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ABSTRACT: Concentrated solutions of short blunt-ended
DNA duplexes, as short as 6 base pairs, are known to order
into the nematic liquid crystal phases. This self-assembly is due
to the stacking interactions between duplex terminals that
promotes their aggregation into polydisperse chains with a
significant persistence length. Experiments show that liquid
crystal phases form above a critical volume fraction depending
on the duplex length. We introduce and investigate via numerical
simulations, a coarse-grained model of DNA double-helical
duplexes. Each duplex is represented as an hard quasi-cylinder
whose bases are decorated with two identical reactive sites. The stacking interaction between terminal sites is modeled via a
short-range square-well potential. We compare the numerical results with predictions based on a free energy functional and find
satisfactory quantitative matching of the isotropic−nematic phase boundary and of the system structure. Comparison of
numerical and theoretical results with experimental findings confirm that the DNA duplex self-assembly can be properly modeled
via equilibrium polymerization of cylindrical particles. This insight enables us to estimate the stacking energy.

I. INTRODUCTION
Self-assembly is the spontaneous organization of matter into
reversibly bound aggregates. In contrast to chemical synthesis,
where molecular complexity is achieved through covalent
bonds, supramolecular aggregates spontaneously form in a self-
assembly process due to free energy minimization. Self-
assembly is ubiquitous in nature and can involve the structuring
of elementary building blocks of various sizes, ranging from
simple molecules (e.g., surfactants) to the mesoscopic units
(e.g., colloidal particles). This ability to assemble complicated
entities from relatively simple building blocks has made self-
assembly interesting to several fields, including soft matter and
biophysics.1−3 Understanding and thus controlling self-
assembly is important for devising new materials whose
physical properties are controlled by tuning the interactions
of the various components.4−7,7−12

A particular but very interesting case of self-assembly occurs
when the anisotropy of attractive interactions between the
monomers favors the formation of linear or filamentous
aggregates, i.e., linear chains. A longstanding example is
provided by the formation of worm-like micelles of amphiphilic
molecules in water or microemulsions of water and oil which
are stabilized by amphiphilic molecules. If supramolecular
aggregates possess a sufficient rigidity the system may exhibit
liquid crystal (LC) ordering even if the self-assembling
components do not have the required shape anisotropy to
guarantee the formation of nematic phases. Intense exper-
imental activity has been dedicated to the study of nematic
transitions in micellar systems.13−15 Another prominent case is

the formation of fibers and fibrils of peptides and proteins.16−19

Over the last 50 years LC phases have been also observed in
solutions of long duplex B-form DNA composed of 102 to 106

base pairs,20−23 and in the analogous case of filamentous
viruses.24−28 More recently, a series of experiments29−31 have
provided evidence that a solution of short DNA duplexes
(DNAD), 6 to 20 base pairs in length, can also form liquid
crystals above a critical concentration, giving rise to nematic
and columnar LC phases.29

However, this behavior was found when the terminals of the
duplexes interact attractively. This condition is verified either
when duplexes terminate bluntly, as in the case of fully
complementary strands shown in Figure 1a, or when the
strands arrange in shifted double-helices whose overhangs are
mutually interacting. This behavior is not restricted to B-form
DNA oligomers, as it has also been observed in solutions of
blunt-ended A-form RNA oligomeric duplexes.32 As the
terminal groups are modified to disrupt attraction, the LC
long-range ordering is lost. Overall, the whole body of
experimental evidence supports the notion that LC formation
is due to the formation of reversible linear aggregates of
duplexes, in turn promoting the onset of long-ranged
orientational LC ordering. According to this picture, the LC
ordering of oligomeric DNA is analogous to the LC ordering of
chromonic liquid crystals.33 Both in chromonics and in blunt-

Received: August 27, 2011
Revised: December 12, 2011
Published: December 29, 2011

Article

pubs.acs.org/Macromolecules

© 2011 American Chemical Society 1090 dx.doi.org/10.1021/ma201962x | Macromolecules 2012, 45, 1090−1106

pubs.acs.org/Macromolecules
http://pubs.acs.org/action/showImage?doi=10.1021/ma201962x&iName=master.img-000.jpg&w=232&h=99


ended DNA duplexes, the aggregation takes place because of
stacking interactions, generally understood as hydrophobic
forces acting between the flat hydrocarbon surfaces provided by
the core of chromonic molecules and by the paired nucleobases
at the duplex terminals.34,35

The LC ordering of nucleic acids is relevant for various
reasons. First, it provides a new model of reversible aggregation
leading to macroscopic ordering in which the strength of the
intermonomer attraction can be modified by changing the
duplex terminals (blunt-end stacking or pairing of overhangs).
Second, it provides new access to DNA−DNA interactions, and
in particular to stacking interactions, whose nature is still being
investigated and debated.34,35 In this vein, self-assembly acts as
an amplifier of the intermonomeric interactions, enabling study
of the effects of minor molecular modification (e.g., oligomer
terminations) on base stacking. Finally, stacking and self-
assembly are often invoked as the prebiotic route to explaining
the gap between the random synthesis of elementary carbon-
based molecules and the first complex molecules, possibly RNA
oligomers, which are capable of catalyzing their own syn-
thesis.36 To proceed in any of these directions, it is necessary to
rely on models which allow us to quantitatively connect the
collective behavior of nucleic acids oligomers to their molecular
properties and, in particular, to the duplex size and to the
strength and range of the interduplex attractions.
While the isotropic−nematic transition in rigid and semi-

flexible polymers has been investigated in details in the past and
rather accurate thermodynamic descriptions have been
proposed,37−45 much less is known for the case in which the
nematic transition takes place in reversibly assembling
polymers, i.e., when the average length of the chains depends
on the state point explored. Recent theoretical and numerical
works46,47 has renewed the interest in this topic.48 Reference 47
investigates the self-assembly and nematization of spheres,
while ref 46 focuses on the polymerization of interacting
cylinders. In this article, we propose a coarse-grained model
similar to the one introduced in ref 46 devised to capture the
essential physical features of equilibrium polymerization of
DNA duplexes. We study this model numerically via Monte
Carlo simulations in the constant temperature and pressure
ensembles, applying special biasing techniques49,50 to speed up

the equilibration process. We then develop a free-energy
functional, building on Wertheim51−53 and Onsager54 theories,
which provides a satisfactory description of the system in the
isotropic and nematic phases. A comparison of the calculated
phase boundaries for different aspect ratios and different
interaction strengths with experimental results allow us to
confirm that (i) the DNAD aggregation and LC ordering
processes can be properly modeled via equilibrium polymer-
ization of cylindrical particles and (ii) to provide an estimate of
the stacking energy.
In section II, we introduce the coarse-grained model of

DNADs and provide some details of the computer simulations.
Section III gives a summary of the analytic theory which we
developed to describe the system in the isotropic and nematic
phases. A comparison of our analytical approach with numerical
results is presented in section V, while in section VI we provide
an estimate of the stacking energy by comparing our theoretical
results with experimental data. Section VII represents our
conclusions.

