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Abstract
We compute the equilibrium phase diagram of two simple models for patchy particles with
three and five patches in a very broad range of pressure and temperature. The phase diagram
presents low-density crystal structures which compete with the fluid phase. The phase diagram
of the five-patch model shows re-entrant melting, in analogy with the previously studied
four-patch case, a metastable gas–liquid critical point and a stable, high-density liquid. The
three-patch model shows a stable gas–liquid critical point and, in the region of temperatures
where equilibration is numerically feasible, a stable liquid phase, suggesting the possibility that
in this small valence model the liquid retains its thermodynamic stability down to the vanishing
range limit.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigations of the collective behaviour of patchy colloidal
particles [1–3] are expected to grow in the near future,
when the newly synthesized colloidal particles with patterns
of sticky patches on their surfaces will be produced in
large quantities [4–6]. Recent developments in colloidal
science are indeed starting to provide particles with specific
directional interactions [7–11], opening the way to the
study of structures (micelles [9], wires, sheets [12] or two-
[11], and three-dimensional crystals) arising from their self-
assembly. In addition to the experimental studies, several
groups [13–20] are nowadays working on developing effective
potentials for patchy colloids, with different levels of accuracy.
Numerical and theoretical studies of these models are not
only providing a wide picture of the possibilities offered
by these particles but also revealing some unexpected novel
phenomena arising from the possibility of controlling the
potential asymmetry [13, 21–23]. A significant effort is
in the direction of evaluating the phase diagram [13], the
possible crystal structures [16], the competition with kinetic
bottlenecks [18, 24] which bring the system into non-ergodic
states (gels or glasses), as well as some fundamental problems

such as the onset of gas–liquid criticality [13, 15, 23] or the
essence of the gel state [24, 25].

One of the directions which is receiving significant
attention is the investigation of the crystal structures in patchy
colloids. This is not a coincidence, since colloidal crystals
are expected to find application in several technological
applications. Recent experimental [11] and numerical [26]
studies have focused on the crystallization of two-patch
particles in two dimensions in the exotic kagome structure.
Several other studies [27–30] have been devoted to the
possibility of self-assembling diamond crystal, one of the
structures which is predicted to have an optimal photonic
band gap in visible light [31]. In this specific case, the
self-assembly of particles with four patches disposed on a
tetrahedral geometry has been investigated. It has been shown
that when the angular patch width is smaller than about 30◦, the
particles crystallize (in computer simulations) in a tetrahedral
open structure, while for wider patches crystallization is pre-
empted by the formation of an arrested state.

In this paper we investigate the phase diagram of
particles with three and five patches, modelled via the Kern–
Frenkel [32] potential. This potential, introduced originally to
assess the dependence of the gas–liquid critical point on the
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number, range and width of the patches, has been thoroughly
investigated in recent years [21, 23, 26–28, 33, 34]. Within this
model it is indeed possible to independently control, for each
patch, the range and angular width, offering the possibility
of investigating the different roles of these parameters in the
self-assembly process. In addition, this model provides a
good description of the interaction potential for the Janus and
triblock Janus particles, recently investigated by the group of
Granick [11], as shown in [26].

The results reported in this paper, combined with the
previously published data for patchy particles with four
patches [27, 28, 30], as well as with the well known
tendency of six-patch particles to crystallize in a simple
cubic crystal [35, 36], offer the possibility of extracting some
general trends of the stability of the liquid phase with valence
(the analogue of the previously investigated stability of the
liquid phase with interaction range [37–39]). The results for
the Kern–Frenkel model presented here (for a fixed angular
width of the patches and a short range) suggest that a stable
gas–liquid coexistence progressively emerges on reducing the
valence. A stable liquid phase can indeed exist for three-
patch particles down to very small temperatures, favoured by
the absence of an open truly three-dimensional crystal of fully
bonded particles. Finally, we provide an assessment of the role
of the range in the stability of the liquid.

