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We report a numerical investigation of two colloids immersed in a critical solvent, with the aim of
quantifying the effective colloid-colloid interaction potential. By turning on an attraction between the
colloid and the solvent particles we follow the evolution from the case in which the solvent density
close to the colloids changes from values smaller than the bulk to values larger than the bulk. We thus
effectively implement the so-called (+, +) and (−, −) boundary conditions defined in field theoret-
ical approaches focused on the description of critical Casimir forces. We find that the effective po-
tential at large distances decays exponentially, with a characteristic decay length compatible with the
bulk critical correlation length, in full agreement with theoretical predictions. We also investigate the
case of (+, −) boundary condition, where the effective potential becomes repulsive. Our study pro-
vides a guidance for a design of the interaction potential which can be exploited to control the stability
of colloidal systems. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745479]

I. INTRODUCTION

Interactions between colloidal particles in dispersions de-
pend, beside the colloid coordinates, on the degrees of free-
dom of the solvent and of the co-solutes. When a clear sep-
aration in time and space scales between solvent molecules
and colloidal particles exists, it is possible to integrate out
the solvent (and co-solute) degrees of freedom and derive
an effective potential that describes the interaction between
colloids.1 A well known case is the depletion interaction de-
rived long time ago by Asakura and Oosawa2 which have
shed light on the role of entropic forces on the phase dia-
grams of colloidal suspensions. Depletion interactions arise
whenever small additives, such as polymers or surfactants, are
added to colloidal dispersions; when two colloids are closer
than the typical size of the co-solute, the latter is excluded
by a “depletion” region in between the two colloids. As a
result, a pressure gradient originates, giving rise to a short-
range entropy-driven attractive effective potential – the deple-
tion potential. Today we know that depletion forces can be
strong enough to induce colloidal phase separation,3–5 or to
enhance the stability of the crystalline phase, as in the case of
proteins.6, 7

An interesting effective potential is the one arising when
two colloids are dispersed in a critical fluid. Close to the criti-
cal point, thermal fluctuations of the order parameter are cor-
related over length-scales that are much larger than the solvent
size and their properties become independent of the micro-
scopic behavior of the system, i.e. they are universal. The con-
finement of the order-parameter fluctuations in between the
two colloids give rise to long-range effective forces, named
critical Casimir forces.8

In the last decade direct experimental evidence of such
forces has been found.9 Theoretical investigation of critical
Casimir forces, which started with the pioneering work of
Fisher and de Gennes10 back in 1978, has provided accurate

predictions for the radial dependence of the effective poten-
tial and the associated scaling properties. Such studies, capi-
talizing on the universality aspect of the problem, have been
mostly focusing on Ising model calculations11–14 and, more
recently, on a field theoretical approach for a classical binary
mixtures.15–19 The main result of these studies is the explicit
derivation of the critical Casimir potential for a solvent con-
fined between the surfaces of two large colloids:

β�(z) = σc

z
�(z/ξ ), (1)

where σ c is the colloid diameter and z is the distance between
the surfaces of the two colloids. The scaling function �(z/ξ )
depends on the distance from the critical point (via the corre-
lation length ξ ), on the bulk universality class of the solvent
and on the boundary conditions (BC) imposed by the colloidal
surface properties. It has been demonstrated15 that for z � ξ

� σ s (the latter being a measure of the solvent size), the be-
havior of the scaling function in Eq. (1) is

