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We investigate the structural properties of a simple model for tetrahedral patchy colloids in which the
patch width and the patch range can be tuned independently. For wide bond angles, a fully bonded
network can be generated by standard Monte Carlo or molecular dynamics simulations of the model,
providing a good method for generating defect-free random tetrahedral networks. This offers the
possibility of focusing on the role of the patch angular width on the structure of the fully bonded net-
work. The analysis of the fully bonded configurations as a function of the bonding angle shows how
the bonding angle controls the system compressibility, the strength of the pre-peak in the structure
factor, and ring size distribution. Comparison with models of liquid water and silica allows us to find
the best mapping between these continuous potentials and the colloidal one. Building on previous
studies focused on the connection between angular range and crystallization, the mapping makes
it possible to shed new light on the glass-forming ability of network-forming tetrahedral liquids.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4840695]

I. INTRODUCTION

Cooling a liquid below its melting temperature will re-
sult in either crystallization or vitrification.1 Understanding
on a basic level why one alternative is predominantly cho-
sen over the other in different systems remains fundamen-
tally an open problem. This is particularly acute in tetrahedral
network-forming liquids such as water and silica. In both liq-
uids, corner-sharing tetrahedral units form a random network
that fills space. However, in nature, silica is the prototypical
glass former, while water crystallizes readily. Moreover, dif-
ferent models of water used in simulation vary in their ability
to crystallize.

Recent advances in the synthesis of colloidal particles
have brought about a physical realization of the patchy
particle.2, 3 Of particular relevance as models of networked
liquids are colloids with sticky spots that provide strongly di-
rectional interactions with fixed valence.4–6 To better under-
stand the physics of self-assembly in these systems, theorists
have been studying colloidal particles with simple models that
incorporate information concerning the valence. These mod-
els can be considered as an evolution of primitive models for
associated liquids.7–9 Particularly relevant for our investiga-
tion is the Kern-Frenkel (KF) model,10 a model which has
its origin in the work of Bol11 and that offers a very clean
separation between the angular width and radial extent of the
attractive interaction between patches.

Recent systematic simulation studies of the KF model
with tetrahedrally arranged patches have uncovered the de-
pendence of both the driving force for nucleation, namely,
the chemical potential difference between crystal and liquid,
and the free energy barriers to nucleation on the width of the
patches.12–14 More recently, the KF model was extended to re-
tain its tetravalent character even in the case where patches are
wide enough to accommodate more than one bond. Extending

the model to guarantee the single-bond-per-patch condition
regardless of patch width, under appropriate conditions, re-
sults in the liquid retaining thermodynamic stability down to
zero temperature, avoiding the crystal phase altogether.15

The relative simplicity of the KF model allows us to un-
derstand its thermodynamic properties through bonding en-
tropy in geometric terms, at least for the crystal. For the
liquid, the computational efficiency with which the model
can be simulated allows for detailed calculations of con-
tributions to the free energy down to states at or near the
ground state, which has a well defined energy. Beyond be-
ing a model for patchy colloids, the KF model provides a
potential coarse grained description of bond flexibility in
more general network-forming systems. One requires a way
of mapping systems onto the KF model with particular patch
widths.

In particular, if one is able to provide such a map for dif-
ferent network-forming liquids, then one can unlock the in-
sights we have gained from the patch width dependence of
crystallization in KF to inform our understanding of why, for
example, water freezes while silica does not.

In the present work, we compare the networks formed in
BKS silica,16 ST2 water,17 TIP4P/2005 water,18 mW water,19

and Stillinger-Weber (SW) silicon.20 We do so always at
the optimal network-forming density for each system,21 thus
eliminating density as a parameter, and find markers of net-
work formation that allow us to make a mapping of these
systems onto KF models with different patch widths. We fo-
cus on the best available network configurations across the
systems. For the KF model, we utilize only fully bonded
networks.

The models represent different classes in the way that
tetrahedral geometry is enforced. For KF, mW, and SW, the
geometry is enforced at the level of bonding between parti-
cles, whether through the placement of patches, or through a
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three-body interaction term. ST2 and TIP4P/2005 have tetra-
hedrality built into the rigid shape of the water molecule
through charge sites, which in turn direct hydrogen bond-
ing. The BKS model is a binary mixture, with bridging be-
tween Si ions mediated by relatively large and soft oxygen
ions that arrange themselves tetrahedrally, essentially through
stoichiometry and steric repulsion. All of these systems can
be understood in terms of the random network model,22–28 al-
though the perturbations required to quantitatively account for
the particularities of each system are potentially qualitatively
different. Given these differences, it is not obvious that a map-
ping to the KF model via the patch width, a single parameter,
is a realistic endeavor from the outset.

Mapping of various network-forming systems to other
models where bond flexibility can be tuned, such as the mW–
SW family of models, could prove a worthwhile pursuit. The
work of Molinero et al.29 on the dependence of the location
of the liquid-liquid critical point in the model on the strength
of the three-body interaction term lays the groundwork for
such a study. However, the extent to which crystallization is
understood in the KF model makes it an ideal candidate for
unlocking insights into other network-forming liquids.