II. MODEL AND NUMERICAL DETAILS
In this section we introduce a coarse-grained model devised to
capture the essential physical features of end-to-end stacking
(equilibrium polymerization) of DNA duplexes which is well
suited to being investigated both theoretically and numerically.
In the model, particles (DNADs) are assimilated to super-
quadrics (SQ) with a quasi-cylindrical shape decorated with
two reactive sites on their bases determining their interactions.
SQs are a straightforward generalization of hard ellipsoids
(HE), their surface is in fact defined as follows:

= + + − =f x y z
x
a

y
b

z
c

( , , ) 1 0
p m n

(1)

where the parameters p, m, n are real numbers and a, b, c are
the SQ semiaxes.
In our case we set m = n = 2, p = 16, and b = c, so that the SQ

resembles a cylinder with rounded edges (see Figure 1). The
absence of surface gradient discontinuities makes this model
also suitable for investigating its dynamics via event-driven
molecular dynamics.55

Figure 1. Coarse-grained model of DNA duplexes. (a) DNA duplex and a 3D graphical representation of its corresponding coarse-grained model
comprising a SQ, symmetric around the x axis, decorated with two sticky spots located on its bases. The figure also shows SQs of different aspect
ratios (X0 = 1, 2, 3) and the projection of their surfaces onto the xy-plane. Note that the base roundness increases on increasing X0. (b) Random
chain of 10 monomers and a representation (blue clouds) of the points where the center of mass of a different monomer can be located in a bonding
configuration. This set of points defines the bonding volume.
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Such SQs can be fully characterized by the aspect ratio X0 =
a/b and by the parameter p, that determines the sharpness of
the edges (see Figure 1). As for the case of HEs SQs of aspect
ratio X0 < 1 are called “oblate”, while SQs of aspect ratio X0 > 1
are called “prolate”. As unit of length in our simulations we use
the length of the short semiaxes b. In the present study we
investigated only prolate SQs with aspect ratio X0 = 1,2 and 3.
We chose such aspect ratios because DNADs used in
experiments29 have a diameter D = 2 nm and are composed
of 6 to 20 base pairs (BP) each 0.3 nm long. Hence their aspect
ratio X0 ranges approximately from 1 to 3.
Each particle is decorated with two attractive sites, located

along the symmetry axis (x-axis in Figure 1) at a distance d/b =
X0 − 0.46 from the DNAD center of mass, in order to model
hydrophobic (stacking) forces between DNADs. Sites belong-
ing to distinct particles interact via the following square-well
(SW) potential:

β =
−βΔ < δ

> δ

⎛
⎝⎜u

E r

r0
SW

S

(2)

Here r is the distance between the interacting sites, δ/b = 1.22
is the range of interaction (i.e., the diameter of the attractive
sites), β = 1/kBT, and kB is the Boltzmann constant. Therefore,
in the present model the anisotropic hard-core interaction is
complemented with an anisotropic attractive potential in a
fashion similar to past work on water,56 silica,57 and the
stepwise polymerization of bifunctional diglycidyl ether of
bisphenol A with pentafunctional diethylenetriamine.58,59

The location and diameter of the attractive sites have been
chosen to best mimic the stacking interactions between blunt-
ended DNAD, and in particular, they ensure the following
points.

1 The maximum interaction range between two DNADs
bases is of the order of the typical range for hydrophobic
interactions (i.e., 2 Å, see ref 60), i.e., comparable to the
dimensions of the water molecule.

2 The extent of the attractive surface of the DNADs bases
is compatible with the surface of aromatic groups present
in DNADs, which are responsible for hydrophobic
interactions.

We note that in the present model each DNAD is symmetric
around the x-axis (see Figure 1), and hence, we are neglecting
rotations around it.
We performed Monte Carlo (MC) simulations in the

canonical and isobaric ensembles. We implemented the
aggregation biased MC technique (AVBMC) developed by
Chen and Siepmann49,50 in order to speedup (up to a factor of
2 compared to standard MC) the formation of linear
aggregates.
To detect the overlap of two DNADs we calculated the

distance using the algorithm described in ref 55. In all
simulations we adopted periodic boundary conditions in a
cubic simulation box.
We studied a system of N = 1000 particles in a wide range of

volume fractions ϕ and pressure P, respectively. Initially, we
prepared configurations at high temperature with all DNADs
being bonded, and then we quenched the system to the final
temperature (i.e., to the final value of βΔES) before letting it
equilibrate. We checked equilibration by inspecting the
behavior of the potential energy and the nematic order
parameter (see section VB) in the system.

III. THEORY

Following the work of van der Schoot and Cates14,48 and its
extension to higher volume fractions with the use of the
Parsons−Lee approximation61,62 as suggested by Kuriabova et
al.,46 we assume the following expression for the free energy of
our system:

∑

∑

∑ ∑
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where ν(l) is the number density of chains of length l,
normalized such that ∑l = 1

∞ lν(l) = ρ, vd is the volume of a
monomer, βΔES is the (positive) stacking energy, vexcl(l,l′) is the
excluded volume of two chains of length l and l′ and σb is the
entropic free energy penalty for bonding (i.e., is the
contribution to free energy due to the entropy which is lost
by forming a single bond). η(ϕ) is the Parsons−Lee factor61

η φ = − φ
− φ

( )
1
4

4 3
(1 )2

(4)

and σo
45 accounts for the orientational entropy that a chain of

length l loses in the nematic phase (including possible
contribution due to its flexibility). Different from refs 46
and48 but as in ref 47, we explicitly account for the
polydispersity inherent in the equilibrium polymerization
using a discrete chain length distribution. We explicitly separate
the bonding free energy in an energetic (βΔES) and an entropic
(σb) contribution. Different from ref 47 and48 but as in ref 46,
we include the Parsons−Lee factor. Indeed, the Parsons
decoupling approximation satisfactory models the phase
diagram of uniaxial hard ellipsoids,63 hard cylinders,64 linear
fused hard spheres chains,65 mixtures of hard platelets,66 hard
sphero-cylinders,67−69 rod−plate mixtures,70 mixtures of rod-
like particles71,72 and mixtures of hard rods and hard spheres.73

On the other hand, ref 74 finds that the Parsons theory is not
satisfactory in the case of rigid linear chains of spheres.
A justification of the use of Parsons−Lee factor in eq 3 for

the present case of aggregating cylinders is provided in
Appendix A. Here we only note that the present system, in
the limit of high T where polymerization is not effective,
reduces to a fluid of hard quasi-cylinders, where the use of
Parsons−Lee factor is justifiable.64,68,69 Moreover, in the dilute
limit (η(ϕ) → 1) the excluded volume term in eq 3 reduces to
the excluded volume of a polydisperse set of aggregates with
length distribution ν(l), which conforms to Onsager’s original
theory.54 In other words, the form chosen in eq 3 for the
excluded volume contribution to the free energy reduces to the
correct expressions in the limit of high temperatures and of low
volume fractions.
Following van der Schoot and Cates,14,48 vexcl(l,l′) can be

assumed to be as a second order polynomial in l and l′
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where f(u) is the probability for a given monomer having an
orientation u within the solid angle Ω and Ω + dΩ and Ψα

describes the angular dependence of the excluded volume. The
orientational probability f(u) is normalized as

∫ Ω =f u( ) d 1
(6)

In particular, for two rigid chains of length l and l′
which are composed of hard cylinders (HC) of diameter D
and length X0D, vexcl(l,l′) has been calculated by Onsager in
1949
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where cos γ = u · u′ and E(sin γ) is the complete elliptical
integral

∫γ = − γ ψ ψ
π

E(sin )
1
4

(1 sin sin ) d
0

2 2 2 1/2
(8)