2. Model

We study the Kern–Frenkel [32] model for particles with three
and five patches. In the first case, three directionally attractive
sites (patches) are placed along the equator of a hard sphere.
Each patch forms an angle of 120◦ with both the others. In
the five-patch case, two additional patches are located on the
north and south poles. A sketch of the particles is shown in
figure 1. The two-body potential is written as a product of a
square-well potential uSW and a function that depends solely
on the orientations of the patches (defined via the orientation
of particle i , �i ):

u(ri j) = uSW(ri j) f ({�i ,� j}), (1)

where

uSW(ri j) =

⎧
⎪⎨

⎪⎩

∞ r � σ

−u0 r � σ +�

0 r � σ +�.

(2)

The function uSW(ri j) is a square-well potential of
attractive range� and depth u0, while the modulating function
f is defined as follows. Let ûαi be the normalized vector that,
starting from the centre of the particle i , points towards the
interaction site labelled by α (ranging from 1 to the number
of patches) on its surface, and r̂i j be the normalized vector
connecting the centres of particles i and j . The function f
reads

f (�i ,� j )

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if

⎧
⎪⎨

⎪⎩

r̂i j · ûαi > cos(θmax) for any α

and

r̂ j i · ûαj > cos(θmax) for any α
0 otherwise.

(3)

Figure 1. Graphical representation of a three-patch particle (left) and
a five-patch particle (right) as described by the Kern–Frenkel model.
The hard sphere is drawn in white while the attractive patches are in
blue.

Then, to form a bond, two particles must be within the square-
well range and each particle must have a patch that forms
an angle smaller than a maximum angle θmax with the vector
connecting the centres of the two particles. In this study, for
both the three-patch model and the five-patch model the radial
interaction range δ is fixed to 0.12σ and cos(θmax) is fixed at
0.92. This choice of δ and θmax ensures that each patch can be
involved in no more than a single bond [40], so that the ground
state potential energy per particle is fixed at ugs = −Mu0/2,
with M the valence of the model (i.e. the number of patches).

In the following, we use reduced units with σ = 1 and
u0 = 1, temperature T is measured in units of u0/kB (where
kB is the Boltzmann constant), number density ρ in units of
σ−3 and pressure P in units of u0/σ

3.

3. Numerical calculations of phase diagrams

The numerical procedure for computing phase diagrams
of anisotropic potentials is a well-established one; many
examples of phase diagrams of anisotropic particles can be
found in the literature [28, 36, 41, 42]. As in previous work,
we refer to the review of Vega et al [43] for the details of the
computations; here we shall only give a list of the procedures
undertaken.

Computation of phase diagrams requires a combination
of techniques, starting with a guess of the possible
thermodynamic phases that will be found to be stable.
Although several techniques aimed at guessing the stable
crystal structures at low temperatures have been recently
proposed [44–46], due to the simplicity of the model studied
here we selected the crystal structures to be investigated with
simple considerations based on the symmetry of the model and
the limiting case at high temperature and pressure. Once a
series of thermodynamic phases to test is found, one has to
compute their chemical potential to find some coexistence state
points. This can be accomplished in various ways, all based on
the integration of a partial derivative of the free energy along a
thermodynamic path, be it physical (i.e. change in temperature
or pressure) or non-physical (gradually coupling the system
to a Hamiltonian of known free energy). Once a coexistence
point is found between phases I and II (i.e. μI(Pcoex, Tcoex) =
μII(Pcoex, Tcoex)), one can use Gibbs–Duhem integration to
follow the coexistence lines [47].
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In this paper, we computed the chemical potential of the
fluid phase using thermodynamic integration starting from high
temperature and gradually lowering the temperature at fixed
βP , β = 1/(kBT ) being the inverse temperature. When β →
0, the chemical potential tends to that of the hard-sphere (HS)
model. By using the Carnahan–Starling approximation [48],
we take

βμHS = log(ρ)− 1 + 4η − 3η2

(1 − η)2
+ ZHS, (4)

where η is the packing fraction and ZHS = βPHS/ρ is the
Carnahan–Starling compressibility factor for hard spheres. As

∂βμ

∂β

∣
∣
∣
∣
βP

= u (5)

it is possible to compute βμ as

βμ(β, βP) = β0μ(β0, β0 P0)+
∫ β

β0

dβ ′〈u〉β ′ ,β ′ P , (6)

where the integrand can be evaluated with numerical
simulations in the N PT ensemble. Starting from the high-
temperature limit (β0 = 1 is sufficient in our case), we use the
following expression:

βμ(β, βP) = β0(μHS + 〈u〉β0,β0 P )+
∫ β

β0

dβ ′〈u〉β ′,β ′ P; (7)

we have checked that this expression gives very reliable results
by simulating a few state points at low T in the NμT ensemble.

