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We investigate the phase behaviour of 2D mixtures of bi-functional and three-functional patchy parti-
cles and 3D mixtures of bi-functional and tetra-functional patchy particles by means of Monte Carlo
simulations and Wertheim theory. We start by computing the critical points of the pure systems and
then we investigate how the critical parameters change upon lowering the temperature. We extend the
successive umbrella sampling method to mixtures to make it possible to extract information about
the phase behaviour of the system at a fixed temperature for the whole range of densities and com-
positions of interest. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802026]

I. INTRODUCTION

The role of the particle valence – defined as the abil-
ity to form only a limited number of bonds with neighbour-
ing particles – in controlling the phase behaviour of colloidal
systems has been emphasized in numerous recent studies.1–5

Limited valence has emerged as the key element in the for-
mation of equilibrium colloidal networks, commonly named
gels. In this state of matter, rigidity is enforced by the long-
life of the inter-particle bonds, which, at low temperatures
T, is longer than the experimental observation time.5–7 Low-
ering the valence guarantees that these low T gel states do
not clash with phase separation, which is always present
when the thermal energy becomes significantly lower than
the characteristic bond strength. In contrast with the out-of-
equilibrium colloidal gels formed via spinodal decomposi-
tion followed by a kinetic arrest induced by the strong deple-
tion attraction,8 limited valence gels are equilibrium states. It
has indeed been shown that lowering the valence shifts the
phase separation boundaries to low densities,1, 2 opening a
wide region of particle concentrations where stable gels can
form.9

Binary mixtures of limited valence particles enrich con-
siderably more the spectrum of possibilities offered by limited
valence. First, the average valence of the system can take non-
integer values, which has been exploited to investigate the ap-
proach to the limit of valence two. In this limiting case, phase
separation is completely suppressed, since particles aggregate
in long chains that interact only through excluded volume in-
teractions. Second, mixtures can be exploited to tune the se-
lectivity of the network to different species, stabilizing mixed

or interpenetrating gels,10, 11 the equilibrium equivalent of the
recently reported out-of-equilibrium bigels.12

In limited valence systems, gas-liquid phase separation
arises from a subtle competition between the number of bonds
that can form in the two coexisting phases (the energy term)
and the entropy. The latter accounts for the degeneracy of the
bonding patterns, which is different in the two phases. The
gas phase is usually formed by diluted clusters, while the liq-
uid phase is characterized by a percolating network of bonds.
This competition is captured by the thermodynamic perturba-
tion theory (TPT) developed by Wertheim13–16 to model the
behaviour of associating fluids, the atomic and molecular ana-
logues of limited-valence colloids. Wertheim theory is a pow-
erful tool for investigating the phase behaviour of pure fluids
as well as of binary mixtures.17, 18

Recent theoretical studies of binary mixtures with dif-
ferent compositions have revealed a subtle interplay between
the entropy of bonding and the entropy of mixing, with a
marked effect on the phase diagram of the mixture. Interest-
ingly, Wertheim theory predicts that for binary mixtures of
bi- and three-functional particles, the gas-liquid critical den-
sity ρc and the critical temperature Tc decrease as the aver-
age valence decreases (i.e., on increasing the fraction of bi-
functional particles),17 in agreement with existing numerical
results.2 By contrast, for a binary mixture of bi- and tetra-
functional particles, Wertheim theory predicts a qualitative
difference in the behaviour of the critical parameters. Indeed,
binary mixtures of such species are expected to initially un-
dergo an increase of ρc as the average valence decreases.
A further increase in the number of bi-functional particles
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inverts this trend and ρc decreases and tends to a constant
value as the fraction of bi-functional particles approaches one.
Finally, mixtures of two and five functional particles are pre-
dicted to have critical densities which increase monotonically
as the average valence is lowered.17

