantly underesti-
mates ρc and the density of the liquid-branch at coexistence.

The coexistence state points presented in Fig. 4 are also
reported, for completeness, in Appendix B, which includes, in
addition, the chemical potentials at coexistence and the sizes
of the simulation box for all studied r values. As an illus-
trative example of the quality of the data obtained with the
chosen MC methodology, we show in Fig. 6 the distribution
of density fluctuations for the case r = 0.35 at T = 0.55, for
several values of the activity z, encompassing the coexistence
value. Distributions at different z are calculated via histogram
reweighting.

B. Critical parameters

Figure 7 shows the r dependence of the critical parame-
ters calculated from simulation and theory. Consistent with
the preceding discussion, good agreement is observed for
Tc, whereas ρc is underestimated. We note that, while ρc

shows clear signs of vanishing at εAB → 1/3, the vanishing
of Tc is less evident. On the other hand, comparison with the

FIG. 5. Projection of two slabs of thickness 5σ of the liquid at coexistence
at T = 0.065 (left) and T = 0.045 (right), for r = 0.37. The edge length of
the simulation box is, respectively, 36σ and 45σ . Silver particles are chain
particles, red particles are junctions, and green particles are chain ends. Note
that the low-T system has a lower density than the high-T system, due to the
retracing of the phase diagram.
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FIG. 6. Distribution of the density fluctuations for r = 0.35, T = 0.55,
and several values of the activity z, including that at coexistence, z = 5.66
× 10−5.

theoretical predictions shows that indeed Tc starts to show
clear signatures of approaching 0 only when εAB is very close
to 1/3.

To strengthen the evidence for vanishing Tc on approach-
ing r = 1/3, we proceed to compare εAB/Tc and ln ρc, in the
form predicted by Eq. (23). These can be calculated either
from the full Wertheim theory, or from the asymptotic rela-
tions (the latter by combining Eqs. (20) and (21)). Figure 8
shows the resulting εAB/Tc vs ln ρc plot: the theoretically ex-
pected proportionality ln ρc ∝ εAB/Tc indeed holds, but the y
intercept is not very well predicted. If indeed ln ρc ∝ εAB/Tc,
then Tc also vanishes as ρc → 0 (a limit where Wertheim’s
theory is exact).

C. Structure and thermodynamics at coexistence

The significant agreement between theoretical and nu-
merical results strongly suggests that the theory may shed
further light on some special features responsible for, or as-
sociated with, the pinching phenomenon.

Figure 9 shows the mean number of bonded sites per par-
ticle along the coexistence curve, evaluated from theory for
several values of r . The figure is very illuminating since it
shows that the number of connections per particle always ap-
proaches 2 at low T , confirming that the lowest energy state
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FIG. 7. Comparison between theory and simulation for the r dependence of
the critical parameters.
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FIG. 8. Relation between Tc and ρc from simulations (symbols) and from
theory (lines). Equation (23) predicts εAB/Tc = 2.56 − ln ρ.

of the system is composed of infinite chains (or closed loops)
of bonded particles. The progressive decrease of the number
of branching points on cooling forces the system to organize
itself, in the liquid branch, into longer and longer chains con-
nected by a smaller and smaller number of branching points.
In this way, lower and lower average densities are generated.
Figure 9 is also illuminating on the reasons behind the dis-
appearance of the critical point when r → 1/3. Indeed, on
decreasing r the mean number of bonded sites per particle
approaches 2 both in the vapour and liquid phases.

In Fig. 10, we plot the differences in entropy per particle,

s = sl − sv , and internal energy per particle, 
u = ul − uv ,
between the liquid and vapour phases, as functions of T , for
r = 0.37. As in an ordinary condensation, this balance is such
that the lower entropy of the liquid phase is compensated by
its lower energy. This result would seem to contradict the in-
terpretation of the phase transition proposed in Refs. 27 and
38. According to these authors, the mechanism driving phase
coexistence is that the loss of translational entropy of the
chains (lower in the denser phase) is offset by the increase
of the entropy of the self-assembled junctions (higher in the
denser phase).