�(z/ξ )(±,±)(z/ξ � 1) = πA(±,±)(z/ξ )e−(z/ξ ), (2)

where the (±, ±) signs are related to different BCs, i.e., to
the different absorption preferences of the confining surfaces
with respect to the solvent: (+, +) or (−, −) corresponds to
symmetric BC and (+, −) (or equivalently (−, +)) to asym-
metric BC. Experimental results have shown that it is possi-
ble to generate repulsive and attractive critical Casimir forces
between a colloid and a substrate by modifying the BC of
the substrate.9 Moreover it has been shown that it is possi-
ble to continuously tune the force from attractive to repulsive
by producing a gradient in the physico-chemical properties of
the substrate.20 This can be exploited for inducing orientation-
dependent effective forces in colloids close to chemically pat-
terned surfaces.21, 22 Critical Casimir forces have also been
observed when the critical behavior of the host medium
refers not to the solvent itself but to the presence of small
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interacting co-solutes added in solution. If the inter-cosolutes
interaction becomes strong enough, a phase separation (the
analog of the gas-liquid) takes place in which the co-solutes
partition themselves in two phases of different concentration.
Close to the corresponding critical point, the critical fluc-
tuations in co-solute concentration generate critical Casimir
forces. Such mechanism has been exploited in the experimen-
tal study of Buzzaccaro et al.,18 in which PMMA colloidal
particles are dispersed in an interacting micellar solution. In
the same work, the authors presented an interesting connec-
tion between depletion forces generated by the presence of the
micelles far from the critical point and Casimir forces gener-
ated by the critical fluctuations close to the micellar critical
point.

Most of the theoretical and numerical investigations of
critical Casimir forces have been based on studies of lat-
tice models, exploiting the universality properties of the phe-
nomenon. In a recent study,23 we have reported a numerical
evaluation of the effective interaction potential between two
spherical hard-sphere colloidal particles immersed in a crit-
ical depletant, with the aim of exploring how the interaction
potential changes from the depletion shape occurring far from
the critical point, to the universal shape induced by critical
fluctuations close to the depletant critical point. In the study
we have modeled the depletant interaction as a short-range
square-well attractive potential. We have confirmed the criti-
cal nature of the effective potential close to the critical point
by showing that the quantity ξ entering in the effective poten-
tials (see Eq. (2)) is consistent with the bulk correlation length
of the critical co-solute extracted from the static structure fac-
tors. Interestingly enough, we have found that the strength of
the effective potential between the two hard-sphere colloids
(when the colloid-depletant interaction is only controlled by
excluded volume, and hence in the (−, −) BC class) is suffi-
cient to drive bulk phase separation of the colloidal solution
well before the critical region is approached.

In this article we explore the changes in the effective po-
tential when the colloid-cosolute interaction is continuously
modified from hard-core repulsion to strong attraction, con-
tinuously moving from the (−, −) to the (+, +) BC. We also
explore the interesting case in which (+, −) BC are present,
i.e., the case of two colloids interacting in different ways with
the co-solutes, again interpolating between the (−, −) and the
(+, −) limits on changing (this time only for one of the two
colloids) the colloid-cosolute interaction strength. We calcu-
late numerically the effective potential both at a high T, where
critical phenomena are absent as well as close to the co-solute
critical point.

II. MODELS AND METHODS

The total colloid-colloid interaction potential φCC results
from the sum of the bare colloid-colloid interaction VCC and
of the effective potential Veff arising from the integration of
the solvent and co-solute degrees of freedom,

φCC(r12) = VCC(r12) + Veff (r12). (3)

We model VCC as a excluded volume interaction between
two colloids of size σ c

VCC(r12) =
{∞, r12 < σc

0 r12 ≥ σc

. (4)

Inspired by the work of Buzzaccaro et al.,18 we model the
critical medium as a fluid of interacting co-solutes dispersed
in an implicit solvent. The co-solutes, of size σ s, interact via
a pairwise square-well potential (SW)

VSS(rij ) =

⎧⎪⎨
⎪⎩

∞, rij < σs

−εs, σs ≤ rij < (1 + δ)σs

0 rij ≥ (1 + δ)σs

, (5)

where εs controls the strength of the interaction and δ the rel-
ative (respect to σ s) width of the well. σ s and εs are cho-
sen as unit of length and energy. The temperature T is mea-
sured in units of εs. The co-solute is characterized by a gas-
liquid critical point located at (Tc = 0.478, φc = 0.25),24

where φc = (π/6)ρcσ
3
s is the critical packing fraction of the

co-solute and ρc is its number density. For this model, it has
been shown23 that the correlation length and the susceptibility
extracted from the static structure factors close to the critical
point diverge with a power-law with the respective Ising criti-
cal exponents. The size ratio q ≡ σ s/σ c between the co-solute
and the colloids is fixed at q = 0.1.

