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We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermo-
dynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated
with one patch, so that they interact via a square-well potential if they are sufficiently close one an-
other, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase
coexistences are computed and contrasted against corresponding Monte Carlo simulations results.
We find that the perturbation theory describes rather accurately numerical simulations all the way
from a fully covered square-well potential down to the Janus limit (half coverage). In the region
where numerical data are not available (from Janus to hard-spheres), the method provides estimates
of the location of the critical lines that could serve as a guideline for further efficient numerical work
at these low coverages. A comparison with other techniques, such as integral equation theory, high-
lights the important aspect of this methodology in the present context. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.3689308]

I. INTRODUCTION

Perturbation theory has a long and venerable history in
the context of fluids and a detailed description of several dif-
ferent techniques is presented in classic textbooks,1, 2 and in
excellent dedicated reviews.3, 4

Although the general idea dates back to a much earlier
time, the first well established paradigm of first- and second-
order perturbation theory was devised by Zwanzig5 for simple
fluids, later extended to polar fluids.6 A similar analysis was
carried out by Buff and Schindler in the context of solution
theory.7

In addition to these theories that assume the hard-spheres
(HS) model as unperturbed system, other theories exist that
rely on the van der Waals picture as a starting point, the best
known of these being the Weeks-Chandler-Anderson (WCA)
theory.8–11

While the WCA theory has proven extremely powerful in
many applications, for potential with hard-cores the original
Zwanzig theory offers a natural scheme, hinging on an un-
ambiguous potential separation. This was eventually put on
firm ground by Barker and Henderson (BH) (Refs. 3, 4 and
12) who provided reliable estimates for square-well fluids,13

a rather unrealistic potential in the framework of simple liq-
uids, but much more physically sound when applied to the
colloid domain.

a)Electronic mail: christoph.goegelein@ds.mpg.de.
b)Electronic mail: flavio.romano@gmail.com.
c)Electronic mail: francesco.sciortino@uniroma1.it.
d)Electronic mail: achille@unive.it.

In the present paper, we will apply the BH thermody-
namic perturbation theory to the Kern-Frenkel (KF) model
for patchy colloids.14, 15 In this model,14 attractive circular
patches are distributed on the surface of hard-spheres, and dif-
ferent spheres attract each other provided that any two patches
on distinct spheres are suitably aligned, and the relative radial
distance between the centers of the spheres is within the range
of the attractive tail.

While not new,16 these systems have witnessed an im-
pressive resurgence of interest in the last few years for a num-
ber of reasons. The first reason is due to the remarkable im-
provements in the chemical synthesis techniques that allows
to decorate the surface of a colloid with great precision and
reliability, a feature that was not possible until few years ago.
When combined with the additional advantage, as compared
with their atomic counterpart, of an almost arbitrarily con-
trol of their size and interaction range, this makes patchy col-
loids very attractive for technological applications, as elemen-
tary building blocks for self-assembly materials of the new
generation.17, 18 An additional important reason hinges on the
fact that patchy colloids may serve as a paradigm for systems
with low valence, strong anisotropy, and highly directional in-
teractions between particles, a feature that is common to many
different systems, globular proteins being a notable example,
where the heterogeneity of the surface groups cannot be ne-
glected even at the minimal level.

Several examples of applications and improvements of
the original BH scheme have been offered over the years.
Verlet and Weiss discussed a comparison with numerical
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simulations and experimental results both for simple19 and
polar20 fluids; Gubbins and Gray21 proposed a perturbation
scheme for molecular fluids; Chang and Sandler22 exploited
it to develop an analytical approximation for the square-well
(SW) fluid valid within a particular interval of well ampli-
tude; Zhang et al.23 applied it to a square-well chain fluid,
whereas Rotemberg et al.24 used it to study the phase behav-
ior of mixtures of colloidal particles and interacting polymers.
More recently, Zhou25 derived a simple procedure hinging on
the BH scheme to locate the fluid-solid coexistence phase for
a hard-core attractive Yukawa fluid, and Kalyuzhnyi et al.26, 27

tackled the single and multiple patchy colloids, similar to
those treated in the present work, using a generalization of
Wertheim’s thermodynamic perturbation theory.28–31

The present work builds upon the methodology outlined
in Ref. 32 to show that BH second-order perturbation theory
can be successfully applied to patchy colloids, as represented
by the Kern-Frenkel model.14 Besides thermodynamic quan-
tities, such as virial equation of state and chemical potentials,
the method allows a rather precise location of the fluid-fluid
and the fluid-solid coexistence lines, in principle for arbitrary
number and size of the patches. In this respect, the method
competes in accuracy with integral equation theory on the
same system,33, 34 without suffering from the unavoidable in-
stabilities present in that case for low surface coverages and
temperatures. This will be demonstrated by an explicit com-
parison with numerical simulations carried out33–36 on the
same system.

The outline of the paper is as follows. In Sec. II the
model is defined and in Sec. III the used perturbation tech-
nique is described. Some technical details of the calculations
are included in Appendices A and B. Section IV includes the

method to compute the coexistence curves from the analyti-
cal results, with details of the numerical procedure included in
Appendix C. Section V briefly summarize some details of the
Monte Carlo (MC) calculations, and Sec. VI includes descrip-
tions of all results. Finally, Sec. VII summarizes the paper and
provides some future perspectives.