In passing, we observe that the integrals in eq 7 can be
calculated exactly in the isotropic phase while in the nematic
phase the calculation can be done analytically only with suitable
choices of the angular distribution f(u). Comparing eqs 7 and 5
for HC one has:
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In view of eqs 9 we note that for HCs the functions Ψ1(γ),
Ψ2(γ), and Ψ3(γ) accounts for the orientational dependence of
the excluded volume of two monomers having orientations u
and u′ with u·u′ = cos γ. It is also worth observing that the first
term of the integrand in eq 7 is independent of l and hence
accounts for the excluded volume interaction between two HCs
ends. The second term is linear in l and l′ and accounts for the
excluded volume between the end of a chain and all
midsections of a second one. The third term, proportional to
ll′, models the interaction between all ll′ pairs of midsections of
the two chains.14,48 In summary, eq 5 is exact for two rigid
chains of HCs but, to lowest order of approximation,14,39 it is
justifiable even for two semiflexible chains. We then assume
that vexcl remains additive with respect to end-end, end-
midsection and midsection-midsection excluded volume
contributions even if the chain is semiflexible. Finally, our
further ansatz is that eq 5 is also a good functional form for the
excluded volume of two superquadrics having quasi-cylindrical

shape: we will check the validity of this hypothesis using our
simulations data.
It is worth noting that in the present case eq 7 is not

appropriate for evaluating the excluded volume between two
linear aggregates of SQs, for at least two reasons: (i) a
superquadric and a cylinder with same diameter and aspect
ratio have different volumes. (ii) Equation 7 holds if linear
aggregates of SQs retain a “tube-like” shape. In the present
model instead, two bonded SQs may have their symmetry axes
parallel but not coaxial. Despite the general inadequacy of eq 7
for our SQ model, one can expect that the scaling with respect
to l and l′ is still valid and for this reason we assume the
functional form in eq 5 for the excluded volume between two
chains of SQs.
An exact expression for σo is not available. The two following

limits have been calculated by Khokhlov and Semenov:37,40,45
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Finally, we note that, in the limit of rigid rods with f l(u) =
f(u)ν(l), (the same limit selected in ref 46), the free energy in
eq 3 reduces to:
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which is analogous to the free energy expression used by
Kuriabova et al.46

A. Isotropic Phase. In the isotropic phase all orientations
are equiprobable, and hence

=
π

f u( )
1

4 (12)

Plugging eq 12 into eq 3 and calculating the integrals one
obtains:
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For hard cylinders the excluded volume can be calculated
explicitly:

′ = π + π + π + ′

+ π ′
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Building on eq 14, the generic expression for the excluded
volume vexcl(l,l′) reported in eq 5 in the isotropic phase takes
the form:

′ = + + ′
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We assume that the chain length distribution ν(l) is
exponential with an average chain length M
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With this choice for ν(l) the free energy in eq 13 becomes:
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Note that, in general, kI, BI and AI depend on X0.
The minimization of the free energy with respect to M yields,

after dropping terms in O(1/M2)

= + + ωφ φη φ +βΔM
1
2

(1 1 4 e )k E( )I S
(19)

where ω ≡ eσb. This formula forM differs from the one reported
by Kindt47 by the presence of the Parsons-Lee factor, which will
play a role at high volume fractions.
The expression for M in eq 19 coincides with the parameter-

free expression for the average chain length Mw obtained within
Wertheim’s theory (e.g., see refs 51−53, 75, and 76), when ϕ is
small and ekIϕη(ϕ) ≈ 1. Indeed, in Wertheim theory

= + + φΔM
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where Δ = Vb(e
βΔES − 1) and Vb is the bonding volume.

75 In the
limit eβΔES ≫ 1, which is always valid in the T-region where
chaining takes place
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The equivalence between the two expressions provides an exact
definition of ω as

ω =
V
v

2 b

d (22)

Although eq 19 has been derived ignoring O(1/M2) terms in
the free energy, the average chain length M can be always
calculated, and this is what we do in this work, numerically
locating the zero of ∂(βF/V)/∂M = 0.

B. Nematic Phase. In the nematic phase the function f(u)
depends explicitly on the angle between a given particle
direction and the nematic axis, i.e., on the axis u. The
orientational distribution function f(u) generally depends on a
set of parameters that have to be obtain through the
minimization of the free energy. Also in the nematic phase
we assume an exponential distribution for ν(l). In addition, we
consider an angular distribution function f(u) with the form
proposed by Onsager,54 i.e.:

= = α
π α

α θf fu u( ) ( )
4 sinh

cosh( cos )O (23)

where θ is the angle between the particle and the nematic axis
and the system is supposed to have azimuthal symmetry around
such axis.
In view of the analytical expression for the excluded volume

vexcl for cylinders, we assume the following form for the vexcl of
two DNADs averaged over the solid angle using the one
parameter (α) dependent orientational distribution function
f O(u) defined in eq 23:
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If we insert eqs 24 and 16 into eq 3, we obtain after some
algebra:
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where σ̂0  ∑l σ0(l)ν(l).
C. Phase Coexistence. Using the free energy functionals in

eqs 18 and 25 the phase boundaries, i.e. ϕN = vdρN and ϕI =
vdρI, of the isotropic−nematic transition can be straightfor-
wardly calculated by minimizing the free energy with respect to
the average chain lengths in the isotropic and nematic phases,
i.e. MI and MN, and α. We also require that the isotropic and
nematic phases have the same pressure, i.e., PI = PN and the
same chemical potential μI = μN. These conditions require
numerically solving the following set of equations:
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IV. CALCULATION OF FREE ENERGY PARAMETERS

The theory illustrated in the previous section requires the
calculation of several parameters, Vb, kI, AI, BI, kN, AN, BN, and
lp. Since an explicit calculation of these parameters is very
unlikely for superquadrics in the following we describe simple
methods to calculate them numerically. For example, the
calculation of the excluded volume between aggregates and the
calculation of the bonding volume require the evaluation of
complicated integrals, which can be estimated with a Monte
Carlo method.77−79 The general idea behind Monte Carlo is
that such complicated integrals can be calculated by generating
a suitable distribution of points in the domain of integration.
A. Excluded Volume in the Isotropic Phase. In the

isotropic phase, vexcl(l,l′) can be written as reported in eq 15. If l
= l′

= + +v l l A k v l B X l( , ) 2 2 2excl I I d I 0
2 2

(27)

Hence, from a numerical evaluation of vexcl(l,l) for several l
values (whose detailed procedure is described in Appendix X) it
is possible to estimate AI, kI, and BI. Figure 2a shows vexcl(l,l)/l
vs l. A straight line properly describes the data for all X0 values,
suggesting that AI ≈ 0. From a linear fit one obtains 2BIX0

2

(slope) and 2kIvd (intercept). We also show in Figure 2a, the
excluded volume of chains of HCs calculated using the Onsager
expression reported in eq 7. Although Onsager formula is a
good approximation, eq 27 provides a better representation of
the“exact” (i.e., numerically estimated) excluded volume for
SQs.
B. Calculation of the Bonding Volume. The bonding

volume Vb can be calculated numerically by performing a
Monte Carlo calculation of

∫= θ −Δ − − Ω ΩV E u V r( ) d db S SW HC 1 2 (28)

where VHC = VHC(r,Ω1,Ω2) is the hard core part of the
interaction potential and θ(x) is the Heaviside step function;
i.e., θ(x) = 1 if x ≥ 0 or 0 otherwise. The details of the
numerical integration are reported in Appendix X. The
resulting values of Vb for different X0 are shown in Figure 2b.
Vb grows with X0, an effect introduced by the different rounding
of the SQ surface close to the bases. Indeed, as shown in Figure
1, on increasing X0 the base surface is more rounded and such
different rounding offers a different angular width over which
bonds can form. This effect will also reflect in the X0
dependence of the persistence length of the self-assembled
chains, as it will be discussed in details in subsection IVE. For
HCs, the aspect ratio X0 does not impact the bonding angle and
so the bonding volume would be constant.
The values of σb(Vb) (the loss in entropy of forming a bond)

calculated using eq 22 are around −6 and thus they are
comparable with the studied values of βΔES (ΔES = 5.56, 6.67,
and 8.33).

