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We numerically study a simple fluid composed of particles having a hard-core repulsion comple-
mented by two patchy attractive sites on the particle poles. An appropriate choice of the patch
angular width allows for the formation of ring structures which, at low temperatures and low
densities, compete with the growth of linear aggregates. The simplicity of the model makes it
possible to compare simulation results and theoretical predictions based on the Wertheim pertur-
bation theory, specialized to the case in which ring formation is allowed. Such a comparison of-
fers a unique framework for establishing the quality of the analytic predictions. We find that the
Wertheim theory describes remarkably well the simulation results. © 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4737930]

I. INTRODUCTION

The equilibrium self-assembly of particles into chains
and rings has been the subject of thorough investigations in
the past.1–7 In the limit of non-interacting aggregates (i.e.,
low densities) and weakly T-dependent persistence length, a
well defined temperature exists below which a ring of a char-
acteristic size becomes equally probable as the chain of the
same size. For lower T, rings start to populate the system and,
under appropriate conditions, may become the most abun-
dant aggregates. The basic elements controlling the compe-
tition between rings and chains are well understood.8 Com-
pared to linear polymers, rings are energetically stabilized by
the presence of an additional bond but pay a significant cost
proportional to the entropy loss associated to the necessity
to constrain the end-to-end distance to distances of the order
of the bonding length as well as a term proportional to the
ring size arising from the number of ways a ring can open
to form a chain. Despite the formal understanding, no quan-
titative parameter-free investigation of the ring-chain equi-
librium for a well defined interaction potential has been re-
ported so far. Two reasons suggest an effort in this direction:
(i) the Wertheim perturbation theory9, 10 has been shown to be
a predictive and quantitative theory for describing chaining of
large persistence polymers, when rings do not compete.11, 12

While attempts to generalize to the case in which rings are
relevant have been presented,7, 13–15 no quantitative compar-
ison has been reported. (ii) The recent discovery that in the
dipolar hard sphere (DHS) model a non-negligible fraction of
rings appears at low T, in the region in which a gas-liquid
critical point was expected to occur.16, 17 Analogous findings
have been documented in both experiments and simulations
of colloids in which the dipolar interaction is dominant.18–22

Wertheim theory, when applied to patchy colloidal particles
with asymmetric interactions,23–26 provides a valuable model

for interpreting the competition between chaining and branch-
ing, which is deemed to be essential in the physics of DHSs. It
is thus important to extend it, under strict control, to the case
in which rings are possible.

In the present article, we present a two-patch model with
controlled persistence length and introduce an extension of
Wertheim theory to cope with the presence of rings. For one
specific value of the opening bond angle (a parameter of the
interaction potential) we then solve the Wertheim theory aug-
mented with rings and compare theoretical predictions with
simulation results in a large density region, from ρσ 3 = 5
× 10−6 up to ρσ 3 = 0.02, illuminating the presence of an
optimal density for ring formation. The quality of the re-
sulting parameter-free description provides a stringent test of
Wertheim theory as a model of the thermodynamics of the
self-assembly of equilibrium chains and rings.

II. TWO PATCHY PARTICLE MODEL

We focus on a system of hard-sphere (HS) particles (of
diameter σ , the unit of length) with two oppositely located
patches. The patch-patch interaction is modeled via a Kern-
Frenkel (KF) potential,27 i.e., a square-well interaction of
range � and depth u0, multiplied by an angular function
which accounts for the orientational contribution, such that
particles bind only when distinct patches face each other. In
the standard KF model the single-bond per patch condition
depends on the patch angular width θmax and �. The maxi-
mum opening angle θmax must satisfy the condition sin (θmax)
≤ [2(1 + �/σ )]−1. In the limit of a cohesive contact poten-
tial (� → 0), the maximum opening angle is 30◦, a value for
which the probability of ring formation is minute. To be able
to extend the range of values of θmax beyond 30◦ and to de-
couple the choice of the angle from the choice of the range we
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take inspiration from the Nmax model,28, 29 imposing numeri-
cally in the Monte Carlo (MC) code a constraint on the max-
imum number of bonds each patch can be involved in. In this
way, only one particle can occupy the bonding volume, con-
tributing u0 to the potential energy. A double-stranded DNA
with palindromic sticky overhangs at its extremities would be
a possible experimental realization of such a particle. A care-
ful choice of the strand sequences would make it possible to
fulfill the single bond per patch condition and to control both
the extension and the flexibility (i.e., the bonding volume) of
the sticky ends.