II. THE KERN-FRENKEL MODEL

Consider a fluid formed by N particles in a volume V at
temperature T, and assume that they can be described by the
Kern-Frenkel model14 in its one-patch version (see Fig. 1),
where the orientation of the patch on each surface sphere 1
and 2 is identified by unit vectors n̂1 and n̂2, whereas the di-
rection connecting centers of spheres 1 and 2 are identified by
unit vector r̂12.

Two spheres of diameter σ attract via a square-well po-
tential of width (λ − 1)σ and depth ε if the directions of the
patches on each sphere are within a solid angle defined by
θ0, and repel each other as hard spheres otherwise. The pair
potential has the form

� (12) = φ0 (r12) + �I (12) , (2.1)

where the first term is the hard-sphere contribution

φ0 (r) =
{

∞, 0 < r < σ

0, σ < r
, (2.2)

and the second term

�I (12) = φSW (r12) � (n̂1, n̂2, r̂12) (2.3)

is the orientation-dependent attractive part which can be fac-
torized into an isotropic square-well tail

φSW (r) =
{

−ε, σ < r < λσ

0, λσ < r
, (2.4)

multiplied by an angular dependent factor

� (n̂1, n̂2, r̂12) =
{

1, if n̂1 · r̂12 ≥ cos θ0 and −n̂2 · r̂12 ≥ cos θ0

0, otherwise
. (2.5)

FIG. 1. The Kern-Frenkel potential in the case of a single patch. The surface
of each sphere is partionated into an attractive part (color code: green) and a
repulsive part (color code: red). Unit vectors n̂1 and n̂2 identify the directions
of each patch, whereas the unit vector r̂12 join the centers of the two spheres,
directed from sphere 1 to sphere 2. The particular case shown corresponds to
a 50% fraction of attractive surface (coverage χ = 0.5).

The unit vectors n̂i(ωi), (i = 1, 2), are defined by the spherical
angles ωi = (θ i, ϕi) in an arbitrarily oriented coordinate frame
and r̂12(�) is identified by the spherical angle � in the same
frame. Reduced units, for temperature T* = kBT/ε, pressure
P* = βP/ρ and density ρ* = ρσ 3, will be used throughout,
with kB being the Boltzmann constant. For future reference,
we also introduce the packing fraction η = πρ*/6. Two parti-
cles then attract if they are within the range of the square-well
potential and if their attractive surfaces are properly aligned
with each other, and repel as hard spheres otherwise.

The relative ratio between attractive and total surfaces is
the coverage χ that is related to the semi-angular width θ0 of
the patch. This can be obtained as

χ2 = 〈� (n̂1, n̂2, r̂12)〉ω1,ω2
= 〈�2 (n̂1, n̂2, r̂12)〉ω1,ω2

= sin4

(
θ0

2

)
, (2.6)
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where we have introduced the angular average

〈. . .〉ω = 1

4π

∫
dω . . . . (2.7)

III. BERKER-HENDERSON PERTURBATION THEORY

The Kern-Frenkel potential defined in Eqs. (2.1) and
(2.5), leads to the natural separation into a reference one (the
hard-sphere contribution) and an interaction term (the remain-
ing, angular dependent, part) that is usually requested by the
standard perturbation theory prescription.1, 2

The presence of the hard-sphere potential for the refer-
ence part further suggests the BH scheme12 as the most suit-
able one for the present model. This has also the additional
advantage that the free energy F0 for the reference system can
then be computed in several ways, as further discussed below.

The original scheme, due to Zwanzig,5 provided the first-
order and second-order terms within the canonical ensemble,
in the form of a high temperature expansion

β (F − F0)

N
= βF1

N
+ βF2

N
+ . . . , (3.1)

where the first term is proportional to 1/T*, the second to
(1/T*)2.

Although formally correct, it was noticed by Barker
and Henderson3, 4, 12 that the corresponding expressions were
not useful for finite systems and a grand canonical ensem-
ble derivation provided a much more convenient framework,
where the results for the canonical ensemble could be eventu-
ally obtained by a Legendre transformation.

To the best of our knowledge, the details of the computa-
tion for the second-order term were presented in Ref. 3 only
for isotropic potentials. As its generalization to angular de-
pendent potentials proves to be instructive, we have outlined
in Appendix A.

The first term poses no problem and is computed in
Eq. (A18). When the perturbation parameter γ = 1
and particularized to the Kern-Frenkel potential given in
Eqs. (2.1)–(2.5) it becomes

βF1

N
= 12η

σ 3

∫ λσ

σ

dr r2g0 (r) φSW (r) 〈β� (12)〉ω1,ω2
. (3.2)

Note that this term is negative because so is φSW(r).
The second term is much more involved, but one can ap-

ply the same procedure as the isotropic case,32 as detailed in
Appendix A. The result for the second term is reported in
Eq. (A19). As in the isotropic case, however, this derivation is
of little practical use in view of the presence of the three and
four point distribution functions.3 Barker and Handerson,12

devised then a simpler procedure to compute this term,
based on a discrete representation of the radial axis distribu-
tions. Again, the original procedure for spherically symmet-
ric potentials is extended to angular dependent potentials in
Appendix B.