To evaluate the effective potential, we perform Monte
Carlo simulations of two colloids in a fluid of co-solute
particles, in the canonical ensemble at fixed T and ρs in a
parallelepiped-shaped box. The two colloids are constrained
to move only along the x axis, sampling only a limited range
of distances. Several overlapping relative distances windows
are simulated, evaluating for each window P(r), the probabil-
ity of observing the two colloids at relative distance r. Splic-
ing together the P(r) evaluated in different windows provides
an effective (and parallel) way for evaluating the entire P(r).
The logarithm of P(r) is by definition the effective poten-
tial (apart from an overall constant which is fixed imposing
Veff (∞) = 0). To minimize finite-size effects at the temper-
atures investigated, the dimensions of the box (Lx; Ly; Lz)
are chosen in such a way that the surface-to-surface colloidal
distance evaluated via the boundary conditions is more than
twice the distance over which the effective potential goes to
zero. Moreover, along all directions, the solvent density pro-
file reaches a constant value on approaching the box bound-
aries. Close to the critical point and along the critical isochore,
the size of the box is [Lx = 52; Ly = 26; Lz = 26], requiring
16 000 co-solute particles. The bulk density is estimated a
posteriori by calculating the local density far from the two
colloids.

We also evaluate the co-solute density profile for differ-
ent BC by selecting a volume centered along the x axis of
transversal section equal to σ 2

s and we average the local den-
sity with a mesh of the order of 0.1σ s.

In this paper, when discussing the critical behavior, we
will show results for effective potentials and density profiles
evaluated at the critical packing fraction and at the reduced
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temperature T/Tc = 1.0251, corresponding to a critical corre-
lation length ξ = 2.5σ s.23

III. RESULTS

A. (−, −) BC

In our previous work23 we have discussed the evolution
of the effective potential when the interaction between the
colloids and the solvent VCS are treated as hard-spheres. In
such condition, close to the colloid surface, the density of the
solution is smaller than the average, effectively generating a
(−, −) BC. We have shown that close to the critical point,
Veff is long-ranged, signaling the onset of criticality. Its ra-
dial dependence is well described by the exponential decay of
Eq. (1), with the same characteristic length ξ of the bulk crit-
ical fluctuations.

To get more insight into the mechanism which drives
attraction between colloids close to the critical point in the
(−, −) BC case, we show in Fig. 1 the co-solute density
profile along the horizontal x axis for two different relative
colloid-colloid distances. Notice that the two colloids are al-
ways located symmetrically with respect to the origin. Thus
the density profile is symmetric with respect to x = 0. For this
reason in Fig. 1 we show only the positive x region. In be-
tween the two colloids, the density is significantly lower than
the bulk density, a typical depletion effect. Outside, the den-
sity relaxes toward the bulk value with an exponential decay,
again controlled by the bulk critical correlation length. It is
interesting to discuss the physical origin of the net attractive
force between the two colloids. Since the co-solute colloid in-

FIG. 1. Normalized co-solute density profiles with respect to the bulk density
ρ0 along the horizontal x axis at T/Tc = 1.0251 and at the critical density φc

= 0.2501. Co-solute particles interact with a short-range SW attraction while
colloid-cosolute interaction is modeled with a HS repulsion. The two profiles
are evaluated for two different colloid-colloid distances, namely for r = σ c