Temperature is measured in units of the potential depth
(i.e., kB/u0 = 1, where kB is Boltzmann constant). The choice
of a simple square-well interaction model to describe the asso-
ciation process between different particles is particularly con-
venient from a theoretical point of view. It allows for a clear
definition of bonding and a clear separation of the bonding
free energy in its energetic and entropic contributions, be-
ing unambiguously related to the depth of the well and to
the bonding volume, respectively. In addition, the persistence
length of the polymer is T-independent, due to the flatness of
the attractive potential.

MC simulations in the NVT ensemble, with N = 5000
have been performed for five different densities
ρ = 0.000005, 0.00007, 0.0005, 0.007, 0.02, and five
different temperatures T = 0.05, 0.06, 0.07, 0.08, 0.09.
The KF model parameters were set to � = 0.3 and
cos θmax = 0.7077, corresponding to a bonding volume
vb = 4

3π [(σ + �)3 − σ 3](1 − cos θmax)2. During equilibra-
tion, especially at very low ρ and T, we have implemented
the Aggregation Volume Bias move proposed in Ref. 30, spe-
cialized to patchy particles. These moves are very effective at
low densities, since they allow for a fast equilibration of the
bonded–non-bonded chemical equilibrium. Such a move is
described in depth in Ref. 25.

III. WERTHEIM THEORY

The first-order Wertheim thermodynamic perturbation
theory (W-TPT) (Refs. 9, 10, and 31) provides an expression
for the free energy of associating liquids. The Helmholtz free
energy is written as a sum of the HS reference free energy
FHS plus a bond contribution Fbond, which derives by a sum-
mation over certain classes of relevant graphs in the Mayer
expansion.31 In the sum, closed loops graphs are neglected.
The fundamental assumption of W-TPT is that the conditions
of steric incompatibilities are satisfied: (i) no site can be en-
gaged in more than one bond and (ii) no pair of particles can
be double bonded. These steric incompatibilities are satisfied
in the present model thanks to the location of the two sites
and the chosen numerical algorithm which prevents multiple
bonding.

The inclusion of the contribution of rings to the free en-
ergy is done like in Refs. 7, 13, and 14: the bonding free en-
ergy per particle of an homogeneous system is expressed as

βFbond/N = ln X0 + 1 − 2XA + X2
A

X0
− fc − fr, (1)

where X0 is the fraction of particles that have no patches
bonded (“free” monomers), XA is the fraction of unbonded
patches, and fc and fr are, respectively, the contribution of
chains and of rings to the free energy. Under the assumptions
of W-TPT, fc is

fc = 2ρ�AAX2
A, (2)

where ρ is the number density, and

�AA =
∫

gHS(�r)[exp(βu0) − 1]d�r = vb[exp(βu0) − 1].

(3)
In the previous expression, the pair correlation function of the
reference fluid has been approximated by gHS = 1, since only
very low densities will be studied. The ring contribution is
generalized to include the possibility of formation of rings of
every size, and thus,

fr = G0

ρ
(4)

with

Gi =
∑

n

ni (2ρ�AAX0)n Wn. (5)

This expression corresponds to the summation of closed loop
graphs, and is calculated assuming that, consistently with the
usual W-TPT, the bonds of a ring are independent. Wn is pro-
portional to the number of configurations of a single ring with
n bonds. In previous works,7, 13, 14 Wn has been approximated
using the exact expression for freely jointed chains.32 Here
we will use an expression based on simulation results (see
Secs. IV and V A). It is also worth noticing that Gi is the ith
moment of the ring size distribution. The formation of a ring
of size n requires n particles with the two bonding sites avail-
able to form bonds: the density of such particles is ρX0. Each
of these particles can bond in two different orientations (thus
the factor 2 in (5)) and the probability to form a bond, once
the available sites of the two particles are chosen, is �AA.