C. Excluded volume in the nematic phase. The
excluded volume vexcl(l,l,α) between two aggregates of equal
length l can be calculated using the procedure illustrated
previously for the isotropic case with the only difference that
now monomers are inserted with an orientation extracted from
the Onsager angular distribution defined in eq 23.
To numerically estimate AN(α), kN(α), and BN(α) we

specialize eq 24 to the case of l = l′ = 2, l = l′ = 3, l = l′ = 4, and
numerically evaluate vexcl(2,2,α), vexcl(3,3,α) and vexcl(4,4,α) for
several values of α. Inverting eq 24 allows us to express AN(α),
kN(α) and BN(α) as a function of vexcl(2,2,α), vexcl(3,3,α) and
vexcl(4,4,α) as explained in detail in Appendix C.

D. Estimate of the Orientational Entropy in the
Nematic Phase. We propose to model the orientational
entropy in the nematic phase using the following approximate
expression proposed by Odijk45 (other possibilities can be
found in refs 80 and 81)

∑σ̂ = ν α + α −
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Figure 2. (a) Excluded volume of two chains of length l calculated numerically as a function of l for X0 = 1, 2, 3. Dashed lines are fits to eq 27. Dotted
lines are excluded volumes for chains of HCs calculated using eq 7. (b) Bonding volume as a function of aspect ratio X0.
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Unfortunately, eq 29 is hardly tractable in the minimization
procedure required to evaluated the equilibrium free energy
and hence the two following expressions are often preferred

σ = α − + α − α ≪

σ = α + α − α ≫

l
l

l l l

l
l

l l l

( ) ln( ) 1
1

6

( ) ln( /4)
1

4

o
RC

p
p

o
FC

p
p

(30)

which can be obtained by inserting the Onsager orientational
function f O(u) in eq 10 and which are highly accurate in the
limit of “rigid chains” (RC) and “flexible chains” (FC).
While in the case of fixed length polymers, the knowledge of

the persistence length selects one of the two expressions, in the
case of equilibrium polymers, different chain lengths will
contribute differently to the orientational entropy. In particular,
when the chain length distribution is rather wide, it is difficult
to assess if the RC (chosen in ref 46) or the FC (chosen in ref
47) limits should be used. To overcome the numerical problem,
still retaining both the RC and the FC behaviors, we use the
following expression for σ̂0:

∑

∑

σ̂ = ν α − + α − +

ν α + α −
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0 (31)

in which the contribution of chains of size l0 is treated with the
RC expression while the contribution of longer chains enters
with the FC expression. We pick l0 by requiring the maximum
likelihood between eq 31 and eq 29 in the relevant M-α
domain. The procedure is quite straightforward: given a
appropriate domain in the (M,α) plane (e.g., 5 < M < 150
and 5 < α < 50), we chose a grid G within this domain and we
determined the value of l0 which minimizes the following
function T(l0):

≡ |σ̂ − σ̂ |T l( ) min
G

o
od

o0 (32)

Although l0 weakly depends on lp (i.e., l0 = l0(lp)), we find
that the value l0 ≈ 9 is appropriate for most studied cases.
E. Estimate of Persistence Length. In order to estimate

the persistence length, entering in eq 31, we randomly build
chains according to the procedure described in Appendix B. We
estimate the “chain persistence length” lp by evaluating
following spatial correlation function:

∑| − | ≡ ⟨ ̂ · ̂ ⟩C i j i jx x( ) ( ) ( )O
i j, (33)

where i,j label two monomers along the chain (i = 0 is the first
monomer at chain end) and x(̂i) is a unit versor directed along
x-axis of the monomer (i.e., their axis of symmetry, see Figure
1), that coincides with the direction along which the two
attractive sites lie. ⟨...⟩ denotes an average over the whole set of
independent chains which has been generated.
In Figure 3 we plot CO(|i −j|) for all aspect ratios studied. All

correlations decay following an exponential law, whose
characteristic scale is identified as the persistence length (in
unit of monomer). In the X0 range explored, 10 < lp < 25. The
more elongated monomers have a smaller persistence length.

The X0 dependence of lp arises from the different roundness of
the bases (implicit in the use of SQ), as discussed in the context
of the bonding volume and in Figure 1.

V. RESULTS AND DISCUSSION
In this section we compare results from simulations with
theoretical calculations based on the theory discussed in section
III

A. Isotropic Phase. Parts a−c of Figure 4 show the packing
fraction dependence of M for X0 = 1, 2, 3 for all temperatures
investigated. The dashed curves are calculated by minimizing
the isotropic free energy in eq 18 with respect to M using the
values of Vb, kI, and BI obtained in subsection IVA without any
fitting. Up to volume fractions around ϕ ≈ 0.20 the agreement
between theoretical and numerical results is quite good for all
cases considered. Above this volume fraction the theoretical
predictions start deviating appreciably, a discrepancy that we
attribute at moderate and high ϕ to the inaccuracy of the
Parsons decoupling approximation. We also plot in Figure 4,
parts a−c, as dotted lines the predictions based on a Onsager-
like theory, i.e. setting the Parsons-Lee factor η(ϕ) equal to 1
in eq 3. At low volume fractions the approximation η(ϕ) = 1
does not affect the quality of the results but above ϕ ≈ 0.20
the use of Parsons decoupling approximation seems to better
capture the behavior of M(ϕ). In Figure 4d, we report the
aggregate size distribution ν(l) as obtained from both simula-
tion and theory, the latter calculated according to eq 18 with
M obtained by minimization of the isotropic free energy.
As expected, the aggregate size in the isotropic phase is
exponential. These results suggest that a reasonable first
principles description of the isotropic phase is provided by
the free energy of eq 18, when the parameters of the model are
properly evaluated.