In order to clarify this point, we present a brief anal-
ysis of phase separation in terms of the entropy and inter-
nal energy differences between the coexisting phases. At a
given pressure and temperature, the coexistence between two
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<
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FIG. 9. Mean number of bonded sites per particle along the binodal line,
calculated from Wertheim’s theory. Full lines represent the liquid branch, and
dashed lines represent the vapour branch.
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FIG. 10. Differences in entropy Sv − Sl and internal energy Uv − Ul be-
tween the liquid and vapour phases along the coexistence curve.

phases is expressed by the equality of their chemical poten-
tials μ ≡ (∂( f η)/∂η), where η is the packing fraction and
f = u − T s is the free energy per particle. We thus have

μ = u − T s + η

(
∂u

∂η
− T

∂s

∂η

)
,

and the coexistence condition (
μ = 0) becomes


u − T 
s + 


(
η
∂u

∂η

)
− T 


(
η

∂s

∂η

)
= 0, (27)

where 
Z = Zl − Zv is the difference between the liquid-
and vapour-phase values of any quantity Z . Expressions for
u and s can be obtained by noting that u = −εAA(1 − X A)
+ fB(1 − X B)(εAA/2 − εAB) and using Wertheim’s (Eq. (6))
and HS contributions to the free energy. In order to iso-
late each individual contribution (from chains and junc-
tions) to the entropy and the internal energy, we derive
asymptotic expressions for these quantities, in the same
limit and to the same order of approximation used to ar-
rive at Eqs. (15) and (16). This calculation shows that, at
low densities and for strong AA association, the free energy
difference between phases contains entropic contributions
only:


u − T 
s = −kB T (
sch + 
sH S + 
sY ), (28)

with sch = 2a0η
− 1

2 , sH S = −(B2 − a2)η, and sY = 2a1η
1
2 ,

and coefficients a0, a1, and a2 given by Eqs. (17)–(19), re-
spectively. These terms have the following physical meaning:
sch is the translational entropy of chains, sY is the entropy of
junctions, while sH S is the entropy due to the excluded volume
of the hard cores. Note that the same functional dependence of
the entropy terms was assumed by Tlusty and Safran27 based
on mean-field arguments, while here it is rigorously derived
from first principles. This equation reveals that, at the lowest
order of Eqs. (15) and (16), the change in internal energy on
going from the vapour into the liquid phase is cancelled by
some part of the change in entropy. Therefore, the terms in
the right-hand side of Eq. (28) represent the entropy variation
that is relevant for phase coexistence. sch and sH S are associ-
ated with chains, and 
sch < 0, 
sH S < 0, i.e., chains con-
tribute an entropy loss upon condensation. On the other hand,
sY is the entropy of junctions and 
sY > 0, so Y-junctions
contribute an entropy gain as the vapour turns into liquid at

coexistence. Differentiating Eq. (28) with respect to η and
substituting the results in Eq. (27), the following necessary
condition for coexistence is obtained:

2
sH S + 1

2

sch + 3

2

sY = 0. (29)

This equation clarifies the claim made in Refs. 27 and 38 that
the entropy loss of the chains must be balanced by an entropic
gain of the junctions. Moreover, Eq. (29) provides a physi-
cal interpretation for the absence of phase separation when
r < 1/3. In fact, by taking the limit 
η → 0 in Eq. (29), one
can show that η(∂pvs/∂η) = 0 is a necessary condition for
that equality to hold. Then, by repeating the analysis of the
critical point performed in Sec. IV B, it is found that Eq. (29)
only has solutions when r > 1/3. Therefore, when r ≤ 1/3,
the gain in entropy of junction formation cannot overcome
the entropy loss associated with chains, and the critical point
vanishes.