The numerical evaluation of phase coexistence in binary
mixtures is not an easy task. Indeed, the presence of a sec-
ond species adds a new axis to the phase diagram, which is
now a three-dimensional volume defined by T and the density
of the two components (T − ρA − ρB) or by other combi-
nations of ρA and ρB as T − ρ − x, where ρ = ρA + ρB is
the total number density and x = ρB/ρ is the composition of
the mixture.19, 20 The two coexisting phases are characterized
by different values of x. Even focusing on a specific x value
(along the so-called dilution line), the determination of the
phase diagram requires the evaluation of the shadow lines.21

In this manuscript we introduce a new and powerful computa-
tional method to investigate the phase behaviour of mixtures
in the whole three-dimensional volume, by extending the suc-
cessive umbrella sampling method,22 which was shown to
be very effective in the evaluation of the phase behaviour of
various systems.23–27 By applying this new methodology it
is possible to compute the entire density of states for the bi-
nary mixture, i.e., the information required to estimate phase
coexistence at all compositions. As a test case of scien-
tific relevance we compute the phase diagram of mixtures
of bi-functional and three-functional patchy particles in two-
dimensions (2D) and of bi-functional and tetra-functional
patchy particles in three dimensions (3D). We then com-
pare numerical results with theoretical predictions based on
Wertheim theory, confirming the predicted growth of the crit-
ical density in the 2–4 mixture as the fraction of bi-functional
particles is increased. The analysis of the calculated phase be-
haviour shows that the ρc growth on increasing the number
of bi-functional particles results from a progressive transfor-
mation of the transition from condensation to demixing. At
the same time, increasing the number of particles with two
patches does reduce the region in density where the instabil-
ity takes place, confirming the general trend that a reduction
of the average valence increases the density region where a
stable gel can form.

II. METHODS

A. Model

Each particle is modelled as a hard sphere (in 3D) or a
hard disk (in 2D) of diameter σ , decorated with a fixed num-
ber of interacting patches on the surface. The patch-patch in-
teraction between particles i and j is described by a Kern-
Frenkel (KF) potential, i.e., it is a square-well potential of
range δ and depth ε, modulated by a function f (!̂i , !̂j )
which depends solely on the particle orientations !̂i and !̂j .
Let r̂ij be the normalized vector joining the centres of parti-
cles i and j and v̂α

i the versor connecting the centre of particle
i with the patch α on its surface. The function f can then be
written as

f (!̂i , !̂j ) =





1 if

{
r̂ij · v̂α

i > cos θmax for any α,

r̂ji · v̂β
j > cos θmax for any β,

0 otherwise,
(1)

where θmax controls the width of the patches. All the patches
share the same shape, i.e., δ and θmax are fixed and do not
depend on particle species.

The only difference between particles of different species
is in the number of patches patterning their surfaces. In 2D
we study binary mixtures of particles decorated by either 3
(species A) or 2 (species B) patches.28 For particles of species
A, the patches are symmetrically placed on the equator, for
particles of species B they are located on the poles. The KF
parameters are δ = 0.03σ and cos θmax = 0.894.

In 3D we study a binary mixture with the two species
having either 4 (species A) or 2 (species B) patches. Patches
are located on the particle surface in a tetrahedral fashion29

for species A particles, on the poles for species B particles.
The KF parameters are δ = 0.119σ and cos θmax = 0.92.

Both sets of parameters fulfill the geometrical single-
bond-per-patch condition sin θmax ≤ 1/(2(1 + δ)), preventing
patches from being involved in more than one bond.4

B. Computational methods

1. Pure systems

To compute the location of the (pseudo-)critical points of
the pure systems we rely on the Bruce–Wilding (BW) mixed-
field scaling method.30 This technique provides an expression
for the order parameter M which can be used to fit the prob-
ability distribution P(M) of non-symmetric fluids to the Ising
one, in order to estimate the pseudo-critical parameters of the
finite system. On top of that, the BW approach provides scal-
ing expressions which can be used to obtain the values of the
critical parameters in the thermodynamic limit. With this pro-
cedure, the deviation from the average value of the order pa-
rameter M at criticality can be written as30

(M = M − Mc ∝ ρ + su, (2)

where ρ = N/V is the number density, N is the number of
particles, V is the volume of the system, u = U/V is the en-
ergy density, and s is a non-universal (i.e., model-dependent)
factor.