+ 3σ s and r = σ c + 4σ s, with σ c = 10σ s. The box is centered at x = 0
and the two colloids are centered at ±r/2 along the x axis. Being the profiles
symmetric with respect to x = 0 only positive x are shown here. Note that
each colloid excludes the solvent in a region equal to σ c + σ s. The dashed
lines highlight the mismatch in the density at contact between the inner and
outer side of the colloid. The inset shows that the outer part of the density
profile is well fitted by an exponential ρ = ρ0 + Aexp (−r/ξ ), where ξ has
been fixed to ξ = 2.5σ s, i.e., to the bulk critical correlation length value for
T/Tc = 1.0251 at φc. In this case the fit parameter A < 0.

teraction is modeled via an hard-sphere potential, it is possi-
ble to prove that the effective force results from the mismatch
in the contact density along the two sides of each colloid.
Figure 1 shows that indeed, at contact, the density outside is
slightly larger than inside. The figure also shows that the mis-
match decreases on increasing the relative distance between
the two colloids in parallel with the decrease of the effective
force.

B. From the (−, −) to the (+, +) BC

To drive the transition from (−, −) toward (+, +) BC
we tune the strength of a short-range attraction in the colloid-
cosolute interaction VCS . The attraction gives rise to an en-
hanced accumulation close to the surface of the colloids, at
first compensating and then inverting the depletion character-
istic effect of the excluded volume interaction.25, 26

We model the attraction via a pairwise SW potential

VCS(rij ) =

⎧⎪⎨
⎪⎩

∞, r < σcs

−ε, σcs ≤ r < σcs + �σs

0 r ≥ σcs + �σs

, (6)

where σ cs = (σ s + σ c)/2 and � = 0.35. The width �σ s has
been chosen as a compromise between limiting the colloid-
cosolute interaction to the nearest-neighbor shell and maxi-
mizing the volume over which co-solute bind to the colloid.
The parameter ε is used as control parameter to drive the
cross-over from the hard-sphere like behavior (ε → 0) to the
wetting case ε/kT � 1).

We start by discussing the behavior of the effective poten-
tial at high T, where critical phenomena are not present. The
evolution of the effective potential upon changing ε is shown
in Fig. 2. When ε = 0, the well known depletion interaction
potential is observed. On increasing ε, the depletion attrac-
tive interaction is progressively weakened, and the potential at
contact becomes repulsive. For even large ε values, the colloid
becomes surrounded by a persistent layer of co-solutes which
extent the effective radius of the colloid, making it impossible
to attract a neighboring colloid for distances closer than
σ c + σ s.27 Under such strong coupling conditions, the effec-
tive potential acquires an oscillatory character, with minima
originating from the preferential distances allowing for an in-
teger number of co-solute layers between the colloids. The
configuration associated to the first minimum, called bridging,
is the most energetically favorable since one co-solute parti-
cle is bonded with both colloids. The other minima are related
to particular configurations in which bridging is obtained by
particle chains. A sketch of such situation is shown in Fig. 2.
The intermediate maxima occur when the co-solute particles
(or particle chains) are not bonded to both colloids. For ex-
ample the first maximum corresponds to a situation, also il-
lustrated in Fig. 2, in which a single co-solute particle can-
not be bonded to both colloids, since r > σ s. The evolution
of the effective potential reported in Fig. 2 clearly show how
the minimum at contact progressively turns into a maximum,
and simultaneously a new minimum develops at the bridg-
ing distance. Intermediate values of ε thus provide a viable
mechanism for contrasting depletion interaction and favoring
colloidal stability. The case ε = 0.5 is emblematic, since the
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FIG. 2. Effective potential for two large colloids interacting through a hard-
core repulsion at T/Tc = 2.09 and φ = φc = 0.25. Colloids are in solution
with co-solute particles interacting (among themselves) via a SW attraction
of width δσ s = 0.1σ s and depth εs. The two colloids interact with co-solute
particles via a SW attraction of width �σ s = 0.35σ s and depth ε. Sketches
in the figure represent particular configurations adopted by the co-solute for
different colloid-colloid distances. Such configurations give rise to maxima
and minima in the potential.

minimum at contact has essentially disappeared while the new
minimum at distance 1.1σ c has not yet developed, such that
the effective potential is never (in absolute value) significantly
larger than kBT. For very large ε values, Veff becomes again
sufficiently intense to drive a colloid phase separation.