The result for the second-order term is reported in
Eq. (B14). In the case of the Kern-Frenkel potential, it yields

βF2

N
= −6η

σ 3

(
∂η

∂P ∗
0

)
T

∫ λσ

σ

dr r2g0 (r) φ2
SW (r)

×〈[β� (12)]2〉ω1,ω2 , (3.3)

where P ∗
0 = βP0/ρ is the reduced pressure of the HS refer-

ence system in the Carnahan-Starling approximation.37

This result is identical to that reported in Ref. 32 for
a different radial part and it is known as macroscopic com-
pressibility approximation.12 Although the results given in
Eqs. (3.2) (first order) and (3.3) (second order) are somewhat
intuitive, being the natural extensions of the isotropic coun-
terpart, a detail analysis of their derivations is important as it
might help to improve a drawback of the method that will be
discussed at the end of Sec. IV.

IV. FLUID-FLUID AND FLUID-SOLID
COEXISTENCE CURVES

Once the reduced free energy per particle βF/N is known,
all thermodynamic properties can be derived. In particular, the
pressures and the chemical potentials can be derived from the
standard thermodynamic identities1

βP

ρ
= η

∂

∂η

(
βF

N

)
, (4.1)

βμ = ∂

∂η

(
η
βF

N

)
. (4.2)

The gas-liquid (fluid-fluid) and fluid-solid coexistence
curves are determined by the equality of the temperature,
pressure, and chemical potential in the two coexisting phases.
Since the two phases are in contact, the condition on the
equality of the temperature is always fulfilled. Thus, at fixed
temperature T*, we are left with the two conditions on the
pressure and chemical potential.

For the gas-liquid coexistence, the conditions are

P ∗
g (T ∗, ρ∗

g ) = P ∗
l (T ∗, ρ∗

l ), (4.3)

μ∗
g(T ∗, ρ∗

g ) = μ∗
l (T ∗, ρ∗

l ), (4.4)

where subscripts g, l indicate that the quantity is computed
in the gas and liquid phase, respectively. The solution of this
system of nonlinear equation gives ρ∗

g = ρ∗
g (T ∗) for the gas

coexistence branch, and ρ∗
l = ρ∗

l (T ∗) for the liquid coexis-
tence branch. The hard-sphere reference part of the free en-
ergy (in excess with respect to the ideal gas) is assumed to be
described by the Carnahan-Starling relation37

[
βF0

N

]
liquid

= 4η2 − 3η3

η (1 − η)2 . (4.5)

For the hard-sphere radial distribution function g0(r) part ap-
pearing in Eqs. (3.2) and (3.3) the Verlet-Weis19, 38 corrected
Percus-Yevick solution39, 40 is exploited. The details of the nu-
merical procedure are reported in Appendix C.
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A similar method can be applied to the fluid-solid transi-
tion, resulting into the conditions

P ∗
f (T ∗, ρ∗

f ) = P ∗
s (T ∗, ρ∗

s ), (4.6)

μ∗
f (T ∗, ρ∗

f ) = μ∗
s (T ∗, ρ∗

s ). (4.7)

All calculations assume that the solid phase retains the
crystal structure of the reference system, namely, the face-
centered cubic (fcc) lattice. It is possible, especially at low T
or low χ where anisotropy effects are more relevant, that fcc is
not the most stable solid for the model; our coexistence results
are still valid, although possibly relating to a metastable solid
phase. We used Wood’s equation41[

βF0

N

]
solid

= 2.1306 + 3 ln

(
η

1 − η/ηcp

)
+ ln

(
ρ�3

η

)
,

(4.8)

for the solid free energy of the reference hard-sphere part,
where ηcp = π

√
2/6 is the fcc volume fraction for closed

packing. For g0(r) in the solid phase, we use the orientation-
averaged pair distribution function of Kincaid and Weis.42

As a double check of the reliability of the numerical solu-
tion of Eqs. (4.6) and (4.7), the critical points were also com-
puted using the alternative, and more direct method, as a max-
ima of the Helmholtz free energy, that is, from the system

∂2

∂ρ∗2

(
βF

N

)
= 0, (4.9)

∂3

∂ρ∗3

(
βF

N

)
= 0. (4.10)

The solution provides T ∗
c and ρ∗

c and is consistent with previ-
ous results, as they lay exactly on the top of the coexistence
curves.

V. MONTE CARLO SIMULATIONS

Standard Monte Carlo (MC) simulations in the NPT and
in the grand-canonical (GC) ensembles have been imple-
mented to evaluate the equation of state and the density de-
pendence of the chemical potential for both the Janus and the
SW model. Translational and rotational moves consist of ran-
dom translation of ±0.1σ and random rotation of ±0.1 rad of
a randomly selected particle. In the GC study, insertion and
deletion moves have been attempted, in average, every 500
displacement moves. In NPT simulations, N = 500 particles
were investigated. In GC simulations box sizes were selected
in such a way that the number of particles in the simulation
box was would always larger than 500. Fluid-fcc coexistence
lines were calculated via Gibbs-Duhem integration,43 starting
from initial coexistence values at T* = 2 established via di-
rect coexistence methods.44 Since at infinite temperature the
KF model reduces to the hard sphere model, coexistence pres-
sures at T* = 2, a very high value for the KF model, were
searched for in the vicinity of the known HS values. We refer
the reader to Refs. 44 and 45 for the details of the procedures.
We point out that all NPT simulations of the fcc solid were

carried out in a cubic box to constrain the system to retain the
fcc arrangement also in cases where the preferred structure
would be a different one, possibly other lattices or a distorted
fcc. This choice was made to properly compare simulation re-
sults with the perturbation theory that assumes the cubic fcc
arrangement of the reference SW system.