The bonding free energy (1) is then a function of X0 and
XA and, at equilibrium, must be stationary with respect to vari-
ations of these densities. Minimizing (1) with respect to XA

and X0, gives, respectively,

− 1 + XA

X0
− 2ρ�AAXA = 0 (6)

and

1 − X2
A

X0
− G1

ρ
= 0. (7)

These are the laws of mass action that establish the number of
bonds and the number of rings in equilibrium, for a given set
of thermodynamic variables (ρ, T). By replacing (6) in (1),
one obtains for the equilibrium bonding free energy per unit
volume,

βFbond/V = ρ ln X0 + ρ − ρXA − G0. (8)

Notice that when there are no rings (i.e., Gi = 0 in the
previous equations), one recovers the usual expressions ob-
tained when only chain aggregates are considered (see, e.g.,
Refs. 23 and 25).
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Thermodynamic calculations are straightforward, once
an approximation for Wn is adopted. For fixed (ρ, T) the frac-
tions X0, XA are calculated using (6) and (7) and the bonding
free energy follows from (8).

IV. EQUIVALENCE WITH AN IDEAL GAS OF CHAINS
AND RINGS DESCRIPTION

The free energy per unit volume of an ideal mixture of
chains and rings can be written as

βFid.cl./V =
∑

n

ρc
n

(
ln ρc

n − 1 − ln q̃c
n

)

+
∑

n

ρr
n

(
ln ρr

n − 1 − ln q̃r
n

)
, (9)

where ρc
n is the density of chains of size n, ρr

n is the density
of rings of size n, and q̃c

n and q̃r
n are the partition functions of

a ring and of a chain of size n, divided by the volume V . The
chemical equilibrium between chains and rings gives

∂βF/V

∂ρc
n

= ∂βF/V

∂ρr
n

= nβμ, (10)

where μ is the chemical potential. Consistent with the ideal-
gas hypothesis, the number density of monomers (i.e., par-
ticles with no bonds) ρc

1 is related to μ by eβμ = ρc
1.

Equations (9) and (10) give origin to the following expres-
sions:

ρc
n

q̃c
n

= ρr
n

q̃r
n

= exp(nβμ) = (ρc
1)n, (11)

from which the relation between the chain and rings size dis-
tribution and partition functions follows

ρr
n = ρc

n

q̃r
n

q̃c
n

. (12)

This shows that in the ideal-gas (of cluster) limit the ring
size distribution is not an independent variable, but it is pro-
portional to the chain size distribution times the ratio between
the ring and chain partition functions.

The chain partition function can be written as

q̃c
n = λ−3 exp [−(n − 1)βFb] (13)

in terms of the thermal de Broglie wave length, λ, and of the
free energy of a bond, Fb. This expression corresponds to as-
suming that each of the n − 1 bonds lowers the free energy
by Fb. The ring partition function depends on the geometry
of the model for short rings, while it reaches a well estab-
lished asymptotic value for large n values, dictated by the
self-similar nature of the growth process. More specifically,
in the dilute limit,

q̃r
n ∝ vb

nR3
ee(n)

exp (−nβFb), (14)

where vb is the bonding volume and Ree(n) is the mean end-
to-end distance of a chain of size n. Compared to linear poly-
mers, rings are thus stabilized by the presence of n bonds (one
more than a chain). On the other hand, the number of config-
urations allowing for ring formation are proportional to the
ratio vb/R

3
ee(n). The additional n dependence arises from the

number of ways a ring can open to form a chain.4, 5, 33 As-
suming that chains can be modeled with a self-avoiding walk
process for large n (i.e., Ree(n) ∼ nνSAW , where νSAW = 0.588
is the self-avoiding walk exponent), one can thus write

q̃r
n = α(n)n−(3νSAW +1) exp (−nβFb), (15)

where α(n) describes the model dependent short-n behavior
and approaches a constant value for large n, when the self-
similar nature of the ring is reached. The evaluation of α(n)
for the chosen model is discussed in the following (Sec. V A).