In order to calculate the joint probability distribution
p(N, U), to be compared with the probability distribution of
the Ising order parameter, we rely on Grand Canonical Monte
Carlo (GMMC) simulations, i.e., simulations at fixed tem-
perature T, number of particles N, and chemical potential µ.
We employ successive umbrella sampling (SUS)22 to over-
come the high free-energy barriers between the two phases.
With this method, the region to be explored is partitioned in
overlapping windows of (N particles. Each window is then
sampled with GCMC simulations with appropriate boundary
conditions,31 providing a speed-up proportional to the number
of windows explored in parallel.

To properly locate the pseudo-critical point we make use
of Eq. (2) to project p(N, U) and to obtain p((M). In turn, we
extract the critical parameters by matching this distribution
to the (2D or 3D) Ising order parameter distribution32, 33 by
means of histogram reweighting techniques.34
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2. Mixtures

Now we introduce the extended SUS method for the case
of a generic mixture. Let S be the number of species and
[Nmin

i , Nmax
i ] be the range of number of particles of species i

of interest. Applying the SUS method consists in partitioning
the [Nmin

1 , Nmax
1 ] × [Nmin

2 , Nmax
2 ] × · · · × [Nmin

S , Nmax
S ] space

into overlapping windows of size n1 × n2 × · · · × nS.
Without any loss of generality we can fix the width of the
overlap to be δw and then the total number of windows
is nw =

∏S
i=1%(Nmax

i − Nmin
i )/(ni − δw)&, where % · & stands

for the ceiling function. Each window is identified by a S-
dimensional index w. All the windows are then explored
through special GCMC simulations, i.e., simulations per-
formed at fixed T, V , {µi}, with the additional constraints
that the number of particles of species i, Ni, has to lie within
the range [Nw

i ,Nw
i + ni] for each i ∈ [1, S]. The main sim-

ulation output is the histogram counting how many times a
state with N1, N2, . . . , NS has been visited in a given window
w, namely, pw(N1, N2, . . . , NS). The total free-energy den-
sity profile p(N1, N2, . . . , NS) is then computed by using the
overlapping portions of the windows to join together all the
pw. This operation is done through a least-squares method.
Let pp(N1, N2, . . . , Ns) be the partial, already joined part of
the total p(N1, N2, . . . , NS) and pw(N1, N2, . . . , NS) be the
histogram of the next window to be attached. Then, in order
to extend pp to the {Ni} values stored in pw one needs to mul-
tiply the latter by the factor bw given by

bw =
∑

ni∈{Ow} pp(n1, n2, . . . , nS)pw(n1, n2, . . . , nS)
∑

ni∈{Ow} pp(n1, n2, . . . , nS)
,

(3)
where {Ow} is the set of N1, N2, . . . , NS values which are in
the overlapping region between pp and pw.

There is no unique way of performing this operation,
since the process of joining different windows can start from
any window and follow any pattern. For the present study the
scheme delivering the best results is the following. Since the
system under study is a binary mixture, we compute the joint
probability distribution p(NA, NB), i.e., we keep track of how
many times the system has NA particles of type A and NB parti-
cles of type B. We start with the (0, 0) window and then begin
to attach windows along the first species’ direction, so that the
second window is (1, 0), the third is (2, 0), and so on. Once
the last window in the row has been joined, we start attaching
another row of windows by joining the (0, 1) window. This
procedure is schematically shown in Figure 1.

At low temperatures, i.e., when the numerical noise in-
creases, using Eq. (3) on the simulation data may result in
histograms which cannot be reliably reweighted at all the re-
quired chemical potentials. This happens because the main
contributions to the factors bw are the largest pw(NA,NB ) val-
ues and, since reweighting to very different chemical poten-
tials moves the signal to the less precisely attached windows,
the quality of the resulting histogram deteriorates. To over-
come this difficulty we first reweight each pw and then join
them together by means of Eq. (3).