Additionally, we explore the ability of fully bonded KF
networks to generate amorphous ground states for silica and
water. A long-standing issue within the scientific community
is the development of algorithms that can generate ideal ran-
dom tetrahedral networks.30–32 Thus, it is of interest to see
how perfection in the KF model transfers, from an energetic
perspective, to models for such emblematic network formers
such as silica and water.

II. METHODS

In this work, we compare the properties of the best avail-
able tetrahedral networks from several model liquids: the KF
model for tetravalent patchy colloids, the BKS model of silica,
the ST2, TIP4P/2005 and mW models of water, and the SW
model of silicon. To facilitate comparison, structural quanti-
ties for all models are reported at or near the optimal density21

or pressure for the formation of a bonded network. Gener-
ally, we identify this optimal condition with a local minimum
in low temperature isotherms of potential energy. Further, all
structural quantities are reported for configurations that are
first quenched through a conjugate-gradient (CG) algorithm
to a local minimum in the potential energy, i.e., to a so-called
inherent structure (IS).33–35 This eliminates disorder due to
vibrations.

A. KF model

The KF model we consider consists of hard sphere par-
ticles of diameter σ , each decorated with four tetrahedrally
arranged patches. Each patch is defined by a cone with apex
at the particle centre and aperture 2θ , where θ is the angle
between the cone axis and a generatrix. Particles form bonds
of energy −ε when patches overlap. Overlap occurs when the
center-to-center distance between two particles is less than (1
+ δ)σ , with δ = 0.12, and the line segment connecting parti-

cle centres passes through both patches, i.e., when the angle
between the line segment and each of the patch axes is less
than θ . See Ref. 12 for details.

For sufficiently wide patches, i.e., for 2sin θ > (1 + δ)−1

(in our case θ > 26.5◦, or cos θ < 0.895), it becomes possi-
ble for a patch on one particle to form bonds simultaneously
with more than one particle. To avoid this scenario, we en-
force single bonding per patch through the extension of the
KF model presented in Ref. 15 (and associated supplemen-
tary information), where two of us showed that for sufficiently
wide patches over an appropriate range in density, the liquid
state is more stable than the crystal down to T = 0. Briefly,
the single-bond-per-patch condition is enforced by allowing
bonds to form between overlapping patches subject to a prob-
ability based on the Boltzmann distribution. When more than
one overlap occurs with a patch, only one of the overlaps,
selected at random, is allowed to form a bond. Thus, for all
patch widths the ground state energy per particle is −2 ε. For
cos θ ≥ 0.895, where the narrowness of the patches naturally
restricts patches to only share a single bond, the extended KF
model maps onto the original KF model with a rescaled ε, or
equivalently, at a rescaled T. At low T, the two models become
equivalent.

The single-bond-per-patch condition is implemented in
the event-driven molecular dynamics (EDMD) simulations of
the model by introducing an event that randomly selects a
bond to be re-evaluated according to the Boltzmann criterion
employed to define bonds. The events are scheduled at ran-
dom according to an exponential distribution with an average
rate that is sufficiently high to ensure that the system dynam-
ics are invariant with respect to the re-evaluation frequency.
As all bonds have the same energy, and are therefore equally
likely, it is always possible to reverse a bond reassignment
in the next step with the same probability, ensuring detailed
balance. See Ref. 15 again for details.

We also carry out Monte Carlo (MC) simulations of the
original KF model (without enforced single bonding), as in
Ref. 12, for cos θ ≥ 0.895, as well as for the modified KF
model with single bonding enforced. We find that MC is more
efficient at equilibrating the systems at low T as the patches
become narrow. Additionally, these simulations serve as a
consistency check on the EDMD simulations.

Regardless of the simulation method, we report structural
quantities only for fully bonded KF configurations, i.e., per-
fect networks at the ground state energy, at a density of ρσ 3

= 0.57. Obtaining perfect networks becomes progressively
more computationally challenging as cos θ increases, and we
are not able to obtain perfect liquid configurations beyond
cos θ = 0.92. For cos θ = 0.85, 0.87, 0.895, and 0.92, we ob-
tain only a single perfect configuration; these perfect narrow-
patch configurations are obtained through MC.

For these narrower patch angles, multiple MC simula-
tions for each angle ran for a total CPU time of six months
to a year before a perfect configuration was found. The strong
slow-down for narrow patches can be understood when con-
sidering the mechanism behind network reorganization in
these systems. For narrow patches, bond rearrangement with-
out energy penalty (via the bond re-evaluation moves) be-
comes less and less likely as the patches become smaller,
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and impossible around cos θ = 0.89. Thus, bond breaking is
required to reorganize the network. However, the small patch
size also indicates a large entropy cost to forming a bond, and
as a result the temperature at which (nearly) all bonds are
formed is very low, ensuring that bond breaking events are
rare. Additionally, unless another free bond is nearby, most
broken bonds will reform almost instantaneously. Reaching
a fully bonded state requires the sampling of a large number
of network reorganizations, leading to extremely long simu-
lation times.