Expression (9) can be simplified by using (11) to obtain,

βFid,cl./V = ρ ln ρc
1 −

∑
n

(
ρc

n + ρr
n

)
. (16)

Once approximations for Fb and α(n) are adopted, ρc
n and

ρr
n can be expressed as a function of ρc

1 via Eq. (12) and the
latter can be calculated at a given (ρ, T) imposing the normal-
ization condition, ∑

n

n
(
ρc

n + ρr
n

) = ρ. (17)

In order to demonstrate the equivalence between the ideal
cluster of chains and rings description and that obtained using
Wertheim theory (with the ideal gas as the reference system),
we note that the quantities X0 and XA can be expressed in term
of rings and chains distributions as

ρXA =
∑

n

ρc
n (18)

and

ρX0 = ρc
1 . (19)

The bond free energy βFb can be related with the Mayer
function of the bond via exp(−βFb) = 2�AAλ−3. Finally, the
number of ring configurations Wn can be identified with

Wn = α(n)n−(3νSAW +1). (20)

Via this set of equivalences, ρr
n = (ρc

1)nq̃r
n (Eq. (11)) can be

written as (2�AAρ X0)nWn and Eq. (16) transforms to

βFid,cl./V = ρ ln(ρX0) − ρXA −
∑

n

(2�AAρ X0)nWn.

(21)
By defining the ideal gas free energy Fid ≡ ρln (ρ) − ρ and
exploiting the definition of G0 in Eq. (5) and of βFbond/V in
Eq. (8), Eq. (21) becomes

βFid,cl./V = β(Fbond + Fid )/V (22)

proving that the free energy of an ideal gas of chains and rings
can be written as the sum of the Wertheim bonding free energy
and of the reference ideal gas free energy.

V. SIMULATION RESULTS

A. Estimate of the ring partition function

The evaluation of the free energy of a system of chains
and rings requires the knowledge of the function α(n) intro-
duced in Eq. (15). As discussed in Sec. IV, such function
encodes all non-universal model properties and needs to be
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FIG. 1. Numerical evaluation of α(n) (Eq. (23)) at four different tempera-
tures and ρ = 0.007. The line is the fit function (Eq. (24)).

evaluated independently.34 For models (like the present one)
in which the persistent length does not depend on T, the func-
tion α(n) does not depend on T and can thus be estimated at
any (low density) state point, by evaluating the ratio between
ρr

n and ρc
n. Indeed, from Eqs. (12) and (15),

α(n) ≡ ρr
n

ρc
n

n3νSAW +1λ−3 exp (βFb). (23)

Here we made use of the scaling relation between the
ring exponent, ν exponent and the dimension d = 3,35 and,
consistently with the ideal gas of clusters approximation, use
the value of ν for dilute systems , ν = νSAW .

Figure 1 shows α(n) evaluated at four different state
points. The asymptotic value is reached only for chains longer
than 30–50 particles. The minimum ring size is five. The nu-
merical α(n) can be represented by the arbitrary fit function

ln(2vbα(n))=−5.86595

[
1+35.4697 · exp

(
− ln n

0.468144

)]
,

(24)

and such expression has been used to evaluate theoretically
all system properties.

B. Chain and ring distribution functions

Figure 2 shows the chain and the ring distribution func-
tions for different T values at ρ = 0.02. The chain distri-
butions are exponential, with a characteristic decay length
that increases on cooling. The ring distributions are non-
monotonic and increase their width and amplitude on cooling,
signaling the progressive increasing concentration of rings.
The position of the peak in the ring distribution functions,
whose presence is due to the existence of a preferred cluster
size determined by the interplay between energy and entropy,
is model dependent and can be tuned by changing the angular
width of the patches.