To compute the free energies of all the crystal structures
studied (except for the planar crystal of the three-patch model)
we have used a standard Frenkel–Ladd [49] procedure for
hard-core particles extended to anisotropic potentials. This
procedure consists in coupling the system to an Einstein crystal
of known free energy that has the same symmetry as the
model. We refer the reader to [28, 43] for the details of the
procedure, pointing out that we used as a reference system
an Einstein crystal with fixed centre of mass with a D3h-
symmetric Hamiltonian (see equation (A.6) in the appendix)
for both models.

We used as starting configurations for the Frenkel–Ladd
technique equilibrium configurations of the crystals generated
in constant P simulations, treating each of the box directions
independently; this is particularly important, as discussed
in [41], to allow the pressure to equilibrate properly along the
different directions in the lattice.

In the case of the three-patch model, one possible fully
bonded configuration is composed of independent (not bonded)
planes floating in three dimensions. This makes it impossible
to use the Frenkel–Ladd procedure since the reference free
energy diverges, and a different reference Hamiltonian has
to be used. Very recently, a clever modification of the
Frenkel–Ladd procedure has been proposed by Schilling and
Schmid [50] that allows one to overcome this problem. The
procedure they propose is essentially the same as the Frenkel–
Ladd procedure, but they use a reference Hamiltonian that,
contrary to the Einstein crystal Hamiltonian, has the property

of providing a bounded reference free energy. This is made
possible by a choice of the reference Hamiltonian and ad
hoc Monte Carlo moves. Here we use a straightforward
extension to their reference Hamiltonian, applicable to thermal
and anisotropic systems. Our reference Hamiltonian is
split into two parts, one that constrains the translational
degrees of freedom (H tras

ref ) and another one that constrains the
orientational degrees of freedom (H or

res). H tras
ref is the reference

Hamiltonian introduced in [50],

H tras
ref (ε) = ε

N∑

i=0

min{(|ri − r0,i |/rc − 1), 0}, (8)

where ri is the position of particle i and r0,i is the position
of particle i in an equilibrium configuration of the system.
H or

ref (see equation (A.6) in the appendix) is a Hamiltonian
with the same symmetry as the model [43]. In the reference
system the orientational and translational degrees of freedom
are totally decoupled, so that the reference free energy is the
sum of the orientational contribution, known either analytically
or by Monte Carlo integration [43], and the translational free
energy associated with the Schilling and Schmid Hamiltonian
that reads

β f = log(ρ)− 1 − log

[

1 + (4/3)πr 3
c

V
g(βε)

]

, (9)

g(βε) = 3(βε)3(eβε − 1 − (βε)− (βε)2/2 − (βε)3/3). (10)

A more detailed explanation of the free energy
calculations can be found in the appendix.

The gas–liquid coexistence lines were computed with the
Gibbs ensemble simulation technique [51]. A detailed study of
the critical behaviour of both models can be found in [40].

4. Crystal structures

In the light of results of similar models [28], it is expected
that stable crystal structures at low T are limited to fully
bonded structures. The particle geometry thus greatly restricts
the possible lattices, which are just a few. In the three-
patch case, we have been able to identify three different fully
bonded structures: (i) a collection of independent planes, each
formed by particles sitting in a two-dimensional hexagonal
lattice (figure 2(a)), forming free hexagonal planes (FHP);
(ii) a crystal made of inter-penetrating hexagonal planes
(IHP) (figure 2(b)); and (iii) a fully bonded FCC structure
(figure 2(c)). In the perfect FCC lattice full bonding is
possible only if the patches are wide enough (cos θ � 0.95)
to account for the fact that the local FCC environment is
not compatible with the patch arrangement. This causes the
FCC to be distorted (one of the cell edges is ∼5% larger
than the other two), since the local environment tends to
rearrange to better reflect the particles’ symmetry. At high
T , we expect that the FCC fully bonded structure converts
to an orientationally disordered (plastic) FCC phase (FCC-
p). In the five-patch model, besides the FCC, the only fully
bonded structure we have been able to identify is a structure of
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(a) (b) (c)