B. Nematic Phase. On increasing ϕ the system transforms
into a LC phase. We estimate the degree of nematic ordering by
evaluating the largest eigenvalue S of the order tensor Q, whose
components are:

∑= ⟨ ⟩ − δαβ α β α βQ
N

u u
1 3

2
( ) ( )

1
2

i
i i ,

(34)

where αβ ∈ {x,y,z}, and the unit vector (ui(t))α is the
component α of the orientation (i.e., the symmetry axis) of
particle i at time t. A nonzero value of S signals the presence of
orientational order in the system and it can be found not only

Figure 3. Spatial correlation function CO(|i −j|) (see text for its
definition) calculated by generating random chains of 50 monomers
for aspect ratios X0 = 1, 1.5, 2, 2.5, 3. Dashed lines are fits to the
functional form Co(|i −j|) = exp[−|i −j|/lp]. From these fits, the chain
persistence length lp can be estimated (see legend).
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in the nematic phase but also in partially ordered phases as
columnar and smectic phases. Since in this article we focus only
on the nematic phase, to verify that the simulated state points
are not partially ordered we calculate, following ref 46, the
three-dimensional pair distribution function g(r) defined as

∑∑=
ρ

⟨ δ − − ⟩
= ≠

g
N

r r r r( )
1

( ( ))
i

N

j i
i j

1 (35)

where δ(x) is the Dirac delta function. We calculate the g(r) in
a reference system with the z-axis parallel to the nematic
director. Figure 5 shows g(x,y,0) and g(0,y,z), which
correspond, respectively, to the correlations in a plane
perpendicular to the nematic director and in a plane containing
it for a given nematic state point (X0 = 2, ϕ = 0.38, βΔES =
8.33)). The g(x,y,0) is found to be isotropic, ruling out the
possibility of a columnar or crystal phase (no hexagonal
symmetry is indeed present). The g(0,y,z) reflects the
orientational ordering along the nematic direction and rules
out the possibility of a smectic phase (no aligned sequence of
peaks are present46). Figure 5c also shows a snapshot of the
simulated system at the same state point.
In what follows, we have systematically calculated and

inspected g(r) to verify that all state points having a value of S
large enough to be considered nematic are indeed translation-
ally isotropic, i.e. with no translational order.
Figure 6 shows the nematic order parameter and the average

chain length M calculated from simulations as well as with the

theoretical methodology described previously for two different
aspect ratios at βΔES = 8.33. The theoretical value for S is
obtained according to:

∫α = π θ − θ α θ θS f d( ) 2
3 cos 1

2
( ; ) sinO

2

(36)

Figure 6a shows that the nematic order parameter is very well
captured by the theory, while the average chain length shows a
clear disagreement between theory and simulations, again
suggesting that the error introduced by the Parsons decoupling
approximation, previously discussed in the case of the isotropic
phase at large packing fractions, is enhanced by the further
increase in ϕ. Another possible source of error could arise from
the hypothesis that the aggregate size distribution is also
exponential in the nematic phase. To test this hypothesis Figure
6b shows the aggregate size distributions at two different state
points. In all cases, the distributions are not a single exponential.
This phenomenon has been already observed and discussed by
Lu and Kindt,47 who described the distribution with two
exponential decays of ν(l) with the exponential decay of short
chains extending up to l ≈ 50. They took into account such a
biexponential nature of the distribution to better reproduce the
isotropic−nematic phase boundaries82 in their theoretical
approach. In the present case, only very short chains (not to
say only the monomers), fall out of the single exponential decay.
To test if the different decay reflects a different orientational
ordering of the small aggregates compared to long chains, we

Figure 4. (a−c) Average chain length M against ϕ for X0 = 1, 2, 3 for the three studied βΔES values. Symbols are MC results in the isotropic phase.
Dashed lines are theoretical predictions, obtained by minimizing the free energy in eqs 18 (isotropic phase, bottom part of the figures) and 25
(nematic phase, upper part of the figures). Different types of dashed lines refer to different stacking energies. The dashed lines are limited by the
region of stability of the isotropic and nematic phases. Dotted lines are theoretical predictions according to Onsager second virial approximation, i.e.
setting η(ϕ) = 1. Please note the change of scale along y-axis. (d) MC results for the aggregate size distributions (colored symbols) for several state
points in the isotropic phase and corresponding theoretical predictions (dashed lines).

Macromolecules Article

dx.doi.org/10.1021/ma201962x | Macromolecules 2012, 45, 1090−11061097

http://pubs.acs.org/action/showImage?doi=10.1021/ma201962x&iName=master.img-004.jpg&w=402&h=302


follow ref 82 and evaluate the length-dependent nematic order
parameter Sl, that is the nematic order parameter calculated for
each population of aggregates of size l. The results, reported in
the inset of Figure 6b, show that Sl is around 0.7−0.8 for all
aggregates sizes except for l = 1, i.e., except for monomers.

To assess how much the theoretical predictions are affected
by the assumption of a single exponential decay (and of the
associated identity of S for all chains), we evaluate the
correction of the free energy functional in eq 25 for the two
following cases:

Figure 5. Plot of g(x,y,0) (a) and g(0,y,z) (b) where the z-axis is chosen parallel to the nematic director for X0 = 2, ϕ = 0.38, and βΔES = 8.33. (c)
Example of nematic configurations at the same state point.

Figure 6. (a) Average chain length and nematic order parameter S for several nematic state points. Dashed lines with stars (theory ISOM) and down
triangles (theory BIEXP) are improved theoretical predictions (see text for details). (b) Aggregate size distribution for two state points (X0 = 2, ϕ =
0.38, βΔES = 8.33) and (X0 = 3, ϕ = 0.34, βΔES = 8.33). Circles are numerical results and dashed lines are exponential fits. The inset shows the chain
length dependent nematic order parameter Sl for the same state points.
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(i) We retain a single exponential distribution ν(l) but
monomers are assumed to be isotropic, while all other
chains are nematic.

(ii) Monomers are assumed to be isotropic but we also
assume a bimodal chain length distribution ν(l), i.e.

ν =
ρ =

ν ρ − ρ >⎪

⎪⎧⎨
⎩

l
l

l M l
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1

( , , ) 1
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N I N (37)

where ρI is the number density of monomers, which is
calculated by free energy minimization, and
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Note also that the average chain length for the above choice of
ν(l) is

= ρ
ρ +

ρ − ρ
+

M
I M 1

I

N (39)

In case i, we exclude from the calculation of the orientational
entropy the monomers and take into account the fact that
monomers are isotropic in the excluded volume calculation.
The revised free energy can be thus written as
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and
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Figure 7. (a) Equation of state (P vs ϕ) calculated compressing an isotropic initial configuration (squares) or expanding an initial nematic
configurations (circles). Vertical dashed lines show the theoretical predictions for the phase boundaries. (b−d) Coexistence regions predicted from
theoretical calculations for the three stacking energies values βΔES investigated. Dotted lines are phase boundaries calculated within Onsager (second
virial) approximation. For each X0, the appropriate persistence length (see Figure 3), has been selected.
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In case ii, after some more cumbersome calculations, one
obtains the following expression for the free energy:

β = σ̂* − ρ − ρ βΔ + σ
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(43)

In passing, we note that eq 43 reduces to eq 40 if we assume a
single exponential distribution, i.e., if we set ρI = ρ/M2 and MN
= M, and if we neglect terms O(1/M4).
Minimizing the free energy expressions in eqs 43 and 40

results in an improved estimate for the average chain length and
nematic order parameter (Figure 6, see curves labeled by (i)
ISOM and (ii) BIEXP). The new estimates slightly improve
over the previous ones, suggesting once more that the leading
source of error in the present approach, as well in all previous
ones, has to be found in the difficulty of properly handling the
higher order terms in the virial expansion.
C. Phase Coexistence. NPT−MC simulations only provide

a rough estimate of the location of phase boundaries, since
these simulations can be affected by the hysteresis associated
with the metastability of the coexisting phases. It is thus only
possible to bracket the region of coexistence, by selecting the
first isotropic state point on expansion runs which started from
a nematic configuration and the first nematic state point on
compression runs started from an isotropic configuration. We
performed NPT−MC simulations for X0 = 2 and βΔES = 6.67
over a wide range of pressures P for a system of 1000 SQs. The
resulting equation of state is shown in Figure 7a. As expected, a
clear hysteresis is observed, which allows us to detect only some
overestimated boundaries for the isotropic−nematic transition.
The same figure also reports the theoretical estimates of the
transition. The theoretical critical pressure is smaller than the
numerical one, resulting in a more extended region of
coexistence than observed numerically. Comparing the values
of the pressure predicted by the theory with the simulation
values, we notice that the main error arises from the pressure of
the nematic phase, which is underestimated. Parts b−d of