Figures 3 and 4 show the average size of chains Mc

and rings Mr, defined respectively as Mc = ∑
nρc

n/
∑

ρc
n and

Mr = ∑
nρr

n/
∑

ρr
n, as a function of inverse T and ρ. Both

Mc and Mr increase monotonically upon cooling the system
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FIG. 2. Chain and ring size distribution functions at ρ = 0.02 and different
temperatures T.

and increasing density, but the effect of changing ρ and T
is much more dramatic on Mc. Indeed, Mc spans three or-
der of magnitude in the studied range of parameters, whereas
Mr changes of a mere factor of 5 going from T = 0.09,
ρ = 0.000005 to T = 0.06, ρ = 0.02.

The theoretical predictions shown in these figures are cal-
culated using,

Mc = 1 − G1/ρ

XA

(25)

and

Mr = G1

G0
. (26)

Given the low densities studied (that make Wertheim theory
almost exact) and the numerical approximation adopted for
the partition function of rings, the very good agreement with
the simulation results is expected. In Figs. 3(a) and 4(a) the
result obtained when rings are neglected is also shown. One
can conclude that the effect of rings in the chain size distribu-
tion becomes important at low ρ and T. For fixed low ρ, the
decrease in T increases this influence. On the other hand, for
fixed low T, this effect is important in a range of intermediate
ρ; this range increases for lower T.

C. The onset temperature

We have seen in Sec. IV that in the limit of non-
interacting clusters, the ratio between ring and chain distribu-
tions is controlled by the ratio of the ring and chain partition
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n = 1, to visualize the range in n for which, at a given

T > Tonset, rings become more probable than chains. The full lines are the
theoretical predictions for this ratio calculated using (3), (23), and (24).

functions. Such ratio has a maximum at a specific ring size
and approaches zero both at smaller sizes, due to the difficulty
to form rings of sizes comparable to the persistence length and
at large sizes, where the entropy cost of localizing the chain-
ends controls aggregation. Figure 5 shows the ratio ρr

n

ρc
n

for the
present model, at five different T and ρ = 0.02. All the curves
retain the same shape, peaking at nc

max ≈ 10 − 11, but their
amplitude strongly depends on T, via the factor exp βFb. The
T dependence provides a way of defining an onset tempera-
ture for rings (Tonset), for example as the T at which

ρr
nmax

ρc
nmax

= 1,
as

exp

( Fb

kBTonset

)
= α(nmax)n−(3νSAW +1)

max . (27)

For the present model, Tonset ≈ 0.075.

D. Potential energy

Fig. 6 shows the potential energy per particle U/N (pro-
portional to the number of bonds) for different T and ρ. The
energy decreases in a small interval of T, approaching a value
−u0, which describes the condition in which all possible
bonds are formed, at the smallest investigated T. The figure
also shows the Wertheim theoretical predictions, both includ-
ing and excluding the possibility of ring formation. At large T,
rings are negligible and both theories provide the same predic-
tions, but around and below the onset temperature, the pres-
ence of rings significantly modify the T-dependence of U, giv-
ing rise to a faster approach to the ground state energy. The
extended Wertheim theory captures extremely well the T and
ρ dependence of the energy.

E. Fraction of particles in rings

To globally assess the behavior of the system, we evaluate
the T and ρ dependence of the fraction of particles in rings,
defined as

fpr =
∑

n nρr
n

ρ
= G1

ρ
. (28)
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FIG. 6. Potential energy (proportional to the number of bonds) per particle
as a function of T for several ρ values. Symbols are MC results. Lines are the-
oretical predictions for the case in which rings are either excluded or included
in Wertheim theory.