B. BKS silica

For BKS silica, we simulate 444 SiO2 units in a cubic
box of length 2.65761 nm, i.e., at a constant density of 2.36
g/cm3. At this density at low T, the tetrahedral network is
well formed,36 and this density is in fact near the minimum
in potential energy of BKS silica as a function of density
at T = 3000 K.37, 38 Constant T molecular dynamics simu-
lations from T = 3000 to 2400 K are carried out with a time
step of 1 fs using Gromacs software version 4.5.539–42 em-
ploying the Nosé-Hoover thermostat with a time constant of
1 ps and a radial cutoff of 1 nm for all real space pair in-
teractions. Coulomb interactions are handled with the par-
ticle mesh Ewald (PME) algorithm with a fourier spacing
of 0.1 nm and interpolation of order four (cubic). We add
to the BKS potential a short range interaction, described in
Ref. 37, to prevent the system from exploring the unphys-
ical attraction occurring at small distances. At 2400 K, we
simulate for 2.4 μs as the system dynamics are quite slow,
with Si ions diffusing a root mean square distance of approxi-
mately 0.35 nm (just over one average Si–Si distance) in 1 μs.
We use configurations from T = 2400 K for structural
analysis.

In order to facilitate comparison of the IS energy eIS

with previous work, in performing the quench we employ the
slightly modified form of BKS employed in Ref. 37, in which
the real space part of the potential tapers smoothly starting at
0.77476 nm from the original BKS value to zero at 1 nm. This
procedure recovers the previously reported IS energies in Ref.
37 for the T overlapping with this work (2700 K to 3000 K),
as shown in Fig. 6(d).

C. Water and silicon models

For our simulations of the TIP4P/2005 model of water,
we also use Gromacs v4.5.5 to carry out a series of NV T

simulations, varying the number of particles from 231 to 309
and keeping the cubic box fixed at V = (2 nm)3, thus vary-
ing density from approximately 0.86 to 1.16 g/cm3. Following
Ref. 43, we employ a time step of 2 fs, a Nosé-Hoover ther-
mostat with a time constant of 1 ps and a real space potential
cutoff of 0.85 nm. For Coulomb terms, we use the PME al-
gorithm with fourier spacing of 0.1 nm and interpolation or-
der four (cubic). Initial configurations are equilibrated at 235
K before running at T = 193 K. At the dynamically slow-
est state points (lowest density), the relaxation time, i.e., the
time required to diffuse an average O–O distance, is very long

and on the order of 10 μs. Thus, while our simulation times
of a little over 20 μs are not sufficient to obtain very precise
averages at low density, they are sufficient to reach a diffu-
sive steady state and to discern a minimum in the energy as
a function of density near 0.92 g/cm3. For structural analy-
sis, we therefore harvest configurations from our simulation
containing 245 molecules, which corresponds to this optimal
density.

Configurations for ST2 water (employing the reaction
field treatment of electrostatic interactions) are taken from a
density of 0.83 g/cm3 (222 water molecules in a box of length
2 nm) at T = 235 K. To obtain these low T configurations,
we extend the successive umbrella sampling grand canonical
Monte Carlo simulations of ST2 described in Ref. 44.

To extend our analysis to another class of tetrahedral liq-
uid models, we perform a less thorough investigation of two
members of the SW silica model family, that have different
values of the parameter controlling the strength of the three-
body, tetrahedrality-enforcing interaction term. We thank col-
leagues Vishwas Vashist and Srikanth Sastry for providing us
with quenched configurations of the SW model with 10 000
particles at T = 1196 K and P = −1.88 GPa. The state point
is above the liquid-liquid critical temperature for that model,
but below the line of compressibility maxima and in the tetra-
hedral network regime.45 We are also grateful to colleagues
Dr. Flavio Romano and Dr. John Russo for providing us, in
the course of their current study of the model, with quenched
configurations of 686 mW water molecules at P = 0 and
T = 171.3 K, a state point below the transition temperature
to the low density liquid (LDL) as presented in Ref. 19, but at
which crystallization also occurs.

D. Structural quantities

We report the structure factor S(q), defined as
〈ρ�qρ−�q〉/N, where ρ�q = ∑N

i=1 exp (−i �q · �ri),〈. . . 〉 denotes
an ensemble average over reciprocal space vectors �q hav-
ing magnitude q and N is the number of node particles in
the systems. A node particle is simply the particle that is at
the centre of a tetrahedron in the corner sharing tetrahedral
network: for the KF, mW, and SW models, each particle is a
node particle; for silica, the Si ions are node particles, while
O atoms are the node particles for ST2 and TIP4P/2005 water.
We also calculate the radial distribution function g(r) for node
particles.