Close to the critical point, critical Casimir forces add
to the standard effects described before. Differently from
the pure (−, −) case, the presence of an attractive interac-
tion between the colloid and the solvent brings in two new
features that are distinguishable for medium and large val-
ues of ε: a repulsive contribution to the effective potential
at short distances and the presence of oscillations induced
by the granularity of the co-solutes. The theory on critical
Casimir forces predicts that at distances larger than ξ the
effective potential develops an attractive exponential tail, so
that the effective potential behaves the same for the (−, −)
BC and the (+, +) BC cases. Figure 3 shows how the ef-
fective potential evolves on increasing the value of ε. As
expected the contact value becomes repulsive but the long
tail behavior remains always attractive and has the same
exponential character of the ε = 0 case.23 Even for large
values of ε, where the same oscillations characterizing the
high T effective potentials modulate the shape, the over-
all behavior can be represented by an exponential function.
The density profile for the (+, +) case is shown in Fig. 4.
Close to the colloidal surfaces a significant layering of the
co-solutes is observed, consistent with the presence of oscilla-
tions in Veff (r). On the external sides, beyond the oscillations,
the density decays again with an exponential shape controlled
once more by ξ . In comparison with the (−, −) case, the re-
sulting interaction between the two particles is more difficult
to visualize, since it arises from the competition between the
density at contact (in which the solvent pushes the colloid)
and the density at the well boundary (where the solvent at-
tracts the colloid). Indeed, in the case of a colloid of diameter
σ c interacting via square-well interaction with solvent parti-

FIG. 3. Effective potential of two large colloids close to the critical point of
the co-solute (T/Tc = 1.0251 and φ = φc = 0.25). The two colloids inter-
act with co-solute particles via a SW attraction of width �σ s = 0.35σ s and
depth ε. The two colloids have therefore (+,+) BC. The increase of the attrac-
tion strength gives rise to large oscillations associated to bridging effects as
discussed in Fig. 2.

cles, the pressure orginates from the two points of disconti-
nuity of the potential, the colloid-cosolute hard-wall distance
(HWD) and the square-well distance (SWD) σ cs + �σ s, ac-
cording to the expression28

βP ex

ρ
= 2

3
πρ

[
σ 3

csg(σ+
cs )

− (σcs + �σs)
3g(σcs + �σ−

s )(1 − eβu0 )
]
, (7)

FIG. 4. Normalized co-solute density profile with respect to the bulk density
ρ0 along the horizontal x axis at T/Tc = 1.0251 and at the critical density φc

= 0.2501. Co-solute particles interact with a short-range SW attraction of
width δσ s = 0.1σ s and depth εs while colloid-cosolute interaction is modeled
with a SW interaction of width �σ s = 0.35σ s and depth ε = 1εs. The box
is centered at x = 0 and the two colloids are centered at ±r/2 along the x
axis. Being the profile symmetric with respect to x = 0 only positive x are
shown here. Note that each colloid excludes the solvent in a region equal to σ c

+ σ s. The dashed segments highlight the mismatch in the density at contact
(HWD) and at the well boundary (SWD) between the inner and outer side
of the colloid. The profile is associated to the effective potential in Fig. 3
(squares). As for Fig. 1, the criticality of the co-solute can be caught from
the exponential decay of the density outside the colloids towards ρs(x)/ρ0
= 1. The exponential fit shown in the figure (solid line), has been performed
by fixing the exponential decay with the value of the bulk critical correlation
length for the temperature and density investigated, i.e., ξ = 2.5σ s.
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where g(σ cs) is the pair correlation function evaluated at the
HWD and g(σ cs + �σ s) at the SWD. From Eq. (7) one can
notice that the density at the hard-wall generates a positive
contribution to the pressure, while the density at the well
boundary provides a negative contribution. Figure 4 shows
that indeed the density at the SWD inner side (left side of
Fig. 4) is significantly higher than the density at the SWD
outer side (right side of Fig. 4), and it is responsible for the
resulting net attractive force between the two colloids. Indeed,
the excluded volume contribution in this case would tend to
separate the two colloids, being the contact density outside
slightly larger than the contact density inside.