Figure 7 show the predicted phase diagram for several values of
βΔES as a function of the aspect ratio. On increasing βΔES (i.e.,
decreasing T or increasing the stacking energy), there is a small
decrease of ϕI and a significant decrease of ϕN, resulting in an
overall decrease of the I−N coexistence region. Such trends can be
understood in terms of the increase of the average chain length
resulting from the increase of βΔES. The theoretical values for the
average chain length at the nematic−isotropic coexistence are
shown in Figure 4, parts a−c. Along the ϕI transition line,M ranges
from 2 to 4. On the contrary, along the ϕN transition line, the M
values are larger and depend on aspect ratio and stacking energy.
As expected, both ϕI and ϕN decrease on increasing X0. In

parts b−d of Figure 7, we also plot the phase boundaries
calculated within the Onsager (second virial) approximation,
i.e., by setting η(ϕ) = 1 in our free energy functional. It is clear
from these plots that neglecting higher order terms in the virial
expansion results in a significant overestimate of the isotropic−
nematic transition volume fraction. Hence the Parsons−Lee
approximation captures, albeit approximatively, the contribu-
tion of higher order virial coefficients on increasing the volume
fraction, which are neglected in the Onsager approximation.
Finally, we recall that in our model the persistence length lp

depends on the aspect ratio as discussed in subsection IVE.

VI. COMPARISON WITH EXPERIMENTS
References 29 and 31 report the critical concentrations (c), in
mg/mL, for the I−N transition of blunt-ended DNAD. These
experimental data can be transformed into volume fractions once
the relevant properties of DNAD are known (DNAD molecular
weight mD = 660Nb Da, diameter D ≈ 2 nm, and length L =
Nb/3 nm, where Nb is the number of bases in the sequence). The
number density ρ of DNADs is related to the mass concentration

ρ = c
mD (44)

Since vd = LD2π/4 is the volume of a DNAD, the volume
fraction can be expressed as:

φ = ρ = π
v

cLD
m4d

D

2

(45)

Data in refs 29 and 31 suggest that blunt-end duplexes of equal
length but different sequences may have different transition
concentrations. As discussed in refs 31 and 83, this phenomenon
can be attributed to the slight differences in B-DNA helical
conformation resulting from the difference in sequences. These
differences induce some curvature in the DNAD aggregates, in
turn enhancing the transition concentration. Indeed, sequences
that are known to form straight double helices order into the N
phase at lower concentrations. Therefore, for each oligomer length
in the range 8−16 bases, we selected the lowest transition
concentration among the ones experimentally determined, since
these would be closest to the symmetric monomers considered in
the model. Such values have been reported in Figure 8 as a
function of base number Nb (top axis) and as a function of X0
(bottom axis). Apart for Nb = 12, for which a large number of
sequences have been studied, the transition concentrations for the
other Nb values would probably be corrected to lower values if a
larger number of sequences were experimentally explored. We
would expect this to be particularly true for the shortest sequences,
in which the effect of bent helices could be more relevant.
In the experiments, DNADs are in a water solution with

counterions resulting from the dissociation of the ionic groups
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of the phosphate-sugar chain. Given the high DNA concentra-
tion necessary for the formation of the N phase, corresponding to
concentration of nucleobases in the 1 M range, the ionic strength
simply provided by the natural counterions is large enough to
effectively screen electrostatic interactions between DNADs. This
becomes less true for the longest studied sequences, for which the
transition concentration is lower. We hence decided to perform a
small number of test experiments on the Nb = 20 oligomers with
a double purpose: (i) determine more accurately the transition
concentration value for this compound and (ii) test the effect of
varying the ionic strength predicted by the model here described.
With respect to a fully screened DNAD, where electrostatic
repulsion can be neglected, a partly screened DNAD has a larger
effective volume, thus filling a larger volume fraction of the
solution, and a smaller axial ratio X0, since electrostatic repulsion
is equal in all directions. Therefore, adding salt would bring about
two competing effects: the reduction in particle volume, which
enhances the concentration needed to reach the I−N phase
boundary, and the growth of X0, which could favor the nematic
ordering even at lower concentrations.
The behavior expected upon increasing the salt concen-

tration can be obtained combining two elements: (i) From eq
45, we can deduce the following relation between the critical
concentration cN and the critical volume fraction ϕN:

= φ
π

c X
m

LD
( )

4
N N

D
0 2 (46)

(ii) The phase diagrams of Figure 7b−d indicates that
ϕN(X0) depends weakly on X0 = L/D, i.e. ϕN(X0) = ϕN

0 , where
ϕN
0 is constant.
Hence the theory introduced in the present paper predicts

that a reduction of DNAD effective volume due to the addition
of salt (i.e., a decrease of LD2 in eq 46 leads to an overall
increase of the concentration required for N ordering.
We have measured the transition concentration of the self-

complementary 20mer CGCGAAAATTTTCGCG, a sequence
whose I−N transition at room temperature was previously
measured and determined to be cN ≈ 200 mg/mL.29 With the
same method, based on the measurement of the refractive index
of the solution, we determined the I−N transition concentration
at room temperature at three different ionic strengths. The values
we obtained are cN ≈ 215 mg/mL (no added salt), cN ≈ 320 mg/
mL (0.8 M NaCl), and cN ≈ 380 mg/mL (1.2 M NaCl). The data
indicate that the onset of the nematic ordering in solutions of
20mers is indeed sensitive to the ionic strength, and that the

transition concentration grows upon increasing the amount of
salt, as expected on the basis of our theoretical calculations for the
present model. In Figure 8, we display the transition volume
fraction derived by the transition concentration measured for 1.2
M NaCl. At this ionic strength, the total concentration of Na+

ions (from the assumed fully dissociated oligomers + added with
the salt) is about the same as the one resulting from counterions
dissociated oligomers in the more concentrated solutions of
shorter (8−12 mers) oligomers.
Figure 8 compares the experimentally determined transition

volume fractions with the values calculated from the SQ model
for βΔES = 6.67 and βΔES = 5.56. Although the experimental
data are noisy, they fall in the range ΔES ≈ 5−7 (in units of
kBT). Despite all the simplifying assumptions and despite the
experimental uncertainty, the results in Figure 8 provide a
reasonable description of the X0 dependence of ϕN. In this
figure we also reported the theoretical volume fractions
calculated for HCs with a fixed bonding value equal to Vb(X0
= 2) ≈ 0.0157. Chains of HCs have a persistence length which
does not depend on X0. It is clear that the estimated ΔES for
HCs is unchanged with respect to SQ, i.e., the phase diagram of
our model is not significantly affected by the X0 dependence of
the persistence length (at least in the investigated windows).
In comparing the model with the experimental results, it is

necessary to take note of the fact that the stacking energy
between nucleobases, and thus the interaction energy ΔES
between DNAD, is temperature dependent, i.e., its entropic
component is relevant.35 This is a general property of solvation
energies and thus it is in line with the notion that stacking forces
are mainly of a hydrophobic nature. Therefore, the range of values
for ΔES determined in Figure 8 should be compared to the values
of ΔG for the stacking interactions at the temperature at which
the experiments were performed. Overall, the estimate of ΔES
here obtained appears as in reasonable agreement with the free
energies involved in the thermodynamic stability of the DNA
double helices and confirms the rough estimate that was given
before (see the supporting online material associated with ref 29).
Experimental data are often compared to the original

Onsager theory for monodisperse thin hard rods, approximat-
ing the polydispersity created by the aggregation process as an
average aspect ratioMX0.