VI. RESULTS

A. Equation of state and chemical potential

In order to assess the performance of perturbation theory,
we first compare results for pressure and chemical potential
as derived from the BH scheme outlined in Sec. III, with nu-
merical simulations.33–36 These values were further compared
with those derived in Refs. 33 and 34 from integral equation
(IE) theory within the reference hypernetted chain (RHNC),
following the method devised by Lado.46–48 In the square-well
case, integral equation values were taken from Ref. 49.

The results are shown in Figures 2 (pressure) and 3
(chemical potential), for two representative values of the cov-
erages, namely, the square-well (χ = 1) (top panels) and the
Janus (χ = 0.5) (bottom panels). In all cases, a value of
λ = 1.5 for the total extension of the well (in units of the
hard-spheres diameter), was selected in order to compare with
previous results.

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

βP
/ρ

ρσ3

(BH) kBT/ε=1.4
(MC) kBT/ε=1.4
(IE) kBT/ε=1.4

(BH) kBT/ε=1.2
(BH) kBT/ε=1.0
(MC) kBT/ε=1.0

0.0

1.0

2.0
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(MC) kBT/ε=0.90
(IE) kBT/ε=0.90

(BH) kBT/ε=0.70
(BH) kBT/ε=0.55
(MC) kBT/ε=0.55

FIG. 2. Reduced pressure βP/ρ as a function of reduced density ρσ 3 in the
case of a square-well fluid with coverage χ = 1 (top panel), and in the case
of a Janus fluid with coverage χ = 0.5 (bottom panel). A value of λ = 1.5
is used. Results from BH thermodynamic perturbation theory (BH) are com-
pared with Monte Carlo simulation (MC) and with RHNC integral equation
theory (IE). Different curves refer to different temperatures as shown.
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FIG. 3. Reduced chemical potential βμ as a function of reduced density ρσ 3

in the case of a square-well fluid with coverage χ = 1 (top panel), and in the
case of a Janus fluid with coverage χ = 0.5 (bottom panel). A value of λ

= 1.5 is used. Results from BH thermodynamic perturbation theory (BH) are
compared with Monte Carlo simulation (MC) and with RHNC integral equa-
tion theory (IE). Different curves refer to different temperatures as indicated.
The low-density ideal gas limit (light dashed line) is also depicted.

In the square-well case (top panels), the first selected
temperature kBT/ε = 1.4 corresponds to a temperature above
the critical temperature, while the last one kBT/ε = 1.0 is well
below (see Ref. 49 and references therein). In both cases, the
performance of the BH thermodynamic perturbation theory
is remarkably good, in agreement with previous findings on
the square-well potential.13 The dip in the curve for kBT/ε
= 1.0 indeed corresponds to the van der Waals loop typical
of the coexistence region. In the case of chemical potential
(Fig. 3), the ideal gas low density solution βμ = ln (ρσ 3) is
also reported for comparison. Interestingly, while both MC
simulations and RHNC integral equation theory converge to
the correct limit, the BH perturbation theory appears to under-
estimate the chemical potential in the whole range of densi-
ties. On the other hand, it provides the same quality results for
all temperatures, even in those regions where integral equa-
tion theory is known to experience difficulties.

Slightly less satisfactory results are obtained in the case
of a Janus fluid, as shown in the bottom panels of both
Figs. 2 and 3. Here, the two limiting temperatures kBT/ε = 0.9
and kBT/ε = 0.55 are both above the critical temperature,36 as
apparent from the absence of any loop in both the pressure
and the chemical potential. The Janus phase diagram, how-
ever, is known to be anomalous,35 as a result of a competition
with a micelle formation process that destabilizes the conden-

sation one.36 In this case the BH thermodynamic perturbation
theory (BH) does not show a well defined pattern as it over-
estimates the pressure for both temperatures (Fig. 2 bottom
panel), as well as the chemical potential for kBT/ε = 0.55,
but underestimates it for the higher temperature kBT/ε = 0.9
(Fig. 3 bottom panel). While it is known that the BH com-
pressibility approximation can be expected to display differ-
ent performances at different densities due the presence of
higher order terms,12 the above behavior is more likely to be
attributed to the anomalous behavior of the Janus phase di-
agram that perturbation theory cannot capture at the present
stage. In spite of this, the performance of BH thermodynamic
perturbation theory remains remarkable, especially in view of
the difficulties experienced by integral equation theories at
such low temperatures associated with low surface coverages.

B. The fluid-fluid coexistence

A very stringent test on the reliability of BH thermody-
namic perturbation theory stems from the calculation of the
fluid-fluid (gas-liquid) coexistence curves. This is depicted
in Figure 4 where the coexistence curves are computed by
BH thermodynamic perturbation theory (solid lines), and con-
trasted with results from Monte Carlo numerical simulations
(points), from Ref. 36. The considered coverages range from
χ = 1.0, corresponding to the SW fluid, to χ = 0.5, corre-
sponding to the Janus limit, and are identical to those consid-
ered in Ref. 36. As before, λ = 1.5 was assumed in all calcu-
lations. In the BH thermodynamic perturbation theory, further
coverages down to the hard-sphere limit were also computed.
In all cases, the critical points stemming from the BH calcu-
lations are also displayed as solid circles on the binodals.