The other key structural quantity we present is the distri-
bution of the angle φ, defined by the vectors emanating from
a node particle to two of its neighboring node particles (the
Si–Si–Si angle for BKS and SW, O–O–O angle for water).
For the continuous potential models, we define neighbors of
a particle as those that lie within a radius of rcut, determined
from the minimum between first and second neighbor peaks
in g(r). Values of rcut are given in Table I. For the KF model,
neighbors are defined as particles sharing a bond.

Additionally, we report on the distribution of the sizes
of minimal closed rings of neighboring node particles, with
neighbors defined as above for the bond angle distribu-
tion. The algorithm for determining ring statistics is from
Ref. 46.
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TABLE I. Summary of parameters characterizing the systems studied: rpeak

is the position of the first peak in g(r); ρ∗
eff is the value of the reduced den-

sity ρ r3
peak at which structural analysis is reported; rcut is the position of the

first minimum in g(r), and is used to determine neighbors; n̄b is the average
number of neighbors; fdef is the fraction of particles that do not have four
neighbors. For mW σ = 0.23925 nm and for SW σ = 0.20951 nm.

Model rpeak ρ∗
eff rcut n̄b fdef

KF 1.06σ 0.68 n.a. 4 0
BKS 0.315 nm 0.74 0.329 nm 4.002 0.0024
ST2 0.283 nm 0.63 0.320 nm 3.988 0.018
TIP4P/2005 0.2775 nm 0.65 0.315 nm 3.996 0.0046
mW 1.143σ 0.66 1.40σ 3.63 0.327
SW 1.165σ 0.70 1.41σ 3.50 0.475

III. RESULTS

A. S(q) and g(r)

In Figs. 1(a) and 1(b), we present S(q) and g(r) for the
tetrahedral KF model with patch angles ranging from cos θ

= 0.60 (θ = 53.1◦) to cos θ = 0.92 (θ = 23.1◦). The per-
fectly bonded configurations from which the curves are de-
rived are obtained from low T simulations which sample the
energetic ground state. Beyond cos θ = 0.82, the computa-
tional effort required to sample such states grows consider-
ably. As cos θ increases, i.e., as the patch angle decreases, the
peak characteristic of a structured network develops.47 First
a shoulder appears, and by cos θ = 0.82 a peak in the form
of a local maximum is established. Beyond cos θ = 0.82,
the position q1 of this network peak does not change signifi-
cantly, while its height S(q1) grows (as does the height of the
main peak at σq2 ≈ 8). Accompanying the emergence and
growth of the network peak in S(q) is a significant decrease
of the system compressibility, as evidenced by the approach
toward zero of S(0). Small values of S(0) are commonly un-
derstood to signify high degrees of hyperuniformity.48 It is
interesting to observe in passing that for the case of cos (θ )
= 0.92, despite our inability to accurately evaluate S(0) with
the present system size, S(0) ≈ 0.005, a value smaller than
the computationally determined lower bound recently sug-
gested by de Graff and Thorpe49 based on studies of contin-
uous random network models. The observed value is com-
parable to the experimentally determined value for annealed
a-Si.48 Data also show a progressive sharpening of the sec-
ond neighbor peak in g(r) associated with the growth of the
network peak in S(q). Not surprisingly, the region between
first and second neighbor shells becomes more and more de-
pleted of particles. The first peak in g(r) drops off very sharply
to a minimum just outside the bonding cutoff distance of
1 + δ = 1.12.

In Figs. 1(c) and 1(d), we compare S(q) and g(r) for the
various continuous tetrahedral liquid models to each other. To
facilitate comparison, we rescale q and r with the position
rpeak of the first peak in g(r). The values of rpeak used in the
rescaling are given in Table I. An inspection of the shape of
the structure factor near the network peak, i.e., S(q1), sug-
gests a reasonable similarity between ST2 and TIP4P/2005
with cos θ = 0.92. SW and mW, while similar to each other,
have a significantly higher value of S(q1) compared to other
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FIG. 1. Structure factor and radial distribution functions. Upper panels give
(a) S(q) and (b) g(r) for the KF model at ρσ 3 = 0.57. Legend in (b) gives
values of cos θ . There is a progressively higher network peak in S(q) (near
q1σ ≈ 5) as patches become narrower and a supporting trend in g(r), with
progressively better defined neighbor coordination shells. Lower panels give
(c) S(q) and (d) g(r) for the continuous models, for which we rescale distance
with rpeak, the position of the first peak in g(r).

models. BKS, however, not only has a significantly lower
peak at q1, but also has a value of q1 larger than the com-
mon value of q1 shared by all the other models. Thus, de-
spite having the largest value of S(q2), the network in BKS
is distinct from the other models. In terms of g(r), the first
neighbor peaks of cos θ = 0.92, KF, ST2, and TIP4P/2005
are similar in their sharp fall-off at a similar reduced dis-
tance. However, there is a significant difference in the po-
sition and width of the second peak, particularly for that of
BKS, which is both closer and wider. Thus, it is not surprising
that for BKS q1 is larger and S(q1) smaller than for the other
models.