VI. ANALOGIES WITH DIPOLAR FLUIDS

An important class of systems where particle aggrega-
tion couples with phase separation is dipolar fluids. Many
studies9, 10 have confirmed that at low densities and temper-
atures, the strong anisotropy of the dipolar interaction favours
the formation of linear chains and branched structures. Even
though the dipolar interaction is long-ranged (with its r−3 de-
cay), it was shown that, in the absence of external magnetic
fields, a thermodynamic limit exists39 and the interaction be-
comes “nearly short-ranged” for one-dimensional objects.27

Based on this assumption, Tlusty and Safran27 have devel-
oped a theory for the condensation of dipolar fluids. It is
an example of hierarchical phase transition, where the enti-
ties involved in the phase separation process are not the indi-
vidual dipoles, but the equilibrium polymers into which they
aggregate.

We have shown in Secs. I–V that our model has many
analogies with the Tlusty-Safran model for dipolar fluids, in
particular:

� it accounts for the aggregation of particles into chains
connected by Y-junctions;

� it can have (or not) a critical point, depending on the
relation between the energy scales of branching and
chaining;

� when a critical point exists, it exhibits a re-entrant (or
pinched) phase diagram;

� in the limit of strong association, its free energy re-
duces to that of the Tlusty-Safran model.

In addition to correctly capturing the physics of the TS
transition, our model has some relevant advantages. First of
all, it is a microscopic model, and not a coarse-grained one.
Its properties can be computed with powerful liquid-state the-
ories, showing that a complete description of these systems
can be achieved through rigorous statistical mechanics. Fur-
thermore, the model is simple enough for its properties to be
fully accessible with present-day computer simulation tech-
niques and resources (unlike DHSs or DSSs).
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Let us take as an example the DHS or DSS fluids, where
the point dipole is embedded, respectively, in hard- and soft-
sphere particles. If we imagine that our model indeed captures
the physical mechanisms underlying the phase transition in
DHSs or DSSs, the following predictions may be made, on
the basis of the present study:

� DHSs or DSSs will display a critical point or not, de-
pending on the energy cost of forming junctions. The
long range of the interaction does play an important
role in determining this energy cost. Indeed, simula-
tions have shown that truncating the dipolar interac-
tions appears to give rise to a phase transition,40, 41

whereas using the Ewald summation seems to suppress
the transition.10

� The vanishing of the critical parameters is highly non-
linear, as shown in Fig. 7. Approaching the limiting
value r = 1/3 below which there is no critical point,
a strong suppression of the critical density will occur,
with the critical temperature dropping to 0 only very
close to r = 1/3. This result casts doubts on previous
attempts at locating the DHS critical point by extrap-
olating to the DHS limit in systems where the cost of
defects is much less than for DHS. See also Ref. 11
and references therein.

VII. CONCLUSIONS

In this article, we have introduced a specific model
which, as predicted by Wertheim’s theory and verified by nu-
merical simulations, exhibits a novel type of liquid-vapour
coexistence, i.e., a re-entrant (or pinched) phase diagram.
This model is based on the idea of dissimilar-patch colloids
introduced in Refs. 25 and 26, i.e., patchy colloidal parti-
cles with patches of different types (A and B in the present
case), differing in their bonding energy and bonding vol-
umes. The model has been optimized to bring the expected
novel behaviour into the numerically accessible T -window.
This has been achieved by an appropriate choice of the bond-
ing volume of the AB interactions and of the number of B
patches, to entropically favour the formation of AB bonds
over AA bonds. Colloids of this type can in principle be fab-
ricated by a selective functionalization of specific areas of the
particles.42–45

Models with dissimilar patches significantly expand over
models with identical patches.17, 20, 23 Both types of models
share the physics of a limited number of patches, the possi-
bility of generating liquid states of vanishingly low densities
(empty liquids), and the potential to give rise to equilibrium
gels.21 In addition, dissimilar-patch models benefit from the
ability to control the effective valence through an accurate
choice of T . Because we are able to tune the concentration of
branching points by adjusting r and T , it becomes possible to
suppress completely the liquid-vapour critical point (the case
in which r < 1/3); or to generate a re-entrant phase diagram
(the case investigated in this article, 1/3 < r < 1/2); or, al-
ternatively, to generate the standard behaviour where branch-
ing remains dominant also at low T (the case investigated in
Ref. 18 r > 0.5).