The results are shown in Fig. 7. The quantity fpr shows a
non-monotonic behavior as a function of ρ, decreasing both
for small and large densities. The non-monotonic behavior of
fpr is a consequence of the non-monotonic n dependence of
the ratio ρr

n

ρc
n
, which is strongly peaked around nmax. Along a

constant T path, the concentration of rings is expected to have
a maximum when the average size of the aggregates is of the
order of nmax (see Fig. 4(b)). Hence, fpr decreases when ρ is
so small that only very small clusters are present as well as
when ρ is so large that the average chain length is much longer
than nmax. Indeed, on increasing ρ, the number of bonds in the
system increases (see Fig. 6), favoring the formation of chains
longer than nmax.

Figure 7 shows also the theoretical evaluation of fpr based
on the Wertheim theory, with no fitting parameters. As for the
potential energy, the theory very accurately captures the ρ and
T dependence of fpr.

VI. CONCLUSIONS

Recent studies12 have shown that an accurate modeling
of chaining in patchy particle systems in dilute conditions
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FIG. 7. Fraction of particles in rings fpr evaluated from MC simulations
(symbols), and with Wertheim theory (lines).

can be achieved via the Wertheim thermodynamic perturba-
tion theory, without resorting to any fitting parameter. In this
article, we have extended this approach to the case in which
chaining competes with the formation of ring structures, once
more comparing “exact” numerical results with predictions
based on the Wertheim thermodynamic perturbation theory,
augmented to include the description of close loops of bonded
particles.7, 13, 14 While the Wertheim theory provides an ex-
pression for the chain partition function, valid in the limit of
persistent chains, the ring partition functions is one additional
input to the theory. We have resorted to a numerical evaluation
of such a quantity, consistent with the expected limits—based
on the statistic of self-avoiding walks—for large ring sized.
The resulting model-dependent expression describes properly
all ring sizes at low ρ, incorporating the non-universal prop-
erties of the KF-model.

We find that the augmented Wertheim theory properly
captures the ρ and T dependence of the aggregation phe-
nomenon. It is able to predict with extreme accuracy the
non-monotonic behavior of the fraction of particles in rings
on increasing ρ at low T. Indeed, the system evolves from
a collection of very short chains at extremely small den-
sities, to a state in which almost of particles are in rings,
and back to a state in which long polymers dominate again
for large densities. The region where rings dominate is con-
fined at low T (where the presence of an additional bond
energetically stabilizes rings as compared to a chain of cor-
responding size) and at low densities (where the average
cluster size is limited). The ρ and T dependence of the
number of bonds (i.e., the energy) or of the average clus-
ter size of chains and rings is also predicted with very high
accuracy.

The ability of Wertheim theory to also model the deli-
cate equilibrium between chains and rings, together with the
previously explored ability of the Wertheim theory to model
the thermodynamics of chaining and branching, suggests that
it will be possible to combine the two approaches and de-
rive an accurate theory for systems in which rings, chains
and branched structures coexist. It is particularly important to
find out under which conditions the branching-induced gas-
liquid critical point, survive in the presence of ring forma-
tion. It has indeed been shown36 that low-valence patchy par-
ticles are characterized by a branching driven critical point
at rather low densities, i.e., in the same region where rings
can be dominant. The scenario in which rings, chains and
branched structures coexist and compete has been recently
observed in low T simulations of dipolar hard sphere (DHS)
fluids, in both two37 and three17 dimensions, one of the canon-
ical models for self-assembly. It has been suggested that the
observed increase in ring structures could possibly provide an
example of phase separation suppressed by self-assembly.16

Theories developed to describe the gas-liquid phase separa-
tion in these systems mainly focus on the delicate balance be-
tween chaining and branching.24, 25, 38 Since the presence of
rings alters this balance, a new theoretical framework which
also takes into account rings is needed. The remarkably good
agreement between numerical results and theoretical predic-
tions based on the augmented Werheim reported in this article
strongly suggests to tackle the low-T DHS behavior by further
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extending the theory to incorporate branching. Such a study is
underway.
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APPENDIX A: SINGLE CHAIN PROPERTIES

In this section, we discuss the properties of the polymer
chains resulting from the KF model, for different values of
the patch angle θmax. Simulation and theoretical results are
compared.