Figure 2. Schematic representation of the crystals examined in the case of the three-patch model: (a) free hexagonal planes (FHP) (only one
plane is shown), (b) inter-penetrating hexagonal planes (IHP) (different planes are shaded differently for clarity), and (c) fully bonded FCC.
The rotationally disordered (plastic) phase, stable at high T , is not shown. For a better visualization of the structure, particles in the IHP phase
are coloured according to the plane they belong to.

(a)

(b)

Figure 3. Schematic representation of the bonded hexagonal planes
(BHP) (a) and of the fully bonded FCC model (b). The plastic
FCC-p, stable at high T , is not shown.

bonded hexagonal planes (BHP), joined by the patches located
on the particle poles (figure 3). Due to the short-range, square-
well-like interaction, all fully bonded crystals have the same
free energy at T = 0 and P = 0, where the entropic and
volume contributions are zero. At T = 0 and positive P ,
the denser phase always has the lowest free energy, being
favoured by the PV term in the chemical potential. As a
comment, we stress that in the case of patchy models, the
ground state crystal structures can have densities significantly
smaller than the close-packed structures that characterize the
phase diagram of spherically interacting colloids. Also in this
case the stable phase at high T and P is the orientationally
disordered FCC-p.

Figure 4. Phase diagrams of the five-patch model in the (a) P–T and
(b) T –ρ representations. The critical point (cyan circle) is metastable
with respect to the planar phase. The region where the coexistence
lines are dashed in both panels corresponds to the stability region of a
high-density liquid, and since its equilibration is hard our results
have a significant error, of the order of 10–15% in T in that area.

5. Results

Figure 4(a) shows the phase diagram in P–T for the five-patch
model. The stacked planar structure (figure 3) is the stable
phase at low T and P , turning into the FCC structure at high
P . At high T and low P , the fluid phase is the most stable. The
fluid–BHP coexistence is re-entrant, i.e. increasing P for T ≈
0.2 the system goes from a fluid to a crystal and then, upon
further increasing P , it melts back into a high-density fluid
phase, before transforming into the FCC phase, the stablest at
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high P . According to the Clapeyron equation, dP/dT along
the coexistence line provides the ratio of the differences in
entropy �S and volume �V of the two coexisting phases.
At the onset of the re-entrance, the crystal and the fluid have
the same density. In the anomalous region (dP/dT < 0), the
fluid density is higher than the crystal density and the fluid will
expand on crystallizing. The fluid–crystal re-entrance has been
already observed in the case of tetravalent models [27–29, 52]
and appears thus to be a generic feature when the fluid coexists
with an open crystal, although the possibility of observing
such re-entrance as a stable thermodynamic phenomenon may
depend on the potential parameters [28] or on the presence
of other crystal structures. The gas–liquid critical point, for
the present interaction range, is slightly metastable, and it is
located well within the re-entrant region. Hence, re-entrance
may involve two fluids or one gas and one liquid phase which
sandwich the crystal phase.

The T –ρ phase diagram, more relevant to colloidal
science, is shown in figure 4(b). The BHP crystal is stable
at ρ ≈ 0.68. The re-entrance manifests itself in the dip in the
stability of the fluid (liquid) phase around ρ ≈ 0.85. The liquid
is here denser than the open crystal and less dense than the FCC
structure. It would be interesting to explore the dynamics of
the liquid at this density to see if it already shows the signature
of glassy behaviour, as this situation is similar to the eutectic
point in mixtures of elements that have a single chemical
composition that solidifies at a lower temperature than any
other composition. In the region where the high-density fluid
is stable, the bonding is so extensive that it is very hard to reach
equilibrium in a computer simulation. Indeed, at T = 0.15 and
ρ ≈ 0.35, the energy is lower than −2.35u0, i.e. each particle
is involved on average in more than 4.7 attractive interactions.