16,29 As a guide to the interpretation of
such data, we compare in Figure 9 the theoretically estimated

Figure 8. Critical volume fractions ΦN as a function of aspect ratio X0
(or equivalently Nb) from theoretical calculations for SQs and HCs
(for βΔES = 6.67 and βΔES = 5.56) and for experiments29 (circles).

Figure 9. Isotropic−nematic coexistence lines in the average aspect
ratio MX0 and packing ϕ plane. Solid lines with symbols indicate
theoretical predictions for X0 = 3. Symbols along the isotropic and
nematic phases at coexistence are joined by dotted lines, to indicate
the change in packing and average chain length at the transition.
Dashed lines indicate the Onsager original predictions, as re-evaluated
in ref 37 for ϕI and ϕN. In this case, the tie lines (dotted) are vertical.
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isotropic−nematic coexistence lines in the MX0 − ϕ plane,
parametrized by the stacking energy. The figure shows also the
Onsager original predictions, as re-evaluated in ref 37, in which
no change of aspect ratio takes place at coexistence. Including
polydispersity as a result of reversible assembling (and higher
order excluded volume contributions) significantly alters the
coexisting values of ϕ.

VII. CONCLUSIONS
In this study we have developed a free energy functional to
calculate the isotropic−nematic phase diagram of bifunctional
quasi-cylindrical monomers, aggregating into equilibrium
chains. The model has been inspired by experiments on the
aggregation of short DNA, which exhibits nematic phases at
sufficiently high concentrations. The comparison between the
theoretical predictions and the experimental results allows us to
provide an estimate of the stacking energy, consistent with
previous propositions.
Our approach is quite general, parameter free and not

restricted to particular shapes. Once the shape of the monomer
and geometry of the sticky sites are defined, the model
dependent quantities, like bonding volume, persistence length
and excluded volume can be calculated either theoretically, as
for HCs, or numerically, as done in the present case resorting
to a MC integration technique. Using these quantities the phase
diagram can be evaluated without any fit or adjustment of the
parameters and we do not need to perform any simulation to
calculate these quantities.
We provide techniques to evaluate the bonding volume and

the excluded volume, which enters into our formalism via the
Parsons−Lee decoupling approximation. We build on previous
work, retaining the discrete aggregate size description of ref 47
and the Parsons−Lee factor for the excluded volume
contribution proposed in ref 46. With respect to previous
approaches, we (i) explicitly account for the entropic and
energetic contributions associated with bond formation, and
(ii) we do not retain any adjustable fit parameter.
The resulting description of the isotropic phase is rather

satisfactory and quantitative up to ϕ ≈ 0.2. The description of
the nematic phase partially suffers from some of the
approximations made in deriving the free energy functional.
More specifically, several signatures point toward the failure of
the Parsons decoupling approximation in the ϕ range typical of
the nematic phase. While there is a sufficient understanding of
the quality of such approximation for monodisperse
objects,63,64,66,68,69,73 work needs to be done to assess the
origin of the failure of this approximation in the equilibrium
polymer case and to propose improvements.
We finally note that the model introduced here does not

consider the azimuthal rotations of each monomer around its
axis. This neglect is adequate when the aggregation does not
entail constraints in the azimuthal freedom of the monomers.
This is the case of base stacking, in which the angular
dependence of the stacking energy is arguably rather small.
However, this is not the case of DNAD interacting through the
pairing of overhangs and of the LC ordering of RNA duplexes.
Because of its A-DNA-type structure, the terminal paired bases
of RNA duplexes are significantly tilted with respect to the
duplex axis, thus establishing a link between the azimuthal angle
of the aggregating duplexes and the straightness of the
aggregate even in the case of blunt ended duplexes. However,
with minor modifications the model here introduced could
become suitable to include these additional situations. The

limiting factor in developing such extensions is the lack of
knowledge to quantify the azimuthal constraints implied by
these interactions. This situation, as well as the effects of off-
axis components of the end-to-end interduplex interactions, will
be explored in a future work.

■ APPENDIX A

Here we provide a justification for the use of Parsons
decoupling approximation in the case of linear chains poly
disperse in length (with distribution ν(l)), based on the
extension of Onsager’s second-virial theory to mixtures of
nonspherical hard bodies proposed in ref 84. The contribution
Fexcl to the free energy due to excluded volume interactions
between chains can be written if we neglect intrachain
interactions:84,85

∫ ∫ ∫
∑

β
= ρ ρ′ Ω Ω

ν ν ′
ρ

Ω Ω Ω Ω

·∇ Ω Ω

ρ

′
′

F
V

l l
g f f

V

r

r r

r

6
d d d d

( ) ( )
( , , ) ( ) ( )

( , , )

excl

ll
ll

HCr

0
1 2

2 1 2 1 2

1 2 (47)

where r is the distance between the centers of mass of the two
chains 1 and 2, Ω1 = {u1

1, ..., ul
1} and Ω2 = {u1

2, ..., ul′
2} are the

orientations of the two chains, where ui
α is the orientation of

monomer i belonging to chain α = 1,2, gll′(r,Ω1,Ω2) is the
molecular radial distribution function of the mixture, which
represents the correlations between two chains of length l and
l′, whose relative distance is r and which have orientations Ω1
and Ω2 respectively, VHC(r,Ω1,Ω2) is the hard-core part of the
interaction potential and f(Ωα) is the angular distribution
function of chain α. We note that in eq 47 the integration in ρ′
is performed keeping fixed all the parameters related to f(Ωα).
Neglecting intrachain interactions is equivalent to ignore self-
overlaps of chains, an assumption which is appropriate if chain
length is not much greater than its persistence length and the
chains can be considered nonextensible.
Parsons decoupling approximations in this case accounts to

putting:

Ω Ω = σ ̂ Ω Ω′ ′ ′g g r rr( , , ) [ / ( , , )]ll ll
HS

ll1 2 1 2 (48)

where gll′
HS is the radial distribution function of a mixture of hard

spheres and σll′(r,̂Ω1,Ω2) is an angle-dependent range parameter
which depends on chain lengths l and l′. If the pair interaction is
of the special form

Ω Ω = σ ̂ Ω Ω′V V r rr( , , ) [ / ( , , )]HC HC ll1 2 1 2 (49)

noting that r ·∇r = r(∂)/(∂r), eq 47 becomes

∫ ∫

∫∑
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With the substitution y = r/σll′ from eq 50 one obtains:

∫ ∫

∫
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The derivative of VHC is a delta function hence we need only
to evaluate the value of gll′

HS(y) at contact (i.e., y = 1+) and eq 51
becomes:

∫ ∫∑β
= ρ ν ν ′
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This expression tends to Parsons−Lee’s expression when the
system is monodisperse (ν(l) = ρδl,1). In the specific case of
spherical particles σll′(r,̂Ω1,Ω2) = σ(r,̂Ω1,Ω2) and
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i.e., the excluded volume of two spheres of diameter σ. Hence
we are allowed to make the identification:
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and write:
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We note that the identification made in eq 53 can be also
further justified using the same reasonings given in section III.
As discussed in ref 84, a possible expression for gll′

HS is the one
derived by Boubliḱ,86 which generalizes the Carnahan−Starling
relation87 for pure hard spheres to the case of mixtures, i.e.