The results reported in this article show that the de-
signed model is indeed characterized by a pinched phase dia-
gram. MC simulations, with specific acceptance and rejection
moves, have confirmed the theoretical predictions, not only on
the re-entrant shape of the coexistence curve, but, more im-
portantly, on its variation with r . On decreasing r the coexis-
tence region shrinks and appears to vanish when r → 1/3, in
full agreement with the theoretical predictions. The progres-
sive suppression (down to full disappearance) of the liquid-
vapour critical point is shown to be associated with a vanish-
ing of the critical parameters. Interestingly, both theory and
simulations show that while ρc depends strongly on r , Tc de-
creases rather smoothly, and only in a very small range of r
close to 1/3, it falls sharply towards 0.

As discussed in Sec. I, the thermodynamics of the present
model is analogous to that proposed almost a decade ago by
Tlusty and Safran27, 38 for several network aggregates, includ-
ing DHS (Refs. 46–51) and telechelic micelles. The Tlusty
and Safran model focuses on two types of topological defects
of the network fluid, namely, chain ends and branching points
(Y-junctions), and the phase transition results from the com-
petition between a low-density phase, rich in chain ends, and
a high-density phase, rich in junctions. Our model thus pro-
vides a microscopic off-lattice realization of the Tlusty and
Safran mechanism,27 where the chains, chain ends, and junc-
tions emerge at low T , as strong many-particle correlations.
As shown in Refs. 25 and 26, a precise mapping between the
energetic cost of chain ends and chain junctions in Tlusty and
Safran’s model and εAB and εAA in our model can be pro-
vided. The connection between our model and the DHS or
DSS fluids suggests that whether DHSs (or DSSs) have a crit-
ical point or not may depend on a rather delicate balance be-
tween the cost of creating a junction and the cost of creat-
ing a chain end. In this respect, the difficulty in locating Tc

in all models which have the DHS fluid as their limit10, 52, 53

strongly resembles the sudden crossover found in our model,
from a linear decrease to a fast approach to 0, very close to
r = 1/3.

We note how the present model also sheds light on the
onset of liquid-vapour criticality in simple systems. In flu-
ids where particles interact via spherically symmetric poten-
tials (excluded volume plus monotonic attraction), a (stable
or metastable) liquid-vapour critical point always exists and
the range and strength of the interaction only controls the
value of Tc. In patchy particles,14 the existence of a critical
point depends sensitively on the number and geometry of the
patches themselves. Besides attraction, criticality depends on
the possibility of forming a percolating structure of bonded
particles. The present model adds a new piece of informa-
tion, by clarifying that branching (i.e., the ability to form a
three-dimensional spanning network) is not a sufficient con-
dition for criticality. The formation of closed-bonded clusters
(bond rings, micelles, and vesicles) can suppress the standard
liquid-vapour critical point, giving rise to systems where self-
assembly is the dominant2, 3, 54 (and often only) aggregation
phenomenon.55–58

We stress that the basic physics underlying the pinch-
ing behaviour can be understood in terms of the dependence
of the critical parameters Tc( f ) and ρc( f ) on the particle
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valence f . In the case of patchy particles with fixed valence
(i.e., f identical bonding sites), the width of the phase di-
agram (the difference between coexisting liquid and vapour
densities) vanishes as f → 2+. Hence, for any f value larger
than 2, a critical point at finite T and ρ exists. In the present
system, on cooling, more and more bonds are formed, many
of them of the AB type, generating ramified connections
between distinct particles and, if 1/3 < r < 1/2, the emer-
gence of a critical point. However, whereas when all patches
are identical the number of branching points progressively
increases on further cooling, as more and more bonds are
formed, in the case of dissimilar patches, more efficient (in
terms of energy) bonding will be achieved by progressively
switching from AB bonds to AA bonds. This decrease in
the number of junctions n j on cooling is effectively equiv-
alent to a reduction of the average valence of the system
and, in the language of the identical-patches model, to a
progressive decrease of the density of the coexisting liquid.
Thus, T controls the effective valence and drives the pinching
process.