We also note that the depth of the minimum at rcut in
g(r), while generally a good indicator of ordering in the liquid,
does not uniquely define the number of defects present in the
tetrahedral liquid. For example, once we define the neighbors
of a particle as those lying with a distance rcut of that particle,
then a direct calculation of the average number of neighbors
reveals that while g(rcut) for TIP4P/2005 is more than an order
of magnitude lower than for BKS, the deviation of the number
of neighbors from four is about the same for both models.
The average number of neighbors and the fraction of defects
for the various models are given in Table I. The fraction of
defects is simply the fraction of node particles that do not
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FIG. 2. Potential energy isotherms for (a) the single-bond-per-patch KF
model at kBT/ε = 1/9 (b) BKS silica at T = 3000 K taken from Ref. 37
and (c) ST2 at T = 240 K taken from Ref. 44 and TIP4P/2005 at T = 193, for
which the data are shifted up by 4.5 kJ/mol to facilitate comparison with the
ST2 model.

have four neighbors. Generally, mW and SW show a relatively
large number of defects, and are also both known to crystallize
spontaneously in simulation without great difficulty.19, 45

B. Energy as a function of density

The scaling of distance with rpeak allows us to compare
optimal network densities by defining a reduced number den-
sity ρeff = ρ r3

peak. Table I shows the value of the reduced den-
sity ρ∗

eff used for structural analysis of the network for the
models we study.

Fig. 2(a) shows the potential energy U of the KF model
with the single-bond-per-patch condition enforced at kBT/ε
= 1/9 for cos θ = 0.70, 0.80, and 0.90 as a function of ρeff. At
cos θ = 0.90, we see a well defined minimum at ρeff = 0.69
(ρσ 3 = 0.58). At cos θ = 0.80, there is a shallow minimum
at a slightly higher value of ρeff, while for cos θ = 0.70 there
is only a kink in the curve near ρeff = 0.8. The appearance of
a minimum in U(ρ) is thus concurrent with the appearance of
the network peak in S(q). And as the patch width becomes nar-
rower, this minimum shifts to lower density. We note that for
cos θ = 0.92 and δ = 0.12, the density range for single phase
stability for the diamond structure is narrow and occurs near
ρσ 3 = 0.57 or ρeff = 0.68. For reference, the number density
of the diamond cubic structure for touching hard spheres of
unit diameter is 3

√
3/8 ≈ 0.65.

U(ρ) at low T for the molecular water models in Fig. 2(c)
show minima at ρeff ≈ 0.65, and while the rise in energy with
increasing density is larger for ST2, both models exhibit a sig-
nificant change in curvature, reaching or approaching a max-
imum in U(ρ) near ρeff ≈ 0.80–0.90. The BKS model, on
the other hand, has a minimum at ρeff ≈ 0.74, a significantly
larger value than for the other models. While U(ρ) for BKS
does not approach a maximum, the range of data covers the
appearance of two inflection points. Once again, we see that
the behavior of BKS is significantly different from that of the
other models.
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FIG. 3. Probability distribution for the node-node-node bond angle. Panel
(a), KF model: As patches become narrower (cos θ increases), there is a pro-
gressive narrowing of P(φ). Values of cos θ are given in the legend. Inset
shows a measure of the width of the distribution, the inverse of the maxi-
mum probability P(φmax), as a function of cos θ . Panel (b) shows P(φ) for
the continuous potentials.

C. Bond angle distributions

In Fig. 3(a) we plot the probability density P(φ) for the
node-node-node bond angle φ for the KF model for a range
of cos θ from 0.60 to 0.92. For wide patches, we see a signif-
icant peak at φ = 60◦ (arising from a significant number of
triangular rings) that disappears by cos θ ≈ 0.82, coinciding
with the appearance of the network peak in S(q) and the ap-
pearance of a minimum in U(ρ). The main peak at the ideal
tetrahedral angle of 109.5◦ grows monotonically with increas-
ing cos θ (narrowing patches), as the whole distribution nar-
rows. We define P(φmax) as the maximum value of P(φ), and
take as a measure of the width of the distribution the inverse of
this height, 1/P(φmax), partially to avoid difficulties associated
with the peak at 60◦. This proxy for the width is shown in the
inset to Fig. 3(a) as a function of cos θ . What is clear is that as
the patch width narrows, so does the bond angle distribution.