The simulation output p(NA, NB), computed at fixed T,
µA, and µB, can be evaluated at different chemical potentials

FIG. 1. Description of the scheme employed to reconstruct the complete den-
sity of states p(NA, NB) for a binary mixture. (a) Raw output from the nine
3 × 3 windows with the lowest number of particles. The arrows show the or-
der with which the windows are joined together. (b) The same data have been
used to compute the final p(NA, NB): there are no visible boundaries between
the windows. The brighter the color, the higher the value of p. The curves
have been smoothed out in order to increase readability.

µ′
A, µ′

B by histogram reweighting, i.e.,

p′(NA,NB) ∝ p(NA,NB )eNA(βµ′
A−βµA)eNB (βµ′

B−βµB ), (4)

where β = 1/(kT), here k is the Boltzmann constant. There-
fore, p(NA, NB) encodes all the information on the system in
the whole investigated NA, NB plane at fixed T.

In order to obtain information on the phase behaviour of
the mixture we employ the following criterion: we reweight
p(NA, NB) at a certain µA and then we tune µB until p(NA, NB)
is double-peaked, with the area below the two peaks being
equal. If no such µB value can be found, then we are out of the
coexisting region for the chosen (T, µA) values. If the equal
area condition is fulfilled, the total free-energy density pro-
file can be split up as a sum of two contributions p1(NA, NB)
and p2(NA, NB), one for each phase. In the systems studied
here, this is done by making a cut in NA, NB plane at fixed NA

= Nm
A , where Nm

A is the position of the fitted minimum of the
p(NA) =

∑Nmax
B

NB=1 p(NA,NB ) curve. The number of particles
of species i in the phase j, 〈Nj

i 〉 is then computed by taking
an average over the appropriate particle number distribution,
i.e.,

〈
N

j
i

〉
=

∑Nmax
A

nA=0

∑Nmax
B

nB=0 nip
j (NA,NB )

∑Nmax
A

nA=0

∑Nmax
B

nB=0 pj (NA,NB)
. (5)
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These quantities can, in turn, be used to compute
compositions x(j ) = 〈N (j )

B 〉/(〈N (j )
A + N

(j )
B 〉) and densities ρ(j )

= (〈N (j )
A + N

(j )
B 〉)/V .

The pressure P can be computed by considering that
p(0, 0) = e−βPV is the grand-canonical partition function,
and hence35

P = −kT

V
log(p(0, 0)). (6)

Similar to what we do for pure systems, we compute the
(pseudo-)critical points of mixtures by comparing the p(M),
obtained by projecting the p(NA, NB), to the Ising order-
parameter distribution of the right dimensionality,32, 33 with
the only difference being the choice of the order parameter,23

defined as

(M ∝ ρA + cρB, (7)

where c is a fitting parameter which depends on temperature.
Note that, unlike to what we do in pure systems, we do not
store any information on the energy of the system due to mem-
ory limitations, and hence we do not perform any temperature
reweighting.

In the rest of the article, the superscript 2D (3D) is used
to refer to quantities associated to the 2D (3D) model.

The simulation box sizes L2D = 16.9 σ 2 and L3D = 10 σ 3

are kept fixed throughout this work. We do not perform any
finite-size scaling study and hence we compute only pseudo-
critical parameters. For the sake of brevity, in the following
we use critical instead of pseudo-critical when referring to
these quantities.