The end-to-end distance R2
ee(n) is shown in Fig. 8 for

several values of cos (θmax), from 0.5 up to one. The simu-
lation results show that on increasing cos (θmax), chains be-
comes stiffer and the transition from the initial n2 to the large
n limit n2νSAW progressively moves to larger and larger n val-
ues. The theoretical calculations are done assuming an anal-
ogy between the chains formed with KF interactions, and the
freely rotating jointed chain model,8 for which the end-to-end
distance is

〈
R2

ee(n)
〉 =

n∑
i=1

n∑
j=1

�̄2(cos θ )|j−i|, (A1)

where �̄ is the bond length, 〈. . . 〉 represents an ensemble aver-
age and θ is the angle of two consecutive bonds (bond angle).
The analogy proceeds by assuming that, in the KF model, the
bond length and the bond angle are not fixed but are restricted
to some values, that depend on the two parameters of the
model (the range � and the angular width θmax). The mean
value of the square of the bond length for the KF model is

�̄2 =
∫ σ+�

σ
r4dr∫ σ+�

σ
r4dr

= 3

5
σ 2 (1 + �

σ
)5 − 1

(1 + �
σ

)3 − 1
. (A2)
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ee(n)〉/�̄2, calculated
using (A4).

0 20 40 60 80 100
|j-i|

10
-1

10
0

<
r^

i · 
r^

j>

cos(θ
max

) = 0.40
cos(θ

max
) = 0.60

cos(θ
max

) = 0.70
cos(θ

max
) = 0.80

cos(θ
max

) = 0.90
cos(θ

max
) = 0.95

cos(θ
max

) = 0.99
cos(θ

max
) = 1.00
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cos θmax.

The mean bond angle can be calculated by considering 3 con-
secutive monomers in a chain (i − 1, i, i + 1). Defining r̂j as
the unit vector of the direction of the bond between monomers
j − 1 and j, and μ̂j as the unit vector defining the position of
the patch in monomer j, the mean bond angle is

cos θ =
∫

r̂i · r̂i+1dr̂idr̂i+1dμ̂i∫
dr̂idr̂i+1dμ̂i

=
(

1 + cos θmax

2

)2

.

(A3)
The integrals in this expression are calculated over the do-
main defined by the restrictions of the KF potential: r̂i · μ̂i >

cos θmax and r̂i+1 · μ̂i > cos θmax. Therefore, the expression
adopted for the mean square end-to-end distance is obtained
using (A1),

〈
R2

ee(n)
〉 = n�̄2

1 + cos θ

1 − cos θ

(
1 − 2 cos θ

sin2 θ

1 − cosn θ

n

)
,

(A4)
with �̄2 and cos θ given by (A2) and (A3), respectively.

Figure 8 compares the predictions of the freely rotat-
ing jointed chains with the numerical results. The initial
part is properly described by the model. As expected, the
agreement deteriorates on increasing the polymer length due
to the two different asymptotic behaviors characterizing the
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FIG. 10. Persistence length of the KF chains as a function of the parameter
of the model cos (θmax). Symbols are the results of numerical simulations;
the line is the calculation resulting from (A5).
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MC data (SAW) and the theoretical predictions (mean field,
νMF = 0.5).

The correlation function r̂i · r̂j vs |j − i| (the distance
along the chain) for different values of cos (θmax) is reported
in Fig. 9. The initial decay of this correlation function can be
well described via an exponential decay, ∼e−|i−j |/�p provid-
ing a mean to estimate the persistence length �p. This esti-
mate is compared, in Fig. 10, with the theoretical prediction
obtained from the analogy with freely rotating jointed chain,

exp(−�/�p) = (1 + cos(θmax))2

4
. (A5)

Agreement is obtained for large values of cos θmax, i.e., when
�p is large.
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