We plot the distribution of angles for the various contin-
uous models in Fig. 3(b) and see that BKS has the broadest
distribution. BKS in fact looks to be the odd man out com-
pared to the rest of the models, with a significant portion of its
P(φ) deviating towards angles smaller than the ideal tetrahe-
dral angle, about which the distributions for the other models
are peaked. The tendency of silica to have a broader distri-
bution than for water as well as a smaller average angle was
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FIG. 4. Inverse of the maximum probability P(φmax) of the node-node-node
angle distribution as a function of S(q1), the height of the structure factor at
the network peak. The values of cos θ for the KF models from left to right are
0.82, 0.85, 0.87, 0.895, and 0.92. Dashed line is a guide to the eye.

already noted in a previous study comparing primitive models
of these network formers.50

The peaks for the other models become progressively
higher in the order of ST2, TIP4P/2005, mW and SW. For
mW and SW, the kurtosis of the distribution is quite obviously
positive. This non-gaussian shape results in the standard devi-
ation of the distributions not becoming monotonically smaller
as the peak height increases, and is another reason why we
choose the inverse of peak height as a proxy for the width.
Notwithstanding this detail, the heights of the distributions
generally shadow the behavior of the height of the network
peak in S(q).

To make this point more clearly and motivated by the
work Yuan and Cormack51 connecting bond angle distribu-
tions and particle correlations beyond first neighbors, we plot
in Fig. 4 the quantity 1/P(φmax) as a function of S(q1) for the
KF models with cos θ ranging over all the values for which
we have a network peak, namely 0.82, 0.85, 0.87, 0.895, and
0.92, along with points corresponding to the continuous mod-
els. With the exception of BKS silica, all the models fall near
the same line. This linear relationship suggests that all the
models (with the exception of silica) belong, in some sense, to
the same family of tetrahedral models, and that the members
of this family with continuous potentials can be associated,
even semiquantitatively, with a KF model with an appropri-
ate patch width. Clearly, the mW and SW models map onto
KF models with much narrower patches than those to which
ST2 and TIP4P/2005 map. As for BKS, we can only qualita-
tively say that it would map onto a KF model with even wider
patches.

Fig. 4 implies a qualitative similarity in particular be-
tween the mW and SW models and the KF models, in that
all the data appear to fall quite neatly on the same line. If one
thinks of the mW or SW models as patchy particles where
the patch geometry is not fixed to a particle axis, then this is
not too surprising. What is surprising is just how effectively
narrow these patches are.

As a check on BKS silica, we plot in Fig. 4 data points
for T = 3000 K (open circle) and T = 2700 K (grey circle) to
get a sense of how the values of S(q1) and 1/P(φmax) vary over
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FIG. 5. Ring size distribution for various models.

a small range in T. We do not see a large variation in either
quantity. Neither do we see a trend that might suggest that for
some lower T the data would approach the data from the other
models.

D. Ring structure

To comment further on the uniqueness of BKS with re-
spect to the other models, we plot in Fig. 5 the size distribu-
tion of minimal closed rings formed by neighboring node par-
ticles. The KF model, with its tetrahedrally arranged patches,
the ST2 and TIP4P/2005 models, wherein tetrahedrality is en-
coded in the internal angle of the rigid water molecule and
the mW model, in which a three-body term enforces a local
tetrahedral geometry, all are peaked at a ring size of six, the
number expected in crystals at this density. The ring distri-
bution for TIP4P/2005, the most defect-free network we ob-
tain with the water models, is very well reproduced by the
cos θ = 0.92 KF model. BKS, on the other hand, has a peak
at seven, and contains a significant number of rings of size
eight and nine. If BKS can be thought of as mapping onto
a KF model with wide patches, then it perhaps makes sense
that the greater flexibility in node-node “bonds” allows for a
broader distribution of ring sizes. However, none of the wider
patch KF models yield a similar ring structure, at least not at
the density studied. For example, shown in Fig. 5 is the ring
size distribution for the cos θ = 0.75 KF model, which has a
similar number of rings of size eight and nine compared to
BKS. However, as is plainly evident, the rest of the curve is
quite different.

E. KF as ST2 and BKS

The fact that the KF model in the singe-particle-per-patch
regime, whether enforced or not by the special MD proce-
dure, forms networks with all possible bonds satisfied, allows
for the intriguing possibility of using KF configurations as
starting points for searching for the lowest energy amorphous
configurations in other models. To this end, we study the IS
energy of KF configurations after they are converted into ST2
water at ρ = 0.83 g/cm3 and BKS silica at ρ = 2.36 g/cm3.
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For ST2, since the rigid molecule already has the same
HOH angle as the angle that separates patches on the KF
particles, the main complication in converting a fully bonded
KF configuration to ST2 is appropriately “filling” only two of
four patches of each particle with protons. To do so, we ran-
domly choose a particle that has fewer than two protons as-
signed and randomly fill with a proton an unfilled patch that
is not overlapping with a filled patch from a different parti-
cle. This chosen patch is necessarily bonded to another parti-
cle in need of at least one proton, and so one of the unfilled
patches of this second particle, excluding any patches over-
lapping with a filled patch (such as the one connecting it back
to the first particle), is selected at random to fill. This is re-
peated until the procedure loops back to the initial particle.
The net dipole moment of the loop is nearly zero. The proce-
dure is iterated by randomly selecting a particle to start a new
loop until all particles have been visited twice. This method
of constructing proton disorder avoids artifacts due to a sig-
nificant net dipole moment in the simulation cell.53, 54