The performance of the BH method appears to be re-
markably good. Both the vapor and the liquid branches of the
numerical simulations are closely followed by the BH cal-
culations, with an accuracy almost independent of the con-
sidered coverage, with the only exception of the Janus case
(χ = 0.5) that is however known to have an anomalous
behavior,35 as remarked. This is only apparently in contrast
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FIG. 4. The fluid-fluid coexistence curves as computed from BH pertur-
bation theory and compared against numerical simulations. Lines are from
perturbation theory, points from numerical simulations, for λ = 1.5 from
Ref. 36. All coverages from χ = 1.0 (SW case) to χ = 0.0 (HS case) are
depicted in the former case, whereas numerical simulations are in the range
0.5 ≤ χ ≤ 1.0, that is from the Janus to the SW limit.
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with results from chemical potential, reported in Sec. VI A,
where the BH results for chemical potential in the Janus case
appeared to be less precise than in the SW case. On the one
hand, a closer inspection reveals that BH results for each sin-
gle coverage do indeed show a small quantitative discrepancy
with the corresponding MC simulation, more or less uniform
in the entire density-temperature plane. On the other hand,
this latter feature constitutes an advantage in the method as a
numerical solution of Eq. (4.4) may provide accurate coexis-
tence lines if both the vapor and the liquid chemical potentials
have similar inaccuracies. This results are, nonetheless, com-
parable in accuracy with those stemming from RHNC integral
equation theory,33, 34, 49 with the additional advantage of a less
computational and algorithmical complexity and, more im-
portantly, of being able to access the critical region, including
the critical point, that is one of the main shortcomings com-
mon to all integral equation theories.

It is worth noticing how BH perturbation theory can pro-
vide an accurate prediction of the location of the coexistence
lines even below the Janus limit, that is for χ < 0.5, where ex-
tensive numerical simulations are so-far suggesting the fluid-
fluid transition to be inhibited by a micellization process.36

This could be useful for a future more focussed numerical cal-
culation within a limited region of the phase diagram where
BH theory predicts coexistence to occur.

C. The fluid-solid coexistence

Let us now turn to the fluid-solid coexistence, a calcula-
tion that has not been carried out so far for this model by any
method. As illustrated in Sec. IV and below, BH perturba-
tion scheme allows this analysis with an effort, both compu-
tational and algorithmical, comparable with that of the fluid-
fluid case.

In the isotropic SW case with λ = 1.5, the reference point
for this calculation are those obtained as early as in 1980 by
Young and Adler.50 Using molecular dynamics (MD), they re-
ported a detailed study of the different crystal structures (fcc,
hcp, and bcc) with the corresponding Helmholtz free energies,
thus arguing that fcc and hcp were the most stable structures
within the entire temperature-density plane. Additional nu-

0.0
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FIG. 5. Fluid-solid coexistence for the case of the SW potential (χ = 1.0)
with λ = 1.5. Results from Barker-Henderson (BH) perturbation theory
are contrasted with molecular dynamics (MD) data by Young and Adler
(Ref. 50).
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FIG. 6. Coverage dependence of the fluid-solid coexistence curves. Again λ

= 1.5 and considered coverages are from χ = 1.0 (SW case) to χ = 0.1 for
Barker-Henderson perturbation theory (lines) and from χ = 0.9 to χ = 0.5
(Janus) for Monte Carlo simulations.

merical simulations were later performed by Marr and Gast,51

Serrano-Illán and Navascués,52 and Kiselev et al.53 essentially
confirming this scenario. A very detailed study of the entire
phase diagram of the SW, was carried out by Liu et al.54

In Fig. 5, we report results from BH thermodynamic per-
turbation theory (solid line) along with results from Young
and Adler (circles).

While at high temperatures all calculations agree, dis-
crepancies start to appear on cooling away from the hard
spheres limit. In particular, the plateau appearing in the solid
branch of MD calculations indicates a fcc-fcc (or fcc-hcp)
transition that is not accounted for in BH calculations, that
assumed fcc structures all the way, although in principle it
could be done. In the BH calculations, in particular, the dif-
ficulty arises from the stability of the numerical scheme used
for the solution of Eqs. (4.6) and (4.7).

For lower coverages, no previous calculations on the
Kern-Frenkel model exist to compare with. Figure 6 illustrate
the coverage dependence of the fluid-solid coexistence lines
as computed from MC simulations (points) and from BH ther-
modynamic perturbation theory (lines). As in the fluid-fluid
case, MC simulations have been obtained up to the Janus fluid
(χ = 0.5), whereas BH theory provides results even below
that limit. Simulations below the Janus limit could be done,
but are computationally more demanding.

As in the SW case, even for lower coverages one might
expect a structural transition at a certain density. Even assum-
ing fcc to be the most stable structure, the range of the po-
tential associated with the value λ = 1.5 used here, allows a
fcc-fcc transition between one fcc with only nearest neighbors
bonded, and a more denser one with even the next-to-nearest
neighbors are bonded. This is associated with the jump in den-
sity that is present in some of the plots of Fig. 6.

VII. CONCLUSIONS

In this paper, we presented the first BH perturbative cal-
culation for the one-patch Kern-Frenkel model, and compared
with specialized MC simulations. The BH method hinges on
a second-order thermodynamic perturbation theory in the in-
verse temperature, allowing the calculation of the Helmholtz
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free energy within this approximation, and hence, of all
thermodynamic quantities, such as the density and temper-
ature dependence of pressure and chemical potential. A nu-
merical solution has then been implemented to infer the fluid-
fluid coexistence line (binodal) from the equality of pressure
and chemical potential in the vapor and liquid phase at a given
temperature. A similar procedure also provides the fluid-solid
transition.

