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SUPPEMENTARY FIGURES
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FIG. S1. Crystallisation with disorder in the patch size. Crystallisation runs at temperatures close to the nucleation
temperature for particles with patches disordered in size. Top: σθ = 0.02, bottom: σθ = 0.04. Here the number density ρ is
fixed to 0.65 and N = 1000. Nucleation of a single cluster happens in both cases at comparable temperatures.
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FIG. S2. Crystallisation with disorder in the patch shape. Crystallisation runs for patches disordered in position. The
number density ρ is fixed to 0.65 and N = 1000. Also here nucleation of a single cluster happens in both cases at comparable
temperatures.
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FIG. S3. Self-assembled tetrastack clusters Images of a growing crystal cluster of cubic tetrastack particles, when the
number of cubic particles has reached the values 500 and 1000. Fluid particles have been removed for clarity. The total
number of particles in the simulation is N=4000. Both configurations are available for inspection in a molecular viewer as
Supplementary Data.
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FIG. S4. Yukawa-like attractive potential: extended law of corresponding states. Extended law of corresponding
states between a smooth short-range attraction (Yukawa) and a sharp short-range square well (SW) attraction. The two
potentials (shown left) have the same reduced second virial coefficient at kBT/u0 = 0.12. The radial distribution function g(r)
(shown right) for the three-block Janus particles in which the attractive potential is modeled via any of the two potentials is
virtually the same for the two models at that T .



6

0 2.108 4.108 6.108 8.108 109 1.2.109 1.4.109

MC Cycles

-3

-2.5

-2

-1.5

-1

u
/u

0

FIG. S5. Nucleation for the smooth potential Simulations for the smooth attraction model at temperatures close to
T = 0.12. Nucleation is achieved at T = 0.115 (ρ = 0.65, N = 250).
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FIG. S6. Crystallisation order parameters. Probability distributions of the dot products ql(i) · ql(j) for the cubic (CT)
and hexagonal tetrastack. The peak in the q4(i) · q4(j) centered around -0.5 allows to distinguish between cubic and hexagonal
local environments. Given that we use normalised vectors, the dot product is comprised between −1 and 1. Note the log scale
on the y axis.
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SUPPLEMENTARY TABLES

Crystallisation results for all the models studied

kBT/u0 Ntot nc nh

ideal 0.1170 1000 343 (342) 0/0

σθ = 0.02 0.1170 1000 439 (439) 0/0

σθ = 0.04 0.1175 1000 215 (213) 0/0

σp = 0.02 0.1190 1000 363 (355) 0/0

σp = 0.04 0.1175 1000 323 (320) 0/0

smooth attr. 0.1175 250 88 (87) 0/0

TABLE S1. Structural properties of final configurations for different studied models (disorder in the patch size, disorder in the
patch position and smooth attraction) compared to the idealised Kern-Frenkel model studied in the main text. Data refer to
systems a density of ρ = 0.65. ns: number of crystalline particles; nc: number of crystalline particles within a locally cubic
environment; nh: number of crystalline particles within a locally hexagonal environment. The number between parentheses
are the size of the corresponding largest cluster of connected crystalline particles. Homogeneous nucleation is observed in all
models, i.e., the largest cluster contains nearly all the solid particles. Note that, in simulation, crystal growth is arrested by
geometric constraints and self-interaction of the cluster through periodic boundary conditions.
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SUPPLEMENTARY METHODS

Crystallisation order parameters

To study nucleation of the cubic and hexagonal tetrastack we resort to the technique introduced by Steinhardt and
collaborators [29] that allows to identify the local environment of each particle. To each particle i we assign a series
qlm(i) of normalised vectors of complex numbers based on spherical harmonics defined whose components are defined
as follows:

qlm(i) =
1

N

Nb(i)∑
k=1

Ylm(rik) (S1)

where Nb(i) is the number of first neighbours of particle i, in our case the number of particles within the attraction
cutoff distance (1 + δ)σ, N is a normalisation factor, m runs from −l to l and l defines the order of the complex
vector. Finally, Ylm is the spherical harmonic with total angular momentum l and projection m and rik is the (vector)
distance between the centres of particles i and k.