After the conversion is made, a CG quench is performed
to obtain eIS. The results are plotted in Fig. 6(a), and show that
while at low values of cos θ , eIS is rather high, there is a steep
drop, with an extrapolated intersection with the average eIS

obtained from simulations of ST2 at T = 235 K, the lowest
eIS that we have, at about cos θ = 0.94. For comparison, in
Fig. 6(b) we show eIS(T) for ST2, with points above T = 250
K taken from Ref. 52. The KF configurations can generally
produce ST2 configurations that are quite low in the potential
energy landscape.

In order to convert KF into BKS, we take the KF parti-
cle positions as the positions of the Si ions and then place O
ions at the midway points between bonded KF particles, scal-
ing all coordinates as required. We then perform a CG quench
on the system. We have checked other procedures for placing
the O ions, for example, placing them midway between the
centres of overlapping patches, and have tried quenching only
O ion positions first, and then quenching the entire system,
but the gain in energy is somewhat marginal. The results of
the conversion are plotted in Fig. 6(c). While we do not have
sufficient numbers of perfect KF networks at large values of
cos θ to make very precise statements, it does not seem im-
probable to us that the data from lower values of cos θ suggest
an extrapolated intersection with our best eIS for BKS (from
T = 2400 K) at a value of cos θ lower than that apparent
for ST2, but then rather than achieving the best BKS eIS, the
eIS(cos θ ) curve inflects away from the T = 2400 K eIS line.
Such an interpretation would be consistent with the results in
Secs. III A–III D that suggest BKS corresponds to a KF model
with wider patches than ST2.

For comparison, we plot eIS(T) for BKS in Fig. 6(d). Two
curves are present, one taken from Ref. 37, the other, at lower
T, obtained for the present study. For the new data, we re-
mind the reader that we used the original version of BKS aug-
mented by a potential at very short ranges to prevent “fusion”
events and then quenched using the potential used in Ref.
37. That the curves coincide in the region of overlap shows
that the additional modifications to BKS in Ref. 37, namely,
a fixed Ewald parameter and a tapering of the real space po-
tential energy from 0.77476 nm to zero at 1 nm, do not pro-
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FIG. 6. Energy of inherent structures, eIS, for (a) ST2 at 0.83 g/cm3 and (c)
BKS at 2.36 g/cm3 generated from fully bonded KF configurations at ρσ 3

= 0.57 with varying patch width. Horizontal lines indicate the eIS obtained
from direct simulations of the original models at the lowest T probed and
same density, with dotted lines indicating standard deviation. Also shown
are the full eIS(T) curves obtained from simulations of (b) ST2 (the point at
T = 235 K is obtained in this work, the points at higher T points are taken
from Ref. 52) and (d) BKS (squares indicate data obtained in this work, cir-
cles from Ref. 37).

duce significantly different inherent structures from the origi-
nal BKS potential.

IV. DISCUSSION

The KF model, augmented with a constraint that ensures
only one bond per patch, allows one to unambiguously de-
fine a fully bonded energetic ground state even for very wide
patches. We study the properties of the ground state of the
tetrahedral version of the model as a function of patch width
and find that as the patches become narrower, the system be-
comes progressively more ordered. We mean this in the spe-
cific sense that by cos θ ≈ 0.8, the system develops a peak in
S(q) characteristic of network-forming liquids, a minimum in
the potential energy as a function of density corresponding to
an optimal network-forming density and a disappearance of
the secondary peak in the bond angle distribution at 60◦. The
bond angle distribution becomes progressively more peaked
as patches become narrower and there is a linear relationship
between the width of the angle distribution and the height of
the network peak in S(q).
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By working at optimal network-forming densities with
other, continuous models of network-forming liquids such as
silica, water and silicon, we remove density as a parameter in
an endeavor to roughly map the behavior of these models to
the KF model with patch width as the single mapping param-
eter. As Fig. 4 shows, with the exception of BKS silica, all
models studied fall very near the same behavior, and it is thus
possible, in principle, to identify the various continuous mod-
els with effective KF models of varying patch widths. This is
particularly useful in light of recent studies of the KF model
pertaining to crystallization13, 14 and liquid stability.15

The most tetrahedrally constrained of the models,
namely, mW water and SW silicon, correspond to narrow
patches. The three-body potential in these models confers a
lack of bond flexibility, as do narrow patches in the KF model.
The mW and SW models share an important characteristic
of the KF models with large cos θ , namely, the difficulty of
reaching the energetic ground state before crystallizing. The
networks of mW and SW, at the T we use, are quite imperfect
compared to those of BKS, ST2 and TIP4P/2005, and access-
ing progressively better networks by lowering T is difficult
because of crystallization.