When compared with numerical simulations, the BH pre-
dictions are found to be extremely reliable in the entire phase
diagram, and for all coverages from the isotropic SW poten-
tial to the lowest considered coverage (χ = 0.1) very close
to the hard-spheres limit. This constitutes one of the main ad-
vantages with respect to, in principle, superior and more ac-
curate theoretical methodologies hinging on integral equation
solutions, that are typically affected by the impossibility of
accessing the critical region, and by the numerical instabili-
ties occurring at low temperatures associated with low cover-
ages. Even at the quantitative level, BH results were found to
be competitive with integral equation theories, in agreement
with previous results on the isotropic SW fluid.

The performance of BH is particularly noteworthy for
coverages below the Janus limit, that is for χ < 0.5, the most
challenging region for numerical simulations in view of the
tendency for the particles to form single- and multi-layer clus-
ters always exposing the hard-sphere surface in the outer re-
gion in order to maximize favorable contacts. This mechanism
competes and destabilizes the condensation process and the
interpretation of numerical simulation results become more
and more obscure in that region. As a result, a clear sce-
nario suggested by numerical simulations in this region is still
missing. A better understanding could in principle be favored
by our BH results that provide a well defined and restricted
region of the temperature-density plane where indication of
possible coexistences could be sought for.

While in the present paper the BH method has been ap-
plied to a single patch Kern-Frenkel potential, the method
could potentially be extended to higher number of patches
with no difficulties. As a matter of fact, this has already been
done in Ref. 32 for two-patch colloids with Yukawa inter-
actions for the attractive part. An inspection of the relevant
Eqs. (3.2) and (3.3), however, suggest the result to be identi-
cal to the one-patch case at the same coverage. This means
that the BH method, in the present form, is not capable of
distinguishing between one and two-patches, at the same cov-
erage, a feature that, conversely, is accounted for in both nu-
merical simulations35, 36 and integral equation theory.33, 34 In
particular, it cannot then account for the anomalous behav-
ior present in the Janus limit of the single patch35 and not
present in the corresponding coverage (χ = 0.5) of the dou-
ble patches model.36 This is rather surprising in view of the
fact that a similar method, based on a low-density virial ex-
pansion, applied to a companion problem, was able to distin-
guish between single and double patches, albeit with a rather
poor estimate for the fluid-fluid transition.55 A promising ap-
proach in this respect appears to be the perturbative scheme
devised for molecular fluids by Gubbins and co-workers,2, 21

who considered an expansion in powers of the anisotropic
part of the potential, in a way akin to that discussed in

Appendix A, often supplemented by a Padé approximant to
improve the convergence of the expansion, as proposed by
Stell et al.58

We plan to investigate this and other points in details in
future work.
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APPENDIX A: THE SECOND ORDER
PERTURBATION THEORY

As explained in Ref. 3, the most correct way of develop-
ing a perturbation expansion is in the grand-canonical ensem-
ble. Assume a general potential of the form

Uγ (1, . . . , N) = U0 (1, . . . , N ) + γUI (1, . . . , N) (A1)

=
∑
i<j

�γ (ij ) =
∑
i<j

�0 (ij ) + γ
∑
i<j

�I (ij ) ,

where U0(1, . . . , N) = ∑
i< j�0(ij) is the unperturbed part and

UI (1, . . . , N ) = ∑
i<j �I(ij ) is the perturbation part. Here 0

≤ γ ≤ 1 is used as perturbative parameter, and each coordi-
nate i includes both the coordinate ri and patch orientation n̂i ,
so that i ≡ (ri , n̂i). Also, β = 1/(kBT) denotes the inverse of
the thermal energy.

Introducing the following short-hand notation

∫
1,...,N

(· · ·) ≡
∫ [

N∏
i=1

dri 〈(· · ·)〉ωi

]
(A2)

for the integration over all particle coordinates, the grand-
canonical partition function

Qγ =
+∞∑
N=0

eβμN

N !�3N
T

∫
1,...,N

e−βUγ = e−β�γ (A3)

(here �T is the de Broglie thermal wavelength, and �γ is the
grand-potential) can then be used to obtain an expansion of
the Helmholtz free energy

Fγ = F0 + γ

(
∂Fγ

∂γ

)
γ=0

+ 1

2!
γ 2

(
∂2Fγ

∂γ 2

)
γ=0

+ . . . (A4)

as follows.3

Taking the derivative of lnQγ at fixed chemical potential
μ, one has, using Eq. (A1)[

∂

∂γ
lnQγ

]
μ

= 1

2

∫
1,2

∂

∂γ
[−β�γ (12)]ργ (12) , (A5)

where

ργ (1 . . . h) = 1

Qγ

+∞∑
N=h

eβμN

(N − h)!�3N
T

∫
1,...,N

e−βUγ . (A6)
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The second derivative is somewhat more laborious,3 and one
obtains after some algebra

[
∂2

∂γ 2
lnQγ

]
μ

= 1

2

∫
1,2

∂2

∂γ 2
[−β�γ (12)]ργ (12)

+1

2

∫
1,2

(
∂

∂γ
[−β�γ (12)]

)2

ργ (12)

+
∫

1,2,3

∂

∂γ
[−β�γ (12)]

× ∂

∂γ
[−β�γ (23)]ργ (123)

+1

4

∫
1,2,3,4

∂

∂γ
[−β�γ (12)]

× ∂

∂γ
[−β�γ (34)][ργ (1234)