=
− ζ

+
ζ

− ζ
σ̂ σ̂

σ̂ + σ̂

+
ζ

− ζ
σ̂ σ̂

σ̂ + σ̂

′
+ ′ ′

′ ′

′ ′

′ ′

g (1 )
1

1

3

(1 )

2

(1 )

( )

( )

ll
HS ll l l

ll l l

ll l l

ll l l

3

2

3
2

2
2

3
3

2

2
(55)

where σ̂ll is the diameter of an hard sphere corresponding to a
chain of length l and ζn = (π/6)∑lν(l)σ̂ll

n. To map the system of
polydisperse chains onto the equivalent mixture of hard spheres
we need an expression for σ̂ll. According to ref 84, the simplest
choice is to consider spheres having the same volume of the
corresponding linear chain of length l, i.e.

= π σ̂v
l6d ll

3
(56)

where we recall that vd is the volume of a monomer. Although in
principle we could use eq 54 together with eqs 55 and 56 to
calculate the free energy contribution due to the excluded
volume between particles, if we make the further assumption that

≈′
+ +g g(1 ) (1 )ll

HS HS
(57)

i.e., if we approximate the radial distribution function of the hard
spheres mixture at contact with that of a monodisperse system
of hard spheres having the same total volume fraction (i.e.,
setting in eq 55 σ̂ll′ = σ̂ with Mvd = (π/6)σ3), we finally obtain

∑β
= η φ ν ν ′ ′

′

F
V

l l v l l
( )
2

( ) ( ) ( , )excl

ll
excl

(58)

where we used the Carnahan−Starling expression for gHS(1+;ρ′)
and we performed the integration in ρ′. Equation 58 is exactly
the expression for the contribution to the free energy due to
steric repulsion which we used in section III. In summary
according to the above derivation we argue that eq 58 can be
not accurate at high volume fractions due to the approximations
made in eqs 48 (i.e., the Parsons decoupling approximation) and
57. Within the present treatment, eq 58 is also not appropriate
for chains with l ≫ lp because, as already noted, chain self-
overlaps can be significant and the hard body pair potential VHC
does not have the special form assumed in eq 49.
We finally note that the approximation made in eq 57 can be

avoided if one resorts to eq 54 instead of eq 58, although the
required free energy calculations would become much more
complicated. Anyway we verified for the isotropic phase that
employing eq 54 instead of eq 58 does not provide any
appreciable improvement in the present case.

■ APPENDIX B
The procedure, which we adopted to calculate the excluded
volume vexcl, recalls the one described in ref 77, except that we
generate new configurations without any bias technique and by
assuming an angular distribution for monomer orientations,
which is uniform in the isotropic phase and the Onsager
orientational distribution function in the nematic phase. Our
procedure in the isotropic phase consists in fact in performing
Natt attempts of inserting two chains of length l in a box of
volume V as described in the following list:

1 Set the counter Nov = 0
2 Build first chain of length l randomly, according to the

following procedure:
(a) Insert a first randomly oriented monomer.
(b) Insert a monomer bonded to a free site on chain

ends ( can be chosen randomly among the two free
sites of the partial chain). The orientation of will be
random and its position will be chosen randomly within
the available bonding volume between and . The
bonding volume between and is defined as the
volume corresponding to all possible center of mass
positions of with bonded to .

(c) If the number of monomer inserted is l terminate
otherwise go to point 1

(d) where the first monomer inserted is placed in the center
of the box and it is oriented with its attractive sites
parallel to the x-axis.

3 Build a second chain of length l, where the first monomer
inserted is placed randomly within the simulation box
with a random orientation.
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4 Increase Nov by 1 if two monomers belonging to different
chains overlap and the two chains are either not self-
overlapping or forming a closed loop.

5 If the number of attempts is less than Natt, go to point 2;
otherwise, terminate.

Then vexcl can be calculated as follows:

=v
N
N

Vexcl
ov

att (59)

A reasonable choice for the total number of attempts is Natt =
106. In a similar fashion one can also calculate the bonding
volume75 between two monomers. In this case one monomer is
kept fixed in the center of the simulation box and the other one
is inserted with random position and orientation for a total of
Natt attempts. The bonding volume will be:

=V
N

N
V

4b
bond

att (60)

where the factor 4 accounts for the fact that two particles can
form 4 different possible bonds and Nbond is the number of
times that the two monomers were bonded after a random
insertion. Finally with the same procedure used to calculate the
excluded volume in the isotropic phase we can evaluate the
excluded volume in the nematic phase. The only difference is
that now monomers have to be inserted with an orientation
extracted from the Onsager angular distribution defined in eq
23, so that the excluded volume depends also on the parameter

α. Again if Nov is the number of times that two monomers
belonging to different aggregates overlap and Natt is the total
number of attempts then we have:

α =v l l
N
N

V( , , )excl
ov

att (61)

■ APPENDIX C

In this appendix, we explain how to calculate the parameters
AN(α), kN(α), and BN(α) of the nematic free energy functional.
As a preliminary step we check that vexcl(l,l′,α) for a fixed value
of α is a second order polynomial of l and l′ as assumed in eq 5.
In Figure 10a, we plot vexcl(l,l,α) as a function of l for different
values of α and X0, vexcl(l,l,α) can be well represented by a
parabolic function, in agreement with eq 5.
We start by observing that the α dependence of AN(α),

kN(α), and BN(α) in the case of hard cylinders following the
Onsager distribution can be expanded in powers of α−1/2 as
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Figure 10. (a) Excluded volume of two chains of length l as a function of chain length for the nematic cases α = 10, 20, 30, 40 and three different
aspect ratios X0 = 1, 2, 3. (b−d) Excluded volume in the nematic phase calculated numerically as a function of α for two chains of equal length l,
where l = 2, 3, 4, composed of monomers with X0 = 1, 2, 3. Dotted lines represent the excluded volume calculated with Onsager formula reported in
eq 7.
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where cij are the elements of the 3 × 4 matrix C. In the case
of cylinders, some of the cij vanishes.

45 We assume here that the
same α dependence holds for SQs.
In view of this result the covolume as a function of l and α

can be expressed as

α = +
α

+
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+
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+
α

v X l d
d d d
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where dl,p, for p = 0...4 are fitting parameters. Parts b−d of
Figure 10 show the numerical calculation of the covolume
varying α for three particular aspect ratios (X0 = 1, 2, 3),
together with fits to the functional form of eq 63 and the
excluded volume calculated using the Onsager expression for
HC (see eq 7). Onsager formula as in the isotropic case
provides only an approximate description of SQs “exact” (i.e.,
numerically estimated) excluded volume.
The good quality of the fits (reduced χ2 is always much less

than 1 for all fits) suggests that retaining terms up to O(1/α2) is
to the present level of accuracy of our calculations absolutely
appropriate.
From these fits we can estimate the matrix C needed to

evaluate the free energy in the nematic phase for each X0. If we
define in fact the following matrix P and the vectors qp, with p =
0...4 as follows:
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where la, lb, and lc are three different chain lengths for which we
calculated the vexcl as a function of α, then we can calculate the
matrix elements of C in the following way:
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