We conclude by pointing out that the present model is
amenable to direct experimental verification, through recent
advances in colloidal synthesis. Two approaches appear par-
ticularly promising. One possibility is the use of triblock col-
loidal particles59, 60 which consist of spheres where the poles
and the equator can be independently functionalized, allow-
ing both for the chaining of particles and the formation of
Y-junctions. Another possibility is the use of DNA con-
structs or colloidal particles functionalized with complemen-
tary DNA strands,61 where interactions equivalent to our AA
and AB bonds can be obtained by tuning the length, number,
and sequence of the strands.
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APPENDIX A: BIASED MONTE CARLO MOVES

We give here a detailed account of the MC biased moves
used in the simulations. The difficulty in simulating net-
work fluids at low temperatures is due to the bonded config-
urations of particles, whose sampling requires many chain-
forming and chain-breaking events. Chain-forming events are
rare since the volume in phase space of bonded configurations
is much smaller than the total volume available. On the other
hand, chain breaking is a rare process owing to the Boltzmann
penalty that such events face.

The idea behind biased sampling is to enhance the ac-
ceptance probability, acc(o → n), for going from state o to
state n of the MC chain by using a non-symmetric transition

probability matrix, α(o → n)

acc(o → n)

acc(n → o)
= α(n → o)

α(o → n)
exp(−β
U ).

In what follows we describe two different types of bi-
ased move: the “AVB move” which was introduced in Ref. 30,
and the “end hopping move” which we introduce for the first
time in the present study. Both moves enhance bond forma-
tion by directly placing particles inside the bonding volume,
but address the bond-breaking issue in different ways. The
“AVB” move uses the large ratio between the total volume and
the bonding volume to effectively enhance the chain breaking
probability. The “end hopping” move instead circumvents the
penalty associated with the Boltzmann factor altogether by at-
tempting moves that do not change the overall energy of the
system.

1. AVB move

The AVB move enhances bond formation by directly
placing particles inside the bonding volume, and takes ad-
vantage of the large ratio between the total volume and the
bonding volume effectively to enhance the chain-breaking
probability.

The AVB move comprises two types of moves, the bond-
ing move and the unbonding move. The first of these takes a
particle and places it inside the bonding volume of another
particle. The second takes a particle and places it outside
the bonding volume of one of its interacting neighbours. In
the following scheme we provide the details of the move. The
quantity in parentheses at the end of each step indicates the
probability associated with the trial move (α(o → n)), which
is accounted for in the acceptance probability.

� Choose between bonding or unbonding move (1/2)

(1) Bonding move

(a) select a particle i , bonded with Ni other par-
ticles (1/N );

(b) select a particle j outside the bonding vol-
ume of particle i (1/(N − Ni − 1));

(c) place particle j inside the bonding volume
of particle i (1/VAA). Note that particle j
has to be placed uniformly inside VAA (for
example, placing the centre of mass of par-
ticle j around a randomly selected patch of
particle i , and randomly selecting an orien-
tation for which particles i and j interact);

(d) accept move with probability

acc(bond) = (N − Ni − 1)VAA

(Ni + 1)(4πV − VAA)

× exp(−β
E).

(2) Unbonding move

(a) select a particle i (1/N );
(b) select a particle j inside the bonding volume

of particle i (1/Ni );
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(c) place particle j outside the bonding volume
of particle i (1/(4πV − VAA));

(d) accept move with probability

acc(unbond) = Ni (4πV − VAA)

(N − Ni )VAA

× exp(−β
E).

Care must be taken to insert the particles uniformly into the
bonding volume.