C. From the (−, −) to the (+, −) BC

We now discuss the situation in which one of the two col-
loids (C1) interacts with the co-solute through a square-well
attraction (VC1S(r1i)) while the other colloid (C2) experiences
only excluded volume interactions VC2S(r2j ). More precisely

VC1S(r1i) =

⎧⎪⎨
⎪⎩

∞, r1i < σcs

−ε, σcs ≤ r1i < σcs + �σs

0 r1i ≥ σcs + �σs

(8)

and

VC2S(r2j ) =
{∞, r2j < σcs

0 r2j ≥ σcs.
(9)

Also in this case we start investigating a T significantly
larger than the critical one for different interaction strengths
ε. The results are shown in Fig. 5.

The trend is similar to the one observed going from (−,
−) to the (+, +) case; (i) the contact value of the effective
potential grows continuously on increasing ε, progressively
offsetting the original ε = 0 depletion interaction. Still, the
strength of the repulsion is significantly smaller than the one
observed in the (+, +) case. (ii) only weak oscillations (with

FIG. 5. Effective potentials for two large colloids interacting through a hard-
core repulsion at T/Tc = 2.09 and φ = φc = 0.25. Co-solute particles, in
solution with the two colloids, interacts (among themselves) through a SW
attraction of width δ = 0.1σ s and depth εs. One of the two colloids (C1)
interact with co-solute particles via a SW attraction of width � = 0.35σ s and
depth ε. The other colloid(C2) has instead a HS repulsion with the co-solute.

FIG. 6. Evolution of the effective potential of two colloids close to the crit-
ical point of the co-solute (T/Tc = 1.0251 and φ = φc = 0.2501). One of
the two colloids (C1) interacts with co-solute particles via a SW attraction of
width � = 0.35σ s and depth ε. Different curves refer to different values of ε.
The other colloid (C2) interacts via a HS repulsion with the co-solutes. This
setting provides a realization of (+, −) BC.

amplitude smaller than kBT) characterize the radial depen-
dence of the effective potential, signaling the absence of a
strong layering of the co-solute between the colloids. We no-
tice that similar features have also been observed in the case
of non-additive HS mixtures.29, 30

Close to the critical point, the theory predicts that, on in-
creasing ε, Veff changes from an attractive to a repulsive ex-
ponential decay, on changing the boundary conditions from
(−, −) to (−, +). The effective potentials for different ε close
to the critical point are plotted in Fig. 6. While for r < 1.3σ c