The phase diagram of the three-patch model is reported
in figure 5. The first observation is that we could not
determine whether the free hexagonal plane phase has a region
of stability: it is indeed more stable that the other fully bonded
structures at low T and P , but since equilibration of the liquid
is impossible at T � 0.07 we could not compute either the
IHP–liquid or the FHP–liquid coexistence lines; for T > 0.07
the liquid is more stable than the FHP phase at the pressures
shown. The intermediate-density IHP structure does have a
region of stability at low T , before becoming less stable than
the fully bonded FCC at higher pressures. The new element
here is the absence of a stable crystal phase at low T and
P . The fluid separates into a gas and a liquid phase at the
critical point but the liquid phase always remains stable. This
is very uncommon and it is a genuine feature of low valence
systems. In the T –ρ phase diagram (figure 5(b)) this appears
as a region where the liquid can be cooled down to vanishing
T without encountering any coexistence lines. While all the
crystal–crystal coexistence curves can be traced down to T =
0, since no structural changes take place on cooling and the
crystals have already approached the ground state, the crystal–
liquid coexistence can be only calculated down to the lowest
temperature (T ≈ 0.07) at which the liquid can be properly
equilibrated. Hence, we cannot provide a definitive proof that
the liquid state is stable down to T = 0. Nevertheless, it is
important to notice that at T ≈ 0.07 the liquid is essentially

Figure 5. Phase diagrams of the three-patch model in the (a) P–T
and (b) T –ρ representations. The critical point (cyan circle) and
gas–liquid coexistence are stable. The label for the FHP phase is
indicated via a light colour to call attention to the impossibility of
determining its coexistence line with the liquid. The light coloured
dashed line indicates the coexistence between the IHP and FHP
phases, which could be metastable with respect to the liquid phase.
There are wide regions in P (a) and ρ (b) where the liquid can be
cooled down to a very low temperature without encountering
crystallization or phase separation.

fully bonded [13], i.e. it has a potential energy comparable
to that of the crystals. The majority of the driving force
for crystallization would thus arise from the �S and P�V
terms in the chemical potential. Since �V = ρxt−ρliquid

ρxtρliquid
≈

1 and P ≈ 10−2–10−1, a significant contribution to the
stabilization of the fluid phase for low P must arise from the
entropic term, possibly related to the logarithm of the number
of different fully bonded disordered configurations [30, 53].
Figure 6 shows the two hypothetical possibilities for the low T
behaviour, depending on the stability of the liquid phase with
respect to the FHP phase. In the first case, there is a triple point
FHP–IHP–liquid and a region of stability for the FHP phase. In
the second case, the FHP is always metastable with respect to
the liquid phase and the only equilibrium coexistence line is
between the IHP phase and the liquid.

6. Discussion and conclusions

The models we have studied represent only one of the possible
distributions of patches on the particle surface. The choice
has been made by selecting the locations that maximize the
particles’ symmetry. In this respect, the choice we have
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Figure 6. Hypothetical representation of the low T region of the
phase diagram for the three-patch model. In (a) we assume that the
FHP phase is more stable than the liquid for very low T and thus a
triple point IHP–FHP–liquid is present. In (b) we assume that the
FHP phase is never more stable than the liquid phase and hence the
relevant low-T coexistence line is that between the IHP phase and
the liquid.

made is the one that favours crystal formation, since fully
bonded crystals can only be made by selecting structures
compatible with the particles’ symmetry. It is thus interesting
to compare the stability of the liquid phase for models with
a different number of equally sized patches. By reducing
the number of patches one also progressively reduces the
fraction of surface which is prone to bonding. Such a decrease
lowers the gas–liquid critical temperature [13, 25, 40], but also
affects the melting temperature. For a model of triblock Janus
particles [34], it has been suggested that reducing the coverage
might act similarly to the reduction of the range in spherically
symmetric potentials [37–39]. To provide a complete picture
of the phenomenon, we have evaluated the driving force for
crystal formation at the gas–liquid critical point, defined as the
difference in the fluid and crystal chemical potentials β(μf −
μx) (where β = 1/(kBT )) for several values of the interaction
range. The data are reported in figure 7, together with the
corresponding data for the square-well potential and the four-
patch model, reproduced from [27]. In the case of three patches
we could not compute β(μfluid − μxt), since the fluid–solid
coexistence line could not be extended to low temperatures.
Figure 7 shows a clear trend in the direction of a progressive
stabilization of the liquid phase on decreasing the valence. One
contribution clearly comes from the fact that on decreasing the
valence, the critical point emerges when the bonding becomes
more pronounced. Indeed, in small valence systems, the bond
probability at the critical point acts as a valence-dependent
scaling variable [40] and its value increases on decreasing
the valence. The more extensive bonding at the critical point
which characterizes the small valence systems thus decreases
the energetic driving force towards crystallization. The critical
pressure is also strongly dependent on the valence, decreasing
on decreasing valence [54, 55]. Hence, also the PV term in the
chemical potential that favours the crystals becomes less and
less effective. In this respect, the results reported in figure 7 do
suggest that for valence three (and perhaps for binary mixtures
with average valence smaller than three [55, 56]) the liquid