The great advantage of this scheme is that the accep-
tance ratio of the unbonding move contains a new term which
favours the breaking of bonds (∝ V/VAA) despite the strong
energy penalty (exp(−β
E)).

2. End hopping move

At very low temperatures the Boltzmann factor associ-
ated with the energy penalty of breaking a bond completely
suppresses the acceptance probability of the unbonding move.
To solve this sampling problem, we introduce here the end
hopping move, which generates trial moves that leave the en-
ergy unchanged. The move proceeds by selecting randomly
a chain end, i.e., a particle which is engaged in only one AA
bond, and moving it into the bonding volume of another chain
end or of a monomer. Because the move leaves the number of
bonds unchanged, its energy cost is null, and, therefore, it is
cost-effective at any temperature (provided that chain ends ex-
ist in the simulation box). This move allows different chains
to exchange particles, and allows efficient exploration of con-
figurations with equal energy.

We provide here the details of the algorithm with the trial
probabilities in parentheses after each step.

� Select a particle i which is also a chain end (1/Nends);
� select a target particle j which is either a chain end dif-

ferent from i , or a monomer (1/(Nends + Nmon − 1));
� place particle i in the free bonding volume of particle j

(2/VAA, if j is a chain end; 1/VAA, if j is a monomer);
� if after the move particle i is not a chain end, reject the

move;
� accept the move with probability

acc(cee) = Nend(Nend + Nmon − 1)

(N ∗
end + N ∗

mon − 1)(N ∗
end)

×1 + δmon

1 + δ∗
mon

exp (−β
E),

where N ∗
end and N ∗

mon are, respectively, the number of
ends and the number of monomers in the reverse move,
and δmon = 1 (0), if the target particle in the direct
move is a monomer (end) (δ∗

mon is the same quantity
for the reverse move).

APPENDIX B: COEXISTENCE PROPERTIES

The following table reports the numerical values of
the excess chemical potential μex , the coexisting densi-
ties ρlow and ρhigh , and the simulated box size L , for r

= 0.35, 0.37, 0.40, 0.45. The relative error on ρlow and ρhigh

is of the order of a few percent.

T μex ρlow ρhigh L

r = 0.35

0.0636 −0.4762 0.03935 0.104 24
0.0600 −0.5013 0.01808 0.103 20
0.0550 −0.5379 0.00736 0.090 22
0.0500 −0.5764 0.00478 0.064 24
0.0450 −0.6163 0.00266 0.036 28

r = 0.37

0.0738 −0.4221 0.059 0.175 18
0.0730 −0.4266 0.048 0.187 14
0.0700 −0.4443 0.025 0.210 14
0.0650 −0.4755 0.0091 0.214 14
0.0600 −0.5086 0.0038 0.202 14
0.0550 −0.5436 0.0019 0.175 14
0.0500 −0.5805 0.0012 0.137 14
0.0450 −0.6190 0.0006 0.098 18

r = 0.40

0.0835 −0.3961 0.0658 0.237 16
0.0800 −0.4131 0.0290 0.287 16
0.0750 −0.4395 0.0126 0.313 16
0.0700 −0.4674 0.0051 0.320 16
0.0650 −0.4968 0.0020 0.317 16
0.0600 −0.5276 0.00072 0.306 16
0.0550 −0.5597 0.00029 0.286 16
0.0500 −0.5920 8.66 ×10−5 0.229 17

r = 0.45

0.0970 −0.3964 0.1128 0.253 16
0.0940 −0.4092 0.0478 0.320 16
0.0900 −0.4271 0.0248 0.356 16
0.0850 −0.4506 0.0113 0.379 16
0.0800 −0.4752 0.0051 0.392 16
0.0750 −0.5009 0.0022 0.399 16
0.0700 −0.5274 0.00090 0.403 16
0.0650 −0.5546 0.00032 0.404 16
0.0600 −0.5828 9.91 ×10−5 0.403 16
0.0550 −0.6109 2.54 ×10−5 0.396 15
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