C. Theory

We also investigate the patchy colloidal mixture the-
oretically by means of Wertheim’s first order perturbation
theory. A detailed description of the original theory can be
found in Refs. 13–16. Here we briefly quote the results and
set the notation for Wertheim’s theory extended to binary
mixtures.17, 23, 36 The Helmholtz free energy per particle of the
mixture is

fH = FH/N = fref + fb, (8)

where N = NA + NB is the total number of particles, fref is the
free energy per particle of the reference fluid of hard spheres
(HSs) in 3D or hard disks (HDs) in 2D, and fb is the bonding
free energy per particle. As usual we write fref as the sum of
ideal-gas and excess terms: fref = fid + fex. The ideal-gas free
energy is given (exactly) by

βfid (η, x(i)) = ln η − 1 +
∑

i=A,B

x(i) ln(x(i)Vi), (9)

where Vi is the (irrelevant) thermal volume, x(i) = Ni/N is the
molar fraction of species i = {A, B}, and η = ηA + ηB is the
total packing fraction (η = vsρ, with ρ the total number den-
sity and vs = π/6σ 3 the volume of a HS in 3D or vs = π/4σ 2

the area of a HD in 2D). The excess part accounts for the
excluded volume interactions between the monomers. Both
species have the same size and hence we can approximate the
excess part by the well-known Carnahan-Starling equation of

state for hard spheres in the 3D mixture:

βfex(η) = 4η − 3η2

(1 − η)2
(3D), (10)

and use the Henderson37 equation of state for hard disks in the
2D mixtures:

βfex(η) = −7
8

ln(1 − η) + 9
8

η

(1 − η)
(2D). (11)

The bonding free energy is approximated by Wertheim’s ther-
modynamic first-order perturbation theory:

βfb = 〈M〉
(

ln Xu − Xu

2
+ 1

2

)
, (12)

where Xu is the probability that one site is not bonded and

〈M〉 = x(A)M (A) + x(B)M (B), (13)

is the average number of patches per particle in the mixture
(M(A) and M(B) are the number of patches of species A and B,
respectively). The probability of finding an unbonded patch
is related to the total density, molar fractions, and absolute
temperature through the law of mass action:

Xu = 1 − ηX2
u(u〈M〉. (14)

The bond between two patches is characterized by (u. Using
the Kern-Frenkel potential, we find:

(u = 1
vs

∫

vb

g(r)[exp(βε) − 1]dr, (15)

where g(r) is the radial distribution function of the reference
fluid of HS or HD, and the integral is calculated over the vol-
ume (area) of a bond, vb. If vb is small enough, we can ap-
proximate the radial distribution function by its contact value,
gc(η). Under this assumption the Eq. (15) simplifies to

(u = vb

vs

gc(η)[exp(βε) − 1]. (16)

The contact value of the radial distribution function is

gc(η) = 1 − η/2
(1 − η3)

(3D), (17)

for hard spheres and

gc(η) = 1
1 − η

+ 9
16

η

(1 − η)2
(2D), (18)

for hard disks. The bonding volume (area) is related to the
depth and range of the potential. For the three-dimensional
mixtures we find

vb = π (1 − cos θmax)2((σ + δ)3 − σ )/3 = 0.00269σ 3 (3D),
(19)

and for the two-dimensional case

vb = θ2
max

π
([σ + δ]2 − σ 2) = 0.00418σ 2 (2D). (20)

Finally, we obtain the equilibrium properties of the mixture
by minimising (at a fixed pressure, composition, and temper-
ature) the Gibbs free energy per particle gG(x, ρ, P, T) = P/ρ
+ fH with respect to the total density. We use a standard
Newton-Raphson method to minimise gG. Coexisting points
are located by a standard common-tangent construction on
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gG(x) at constant temperature and pressure. Critical points are
computed by determining those states which satisfy the spin-
odal condition, fvvfxx − (fxv)2 = 0. In addition, stability re-
quires the vanishing of the third-order derivative in the direc-
tion of largest growth:

fvvv − 3fxxv

(
fxv

fvv

)
+ 3fxvv

(
fxv

fvv

)2

− fvvv

(
fxv

fvv

)3

= 0,

(21)
where subscripts denote partial derivatives, i.e., fxv is the sec-
ond partial derivative of fH with respect to the reduced volume
per particle v ≡ 1/η and the composition x (molar fraction of
bi-functional particles) at constant temperature.