The probability distributions of the dot products ql(i) · ql(j), where i and j are neighboring particles, usually has
well defined peaks for one or more values of l when evaluated on crystalline structures. It is thus possible to define a
“crystalline bond” between two particles i and j if ql(i) · ql(j) falls in the interval where the probability distribution
shows a peak in the lattice. Different peaks at different values of l can be combined in such definition. A particle
can than be defined as solid-like if it has a minimum number of crystalline bonds. In turn, the largest collection of
connected crystalline particles is the relevant order parameter for studying nucleation processes.

In Supplementary Figure S6 we show the probability distribution functions for the values of ql(i)·ql(j) with l = 3, 4, 5
and 6 for the cubic and hexagonal tetrastack. It is possible to unambiguously tell apart particles which belong to a
cubic or hexagonal local environment as follows:

• particle i is detected as belonging to a local cubic tetrastack environment if it has at least 6 neighbours j with
which 0.35 < q6(i) · q6(j) < 0.5 and −0.15 < q4(i) · q4(j) < 0.15.

• particle i is detected as belonging to a local hexagonal tetrastack environment if it has at least 6 neighbours j
such that 0.35 < q6(i) · q6(j) < 0.5 and at least 2 neighbours such that −0.65 < q4(i) · q4(j) < 0.35.

• particle i is detected as belonging to a local tetrastack environment, without distinguishing if it is cubic or
hexagonal, if it has at least 6 neighbours j with which 0.35 < q6(i) · q6(j) < 0.5.

Robustness regarding the shape of the attractive potential

In the case of spherically interacting particles, Noro and Frenkel [30] have shown that hard-core particles with
a short range attraction (less than roughly 10% percent of the particle diameter) show a behaviour that does not
depend on the details of the interaction potential. This is a general and very useful results in colloidal physics, where
the attraction is typically very short-ranged. The thermodynamics properties of different models can be scaled in a
universal curve if temperature is substituted by the reduced second virial coefficient, a finding known as the extended
law of corresponding states. This has been later shown to apply also to anisotropically interacting particles [31] as
long as the geometry of the model is preserved. As an example, results reported in Ref. [16] suggest that the Kern-
Frenkel model, although it models the attractive interaction via a short-range square-well, is able to reproduce the
thermodynamics and crystallisation mechanism of the experimental study reported in Ref. [8], strongly supporting
the independence of the results from the actual shape of the model.

To further strengthen the results reported in the main text, we investigate here the case in which the square-well
potential is replaced by a short-range Yukawa attractive potential. In this case the pair interaction can be written as:
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v(rij , {p̂(n)
i }, {p̂

(n)
j }) =



∞ if rij < σ

vYuk(rij) if



σ < rij ≤ rc
and

p̂k
i · (rij/rij) > cos(θ)i,k

for k = 1, 2, 3 or 4, 5, 6

and

p̂k
j · (−rij/rij) > cos(θ)j,k

for k = 1, 2, 3 or 4, 5, 6

0 otherwise

, (S2)

with

vYuk(r) = −u0A
exp [−(r − σ)/ξ]

(r/ξ)
. (S3)

We fix ξ = 0.025 and set A = 52.0312 so that the second virial coefficient B2 of the square well and of the Yukawa
models are the same at T = 0.12. Supplemetary Figure S4 shows a comparison between the square-well and the
Yukawa attractive interactions used in this work. Supplementary Figure S4 shows the pair distribution function g(r)
of the two models at T = 0.12 and ρ = 0.65. Despite the different shape of the short-range attractive potential, the
structure of the fluid is identical, in full agreement with the extended law of corresponding states [30,31].

To confirm our hypothesis that crystallization is unaffected by the shape of the attractive potential we investigate
nucleation in the Yukawa model, finding confirmation of nucleation in the tetrastack lattice in the same condition as
the square-well model. Supplementary Figure S5 shows the time dependence of the potential energy for the Yukawa
model in a system of 250 particles. Crystallization proceeds via spontaneous nucleation of a single seed. The resulting
number of cubic and hexagonal crystal particles in the system and the number of cubic and hexagonal particles in
the largest crystalline cluster are reported in Table S1.

Visualisation of clusters

To provide a visual example of the growing cubic tetrastack we show in Supplementary Figure S3 two representative
images extracted from a run in which a crystal seed grows with time. The two clusters correspond to the green points
in Figure 3 of the main text. The images show that the growing clusters are very compact and no grain boundaries or
defects are present in the bulk. Specifically, we show images of the crystal cluster when the number of cubic particles
nc = 500 and nc = 1000. Corresponding files in xyz format are attached to this supplementary material.
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