Figure 7. The driving force for crystal formation at the critical point
as a function of the interaction range for a fixed angular width
cos(θ) = 0.92 for models with four (KF4) and five (KF5) patches
and the square-well (SW) model. Note that the case of three patches
cannot be drawn, since there is no competing crystal at the critical
point (that is, β(μf − μx) is always negative). A clear trend with the
valence is shown, with higher valences favouring the crystal
structures.

retains its thermodynamic stability down to the vanishing
range limit, a possibility that has recently been theoretically
discussed [57].
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Appendix. Details for the free energy of the planar
crystal

In this section, we will give detailed results regarding the
calculation of the free energy of the FHP phase at a particular
state point. We believe that this is useful, since the Frenkel–
Ladd technique is not applicable to this structure since the
reference free energy would diverge due to the motion of the
planes as a whole. We warn the reader that the following
discussion requires familiarity with [43] and [50].

Free energy calculations are based on thermodynamic
integration from a system with known free energy. Possibly,
this can be done in several steps, for example computing the
free energy at a particular state point and then integrating its
derivative along a thermodynamic path. We will summarize in
what follows the procedure to compute the free energy of the
free hexagonal planar phase for the Kern–Frenkel model with
three patches introduced in the text.

The reduced free energy per particle β f along an isotherm
can be recovered by computing its value at a particular density
ρ0 and then integrating the equation of state P(ρ) at that
T . First of all, we start a series of N PT simulations
(independently controlling the length of the simulation box in
the three directions) at T = 0.05 (a T at which bond breaking
events do not take place) and varying P to recover the equation
of state. We then select an intermediate value of the density
at which to perform the calculation of the free energy: we

6
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select ρ0 = 0.56, corresponding to P = 0.04. We use the
final configuration of our run at P = 0.04 as a reference
configuration for the Schilling–Schmid technique [50], to make
sure that it is a representative configuration at the selected
density. We note that we have carefully checked that the
pressure had equilibrated along all three sides of the simulation
box.

Our discussion requires an explanation of how we define
the orientation of the particles. Although other choices are
equally valid, the treatment has to be changed accordingly. We
define two perpendicular unit vectors, â and b̂, so that the unit
vectors identifying the three patches are defined as follows:

p̂1 = â, (A.1)

p̂2 = 1

2
â +

√
3

2
b̂, (A.2)

p̂3 = −1

2
â +

√
3

2
b̂. (A.3)

To compute the absolute value of the free energy of
our system at fixed T and ρ (0.05 and 0.56, respectively),
following [50] we couple our system with a reference system
of known free energy whose Hamiltonian reads

Href(ε) = H tras
ref (ε)+ H or

ref(ε), (A.4)

where

H tras
ref (ε) = ε

N∑

i=0

min{(|ri − r0,i |/rc − 1), 0} (A.5)

and

H or
ref(ε) = ε

N∑

i=0

(sin2ψa
i + sin2ψb

i ), (A.6)

where ψa
i (ψb

i ) is the minimum angle formed by the vector â
(b̂) of particle i in the reference configuration and the vectors â
and (b̂) of particle i along the simulation.