the echo of the layering effects is still visible, for larger r val-
ues the decay of all curves is compatible with the same ex-
ponential function decay, again supporting the identification
of the interaction potential in this spatial region as arising
from the universal behavior imposed by the critical fluctua-
tions. As in the case of (−, −) BC, for (+, −) BC the density
profile provides useful informations on the mechanism that
gives rise to the repulsion. Figure 7 shows the co-solute parti-
cles density profile along the x axis. The different colloid-co-
solute interaction results in a different density profile around
the two colloids. Around C2 (−BC), the solvent density is
lower than the average, while the opposite behavior is ob-
served for C1 (+BC). The repulsive force on C2 originates
from the slight mismatch of the contact density (larger inside
than outside), while the repulsive force on C1 originates from
larger density at the SWD on the outside, compared to the
inside. Contrary to what observed in the (−, −) to (+, +)
BC case, here tuning the attraction strength allows us to
modify the sign of the effective force.9 In fact we observe
that for small ε the effect of the colloid-cosolute attraction
is not sufficiently strong to substantially change the shape
of the effective potential, which remains completely attrac-
tive. For higher values of ε the potential turns into a com-
pletely repulsive one and no sign of oscillations driven by
co-solute structures is visible. It is interesting to note that
under these conditions it is in principle possible to tune
finely ε in order to obtain a flat co-solute density profile
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FIG. 7. Normalized co-solute density profile with respect to the bulk density
ρ0 along the horizontal x axis at T/Tc = 1.0251 and at the critical density
φc = 0.2501. Co-solute particles interact with a short-range SW attraction
of width δ = 0.1σ s and depth εs. One of the two colloids (C1) interacts
with co-solute particles via a SW attraction of width � = 0.35σ s and depth
ε = 1εs. The other colloid (C2) interacts via a HS repulsion with the co-
solute. The profile is associated to the effective potential in Fig. 6 (squares).
The different colloid-cosolute interaction results in a different density profile
around the two colloids. Around C2 (colloid on the right), the solvent density
is lower than the average, while the opposite behavior is observed on C1 (col-
loid on the left). The repulsive force on C2 colloid originates from the slight
mismatch of the contact density (larger inside than outside), while the repul-
sive force on C1 originates from larger density at the square-well location on
the outside, compared to the inside. The exponential fits (solid lines) have
been done by setting the exponential decay to the value of the bulk critical
correlation length ξ = 2.5σ s.

(apart from the layering at contact). This corresponds to im-
pose Dirichlet BC12 and from a conceptual point of view
to identify a sort of � condition, in analogy with polymer
solutions,1 where the effective interaction potential is close to
zero.

FIG. 8. Evolution of the effective potential for two colloids close to the crit-
ical point of the co-solute (T/Tc = 1.0251 and φ = φc = 0.2501). One of
the two colloids (C1) interacts with co-solute particles via a SW attraction
of width � = 0.35σ s and depth ε1 = 1.0εs. The other colloid (C2) interacts
with the co-solute through a SW attraction as well with the same width � but
depth ε2. Starting from ε2 = ε1, i.e. (+, +) BC, the interaction strength ε2 is
decreased down to the limit case of ε2 = 0 corresponding to (+, −) BC. Con-
trary to the case illustrated in Fig. 6, here only the long distance tail can be
tuned from attractive to repulsive, while the short range part of the potential
remains repulsive.

FIG. 9. Effective potentials for different BC, evaluated at the co-solute crit-
ical packing fraction and at T/Tc = 1.0251. In the critical region, indepen-
dently on the BC, the long range part of the effective potential decays ex-
ponentially. According to Eq. (1) it is possible to extract the characteristic
length that controls the decay of the exponential. To extract this value the
three curves have been interpolated in the same range with Eq. (1) start-
ing from r = 1.3σ c. For the three cases we find ξ (−, −) = 2.24σ s, ξ (+, +)
= 2.49σ s, ξ (+, −) = 2.20σ s which is consistent for the bulk correlation length
ξ = 2.5σ s of the co-solute for this T/Tc.23 The non universal amplitudes
found from the exponential fits are A(−, −) = −0.63, A(+, +) = −0.45, A(+, −)
= 0.48.

D. From (+, +) to (+, −) BC

According to theoretical predictions15 the effective po-
tential is expected to change in the transition from (+, +) to
(+, −) exactly as in the case from (−, −) to (+, −). These
predictions refer to the scaling region of the potential. In the
present numerical study, we also access the short distances,
where the effective potential probes the non-universal aspects
of the solvent-colloid interaction. To highlight the difference
at short distances between the two cases, Fig. 8 shows the evo-
lution of the effective potential when the attraction between
only one of the two colloids and the co-solute is progressively
reduced. Differently from the results of Fig. 6, in this case
only the long distance behavior changes sign, while the short
distance part of the potential remains always repulsive. Fi-
nally in Fig. 9 we plot cases differing in their BCs, but all
at the same temperature and co-solute critical packing frac-
tion. In all cases, the long-distance behavior of Veff can be
described, as expected theoretically, by an exponential decay,
with a correlation length consistent with the bulk critical cor-
relation length ξ .