Tetrahedrality in ST2 and TIP4P/2005 is less stringently
enforced, and arises from hydrogen bonding between tetrahe-
drally bent rigid water molecules. Thus, there is more inherent
flexibility in the node-node bonds. This observation is consis-
tent with ST2 and TIP4P/2005 mapping to values of cos θ in
the range from 0.92 to 0.94, and the fact that nearly defect-free
networks within these models are attainable without crystal-
lization.

The network of BKS, in light of the present results, is sig-
nificantly non-tetrahedral. This is perhaps surprising given the
high degree of local structural tetrahedrality.55 Tetrahedral-
ity in BKS is even less strictly enforced, provided essentially
by stoichiometry, steric repulsion and charge. The node-node
“bond” is mediated by a relatively large O ion, allowing for
a great deal a flexibility. The structural quantities of BKS we
study, namely, S(q), P(φ), and ring size distributions are quali-
tatively different from the other models. Nonetheless, perhaps
in a more qualitative way, insights into the the properties of
the BKS network can be gained from understanding the prop-
erties of KF models with wide patches.

In Ref. 13, the authors showed that the driving force
for nucleation, i.e., the chemical potential difference between
crystal and liquid �μ becomes progressively smaller as cos θ

decreases, and a subsequent study of the nucleation barriers
enforced the idea that for cos θ ≈ 0.92 and below, nucleation
becomes difficult and the system essentially becomes a glass
former. This idea was carried to the extreme in Ref. 15, where
the authors showed that if the one-bond-per-patch condition is
maintained, then the liquid remains as the stable phase down
to T = 0 at the expense of the BCC crystal for a range of
densities, certainly for values of cos θ less than or equal to
0.80. This value of 0.80 is interesting in that it also represents
the cusp of the KF liquid becoming a networked liquid, rather
than simply being four-coordinated.

This idea of increasing patch width to increase liquid sta-
bility with respect to crystallization is consistent with previ-
ous work done on the SW family of potentials wherein the

three-body constraint strength λ was tuned.29 At weaker λ,
the liquid was stable to progressively lower T. Were it not for
the appearance of the BCC crystal, perhaps the T = 0 limit
could be reached.

Obtaining perfect networks for narrow patches is inher-
ently difficult. The rigid geometry enforced by narrow patches
or inflexible bonds implies that low energy configurations
must resemble crystals, or at least have a reduced number of
ways in which a random network can be formed, i.e., a reduc-
tion in the configurational entropy and therefore a reduction
in liquid stability. If one wished to map the KF model to mod-
els such as mW and SW in a more precise way in spite of this
difficulty, one could perhaps compare the state points with
similar defect concentration.

V. CONCLUSIONS

We study a family of fully bonded tetrahedral KF patchy
particle systems as a function of patch width at the optimal
network-forming density and find a few concurrent measures
for the onset of a structured network at cos θ ≈ 0.80. There is
a linear relationship between the width of the bond angle dis-
tribution and the height of the network peak in the structure
factor. Several other models follow this “family line,” includ-
ing the ST2, TIP4P/2005, and mW models of water, as well
as SW silicon. This suggests a mapping of these models to
KF models of different patch widths. This mapping makes in-
tuitive sense given the nature of the potentials and degree of
bond flexibility in each of the models.

The mapping is useful given the systematic study of
how the patch width affects the ability of the KF model to
crystallize, or conversely, to avoid crystallization. Essentially,
the narrower the patches, the greater the propensity for the
model to crystallize. Wider patches allow for the system to
approach or even reach the ground state energy and avoid
nucleation.12–15 According to the semi-qualitative mapping,
SW and mW map to quite narrow patches, and this explains
why they are prone to crystallize before achieving a relatively
defect-free network. ST2 and TIP4P/2005, on the other hand,
map to wider patches and are therefore better network glass-
formers. The perfect correspondence between crystallization
ability and bonding angular width observed throughout all
these models reinforces the general validity of the results ob-
tained in the investigation of the KF model.

BKS silica, the best glass former, is qualitatively different
in terms of several properties studied and does not fall near the
family line. Its network properties are rather different. Pos-
sibly, one needs to devise a binary mixture analog50, 56–58 in
order to capture the essential differences. A form of the KF
model has also been recently shown to have a liquid that is
the thermodynamic ground state for a range of densities for
sufficiently wide patches.15 It remains a challenge to alter the
continuous molecular potentials in order to achieve an analo-
gous liquid ground state.

Finally, we like to note that man-made particles can help
shed light on unsolved problems in atomic and molecular
physics, in the present case connecting gel-forming patchy
colloids and tetrahedral network glass formers.59 New soft-
matter systems in which valence can be precisely controlled,
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e.g., DNA constructs5, 60 and new polymers,61 may contribute
to deepening our understanding of fundamental problems in
disordered systems. Providing valence to colloids4, 62 is open-
ing a very rich line of investigation.
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