The free energy of such a system can be decoupled into a
translational and an orientational part. The expression for the
translational part, provided in [50], is

β f tras
ref = log(ρ)− 1 − log

[

1 + (4/3)πr 3
c

V
g(βε)

]

, (A.7)

where

g(βε) = 3(βε)3(eβε−1−(βε)−(βε)2/2−(βε)3/3). (A.8)

The orientational reference free energy β f or
ref can be

computed via a Monte Carlo integration of the following
equation:

β f or
ref = 1

8π2

∫

dψ dφ dθ cos θ exp{−βH or
ref(ε)} (A.9)

where φ, ψ and θ are the Euler angles.
The free energy of our reference system is thus β fref =

β f tras
ref + β f or

ref.

At this point, we introduce a mixed Hamiltonian H ′
which is the sum of the Hamiltonian under investigation H ,
the Kern–Frenkel Hamiltonian in our case, and the reference
Hamiltonian Href(ε). The quantity ε in the equations (A.5)
and (A.6) thus controls the relative role amplitude of the
reference Hamiltonian with respect to the unperturbed Kern–
Frenkel Hamiltonian. By varying ε one can gradually move
from a system in which the presence of H is undetectable
when ε is very large to a system where the presence of Href

is undetectable when ε is very small. If we choose a value
of ε, εmax, such that the presence of H is undetectable, we
can compute the free energy of the system with Hamiltonian
H ′(εmax) as

β f ′(εmax) = β fref(εmax)+ 〈H 〉εmax , (A.10)

where 〈H 〉εmax is the ensemble average of the contribution to
the potential energy of a system with Hamiltonian H ′(εmax)

due to H .
The free energy difference � f between a system with

Hamiltonian H ′(εmax) and a system with Hamiltonian H ′(ε =
0) can be found by integrating the free energy derivative with
respect to ε:

β� f =
∫ εmax

0

〈
dH ′

dε

〉

N,V,T,ε

dε, (A.11)

where by derivation one obtains
〈

dH ′

dε

〉

N,V,T,ε

= N[〈min{0, 1 − |ri − r0,i |/rc}〉N,V,T,ε

+ 〈sin2 ψa
i + sin2 ψb

i 〉N,V,T,ε ]. (A.12)

The integrand on the right-hand side of equation (A.11) can
be found by running several simulations of a system with
Hamiltonian H ′ at several values of ε until the value of the
integral converges. As discussed in [50], special Monte Carlo
moves (for example exchange of particle identity) have to be
implemented to ensure convergence. Although such moves are
not needed in the case of a three-dimensional crystal, they are
important when the particles diffuse, which is the case for the
FHP phase along one direction.

The final free energy of the system can be recovered as
follows:

β f = β f ′
ref(εmax)+ β f or

ref +� f. (A.13)

As a reference for further studies, we detail here the
calculation of the free energy of the FHP crystal at T = 0.05
and ρ = 0.56, corresponding to P = 0.04 in reduced units.
We run twenty simulations of the system with Hamiltonian H ′
with values of ε logarithmically spaced between 0.01 and 300.
We use εmax = 300, rc = 1.5σ and N = 256 particles and
obtain

β f tras
ref = −5973.80, (A.14)

β f or
ref = 14.11, (A.15)

βu = −30.00, (A.16)

� f = −5968.36. (A.17)

Thus, the free energy of the FHP at T = 0.05, ρ = 0.56
is β f = −21.29. The corresponding value of the chemical

7
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potential at T = 0.05, P = 0.04 is thus βμ = β f + βP/ρ =
−19.86. The value of the chemical potential along the T =
0.05 isotherm can be recovered by integration of the enthalpy
as shown in [43]. The expected precision of the final value of
β f is of the order of ±0.04kBT .

References

[1] Glotzer S C and Solomon M J Nat. Mater. 6 557
[2] Pawar A B and Kretzschmar I 2010 Macromol. Rapid Commun.

31 150
[3] Bianchi E, Blaak R and Likos C N 2011 Phys. Chem. Chem.

Phys. 13 6397
[4] Manoharan V N, Elsesser M T and Pine D J 2003 Science

301 483
[5] Zerrouki D, Rotenberg B, Abramson S, Baudry J, Goubault C,

Leal-Calderon F, Pine D J and Bibette J 2006 Langmuir
22 57
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