−ργ (12) ργ (34)] . (A7)

The free energy Fγ is then obtained by considering γ as
an additional thermodynamical variable, and by performing
the appropriate manipulations.3 One then has

Fγ = μN − kBT lnQγ , (A8)

N = kBT

[
∂

∂μ
lnQγ

]
γ

, (A9)

where, for notational simplicity, here we do not distinguish
between the canonical and grand-canonical number of parti-
cles N. Then

−kBT

[
∂

∂γ
lnQγ

]
ρ

=
(

∂�γ

∂γ

)
ρ

=
(

∂�γ

∂γ

)
μ

−
(

∂�γ

∂μ

)
γ

(
∂ρ

∂γ

)
μ

(
∂μ

∂ρ

)
γ

(A10)

and hence, using the chain rule(
∂ρ

∂γ

)
μ

(
∂γ

∂μ

)
ρ

(
∂μ

∂ρ

)
γ

= −1, (A11)

one gets

−kBT

[
∂

∂γ
lnQγ

]
ρ

= −kBT

[
∂

∂γ
lnQγ

]
μ

−kBT

[
∂

∂μ
lnQγ

]
γ

(
∂μ

∂γ

)
ρ

(A12)

that, with the help of Eq. (A9), leads to(
∂Fγ

∂γ

)
ρ

= −kBT

[
∂

∂γ
lnQγ

]
μ

, (A13)

where the right-hand-side is given by Eq. (A5).

For the second derivative, one proceeds as before, to
obtain(

∂2Fγ

∂γ 2

)
ρ

= −kBT

(
∂2

∂γ 2
lnQγ

)
μ

+kBT

[(
∂2

∂γ ∂μ
lnQγ

)]2

γ

/[(
∂2

∂μ2
lnQγ

)]
γ

.

(A14)

Using Eq. (A9) and the relation

∂

∂μ
= ρ

(
∂ρ

∂P

)
∂

∂ρ
, (A15)

one finds

−kBT

[
∂2

∂γ ∂μ
lnQγ

]

= ρ

(
∂ρ

∂P

)
∂

∂ρ

[
1

2

∂

∂γ
[−β�γ (12)]ργ (12)

]
. (A16)

Substituting in Eq. (A14), one finds(
∂2Fγ

∂γ 2

)
ρ

= −kBT

(
∂2

∂γ 2
lnQγ

)
μ

+ N

V 2

(
∂ρ

∂P

)

×
{

∂

∂ρ

[
1

2

∂

∂γ
[−β�γ (12)]ργ (12)

]}2

,

(A17)

where the first term on the right-hand side is given by
Eq. (A7).

The first and second order solutions, can be finally par-
ticularized to the potential form given in Eq. (A1), so that
Eqs. (A5) and (A13) lead to[

∂

∂γ
(βFγ )

]
γ=0

= 1

2
ρN

∫
dr12 〈β�I (12)〉ω1,ω2

g0 (12)

(A18)

and Eqs. (A7) and (A17) lead to(
∂2

∂γ 2
(βFγ )

)
γ=0

= −1

2
Nρ

∫
dr12〈[−β�I (12)]2〉ω1,ω2g0 (12)

−Nρ2
∫

dr12dr13 〈[−β�I (12)]

× [−β�I (23)]〉ω1,ω2,ω3
g0 (123)

−1

4
Nρ3

∫
dr12dr13dr14 〈[−β�I (12)]

× [−β�I (34)]〉ω1,ω2,ω3,ω4

× [g0 (1234) − g0 (12) g0 (34)]

+βN

(
∂ρ

∂P

){
∂

∂ρ

[
1

2
ρ2

∫
dr12

× 〈�I (12)〉ω1,ω2
g0 (12)

]}2

. (A19)
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APPENDIX B: THE BARKER-HENDERSON
DISCRETE REPRESENTATION

As in the spherically potential case, the above expres-
sions are, however, not very useful for practical computation,
due to the high complexity involved in the calculations of the
three g0(123) and four g0(1234) point correlation functions.

Following the original work by Barker and Henderson,
we return to the canonical partition function

Q = 1

N !�3N
T

∫
1,...,N

e−βU (1,...,N) = 1

N !�3N
T

Z = e−βF (B1)

that is related to the configurational partition function Z and
to the Helmholtz free energy F. The intermolecular distance
axis rij is divided in intervals (0, r1), (r1, r2), . . . , (rl, rl + 1),
. . . in such a way that there are Nl distances in the lth interval
(rl, rl + 1). The total potential U appearing in Eq. (B1) can
then be written as a sum over the different intervals with the
respective multiplicity

U (1, . . . , N ) =
∑

l

Nl� (rl, {�,ω}l) , (B2)

where �(rl, {�,ω}l) is the average potential in the lth interval
(assumed to be constant), and {�, ω}l are the set of orienta-
tional angles included in the same interval.

Again we assume that the potential can be split into a
hard-sphere part plus a tail

� (rl, {�,ω}l) = φ0 (rl) + �I (rl, {�,ω}l) . (B3)

Introducing the average over the unperturbed system hav-
ing Z0 as configurational partition function

〈. . .〉0 = 1

Z0

∑
N1,N2,...