IV. CONCLUSIONS

In this article we have discussed how the effective po-
tential, resulting from confining critical co-solute particles
between the surfaces of two large colloids, depends on the
colloid-cosolute interaction. In a previous study23 we have
already investigated the case of (−, −) BC, i.e. when only
colloid-cosolute hard-core repulsion is present. In such case
we have shown that the resulting potential for T/Tc → 1 at
the co-solute critical packing fraction is monotonic, attrac-
tive, and long range. The co-solute density profile along the
x axis of the simulation box shows that for (−, −) BC the
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density close to colloids is lower than the bulk density and
it relaxes exponentially to the bulk value far from the two
colloids. Upon switching on the colloid-cosolute attraction
ε, depletion effects are progressively weakened and the co-
solute density close to the colloid varies from values smaller
than the bulk to values larger than the bulk. Correspondingly,
the contact value of the potential varies from negative to pos-
itive while the long-distance part of Veff (r), dominated by
critical fluctuations, remains always attractive as theoretically
predicted in the (+, +) BC case. The increase in ε has in-
stead a profound effect on the non-universal short-distance
part of the potential, which progressively develops large os-
cillations. Such oscillations are related to specific geometries
at characteristic lengths associated to integer number of co-
solutes between the two colloids. At these specific distances,
the local energy is minimized. For intermediate values of ε

the colloid-cosolute attraction compensates the depletion in-
teraction, effectively reducing the short-distances interaction
potential. We have also addressed the case of two colloids in-
teracting differently with the co-solutes, a realization of the
so-called (+, −) BC. In this case, the local density close to
the two colloids is respectively lower and higher than the bulk
value and the critical Casimir forces are expected to be repul-
sive. We have shown that indeed, when the asymmetry in the
interaction potential is sufficiently intense to drive different
BC, the potential becomes repulsive at all length scales. We
have shown that, independently on the BCs, the critical long
range part of the effective potential is always described by
an exponential whose decay is controlled by the critical cor-
relation length ξ describing the thermal correlation length of
the bulk co-solute close to the critical point, in full agreement
with theoretical predictions.15 We have investigated the be-
havior of the density profile in all examined BC cases. Build-
ing on the fact that all interactions are modeled as excluded
volume or as square-well attraction, the net pressure over the
colloids can be estimated simply by the density of co-solute at
contact and at the square-well distance (in the case of attrac-
tion between the colloid and the co-solute). The density pro-
files confirm that in the (−, −) case, the contact density inside
is smaller than outside, determining the net attraction. In the
(+, +) case a different mechanism for attraction is observed:
the leading contribution arises from the mismatch of the den-
sity at the well distance, larger inside than outside, determin-
ing a net attraction. Finally, in the (+, −) case, repulsion is
driven by two different mechanisms for the two colloids. The
hard-sphere colloid is pushed out by the larger contact density
inside. The attractive colloid is dragged out by a larger density
at the square-well distance.

The possibility of varying the potential from repulsive to
attractive and to finely control its shape and intensity by tun-
ing the BC, provides a guidance for controlling equilibrium
properties of colloids dispersed in precritical suspensions.
This is important for future applications, for instance in the
case in which the confining surfaces are chemically patterned

colloidal particles, such as patchy31 or Janus particles.21, 32 In
this case, the introduction of a geometrical constraint in the
colloid-cosolute interaction would give rise to a torque that
can be used to control the orientation of colloids, as shown for
chemically patterned substrates,22 and that could give rise to
new unexplored phases. More in general, our results provide
useful informations for designing interaction potentials which
can be exploited to control the stability of colloidal systems.33
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