∫
R

dr1 · · · drNe−β
∑

l Nlφ0(rl ) , (B4)

where the symbol R indicates that the integral is restricted to
configurations having Nl intermolecular distances in the in-
terval (rl, rl + 1), the Helmholtz free energy can be written in
terms of that of hard-spheres F0 as

βF = βF0 − ln〈〈e−β
∑

l Nl�I(rl ,{�,ω}l )〉{ω}〉0 . (B5)

Note that the angular average over the {�} variables is in-
cluded in the average (B4).

Use of the cumulant expansion

− ln〈e−λx〉 = λ〈x〉 − 1

2
λ2(〈x2〉 − 〈x〉2) + . . . (B6)

leads to

β (F − F0) = βF1 + βF2 + . . . , (B7)

where

βF1 =
∑

l

〈〈Nlβ�I(rl, {�,ω}l)〉{ω}〉0, (B8)

and where

βF2 = −1

2

∑
lm

〈〈NlNmβ�I(rl, {�,ω}l)

×β�I(rm, {�,ω}m)〉{ω}〉0. (B9)

As12

〈Nl〉0 = 2πρN

∫ rl+1

rl

drr2g0(r) , (B10)

the first order term becomes

βF1 = 1

2
ρN

∫
drg0(r)〈β�I(r,�, ω1, ω2)〉ω1,ω2 (B11)

that, of course, coincides with Eq. (A18).
For the second term (B9), an approximation is required

as the effect of three- and four-body interactions is included.
Following Ref. 12, we assume molecules in different intervals
to be uncorrelated

〈NlNm〉0 − 〈Nl〉0〈Nm〉0 = 0 l 
= m , (B12)

and the fluctuations within a given interval, being related to
the hard-spheres compressibility

〈
N2

l

〉
0 − 〈Nl〉2

0 = 〈Nl〉0 kBT

(
∂ρ

∂P

)
0

. (B13)

Substitution of Eqs. (B12) and (B13) into Eq. (B11), along
with Eq. (B10), leads to

βF2 = −1

4
kBTρN (

∂ρ

∂P
)0

∫
drg0(r)

×〈[β�I (r,�, ω1, ω2)]2〉ω1,ω2 , (B14)

which is the extension of the Barker-Henderson result12 to
angular dependent potentials.

APPENDIX C: DETERMINATION OF THE PHASE
COEXISTENCE CURVES

To illustrate how the phase coexistence curves are found
numerically, we consider in the following the phase sepa-
ration into a gas and a liquid phase; the fluid-solid coexis-
tence curve is determined correspondingly. Our aim is to solve
Eqs. (4.3) and (4.4) for the two unknown particle densities ρ∗

g

and ρ∗
l of the gaseous and liquidus phase, respectively. Us-

ing the common tangent construction, the concentration of
the density of the gaseous and liquidus phase can be found
geometrically.56 In practice, however, ρ∗

g and ρ∗
l is determined

numerically by solving Eqs. (4.3) and (4.4) simultaneously us-
ing a nonlinear root finding algorithm. To illustrate this pro-
cedure, we rewrite Eqs. (4.3) and (4.4) as

h1(ρ∗
g , ρ∗

l ) ≡ P ∗
g (T ∗, ρ∗

g ) − P ∗
l (T ∗, ρ∗

l ) = 0, (C1)

h2(ρ∗
g , ρ∗

l ) ≡ μ∗
g(T ∗, ρ∗

g ) − μ∗
l (T ∗, ρ∗

l ) = 0, (C2)

where we have introduced the functions h1(ρ∗
g , ρ

∗
l ) and

h2(ρ∗
g , ρ

∗
l ). Since T* is kept fixed in the following, we have

written h1 and h2 as function of ρ∗
g and ρ∗

l only. By defining

�x = (ρ∗
g , ρ

∗
l )t and �h = (h1, h2)t , where the subscript t denotes

the transposed matrix, our task of finding the concentrations
of the two coexisting phases at constant T* is expressed in the
form,

�h (�x) = 0 . (C3)

This set of two nonlinear integral equation with two unknown
variables is solved by using a well-tested implementation of
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the Newton-Raphson method,57 which solves Eq. (C3) itera-
tively as briefly described in the following. First, a start value
�x0 is chosen, and the gradient ∇�h(�x0) is calculated. The new
value �x1 is found by a downhill step,

�x1 = �x0 − J−1 �h(�x0) . (C4)

Here, J is the Jacobian matrix which incorporates the partial
derivatives of h1 and h2. This step is repeated, �x1 → �x2 → �x3

→ . . . , until the fix point �xn = �x∗ with

�h (�x∗) = �0 , (C5)

is found. It is important to note here that the root finding pro-
cedure requires the evaluation of �h(�x) at discrete points �xi

only. The nonlinear solver just steps down �h(�x) until Eq. (C3)
is fulfilled to a prescribed threshold. Since the evaluation of
�h(�x) at �x = �xi demands the calculation of several integrals,
see Eqs. (3.2) and (3.3), �h(�x) cannot be expressed in an an-
alytical form. Hence, the nonlinear solver calls a subroutine
which calculates both the free energy and its gradient for each
iteration step �xi . The free energy is evaluated using the Cheby-
shev quadrature and the derivatives in Eq. (C4) are calculated
using Ridder’s implementation of Neville’s algorithm.57

After having found the two coexisting densities ρ∗
g and ρ∗

l

at a given T*, this procedure is repeated for a set of temper-
atures to map out the gas-liquid coexisting curve. The fluid-
solid curve is calculated in exactly the same manner by equat-
ing the chemical potential and the pressure of the fluid and
solid phase, Eqs. (4.6) and (4.7), respectively.
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