III. RESULTS

A. Critical points

In both investigated binary mixtures, particles of species
B are bi-functional and therefore do not exhibit any gas-liquid
phase separation.2, 38 On the other hand, particles of species A
have a higher valence and exhibit a regular gas-liquid phase
separation at low densities and temperatures.2, 4

We start by computing the pseudo-critical parameters of
the pure systems, i.e., of the tetra-functional model in 3D and
of the three-functional model in 2D. We then move down in
temperature and compute the phase boundaries on the whole
NA, NB plane at fixed temperature. Figure 2 shows the best fits
to the 2D and 3D Ising order parameter distribution for all the
binary systems studied in this work. Data are less scattered in

FIG. 2. Best fits to the Ising order parameter distribution for mixtures of bi-
and three-functional patchy particles in 2D (a) and bi- and tetra-functional
patchy particles in 3D (b). Open symbols: Monte Carlo simulation at differ-
ent reduced temperatures T∗ = kT/ε. Solid black line: Ising order parameter
distribution.

FIG. 3. Critical parameters for (a) and (b) a mixture of hard disks with two
and three patches and for (c) and (d) a mixture of hard spheres with two
and four patches, according to Monte Carlo simulation. Panels (a) and (c):
reduced critical temperature as a function of the critical density. Panels (b)
and (d): critical density as a function of the average number of patches per
particle at the critical point.

the 2D case but, despite the noise, the resulting fits are reliable
at all temperatures.

From the p(NA, NB) reweighted at criticality we can ex-
tract all the critical parameters of the mixtures, such as critical
composition xc, critical density ρc, critical pressure Pc, and
average valence 〈M〉. Figure 3 shows the critical parameters
of all the computed critical points according to Monte Carlo
simulation. In a mixture of bi- and three-functional patchy
particles in 2D, see panel (a), the critical density goes down
as the critical temperature decreases. Moreover, ρc is a mono-
tonically increasing function of 〈M〉, as shown in panel (b).
By contrast, the mixtures of bi- and tetra-functional patchy
particles in 3D display a ρc drop as the average valence is in-
creased, see panel (d), as predicted by Wertheim’s theory.17

This growth is reflected in the behaviour of ρc versus Tc,
panel (c), which is monotonically decreasing in the investi-
gated range of temperatures. In both systems the dependence
on Tc of the critical pressure Pc (not shown) follows that of
the critical density in this range of temperatures: Pc increases
with Tc in 2D and decreases in 3D.

The results from Wertheim’s theory are depicted in
Figure 4. The theory predicts the same behaviour as Monte
Carlo simulation for all the critical parameters and both types
of mixtures considered here. The agreement is quantitative
only for the critical temperature and the average valence at
the critical point. Wertheim’s first order perturbation theory
does not include the formation of closed loops of patchy par-
ticles. As a result, the critical density is underestimated. This
discrepancy may also arise from the different nature of the
critical phenomenon, which is mean-field in Wertheim’s the-
ory and Ising in simulations.

In 2D (bi- and three-functional particles) and in the limit
of zero temperature (note that using Wertheim’s theory we
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FIG. 4. Critical parameters for (a) and (b) a mixture of hard disks with two
and three patches and (c) and (d) for a mixture of hard spheres with two
and four patches, according to Wertheim’s theory. Panels (a) and (c): reduced
critical temperature as a function of the critical density. Panels (b) and (d):
critical density as a function of the average number of patches per particle at
the critical point. The empty circles indicate the position of the critical point
for a pure fluid of three- (tetra-) functional particles in 2D (3D). The region
explored via MC simulations is shaded in grey.

can investigate the whole range of temperatures) the critical
density vanishes, panel (a), and the valence at the critical point
tends asymptotically to two, panel (b). Mixtures of bi- and
tetra-functional particles in 3D behave differently, see pan-
els (c) and (d). The theory predicts a reentrant behaviour for
the critical density occurring for kT/ε ! 0.12, i.e., for tem-
peratures which are lower than those studied here by Monte
Carlo simulations. At very low temperatures the critical den-
sity tends asymptotically to a value different from zero, and
the average valence at the critical point is always higher than
two. The critical pressure (not shown) also shows a non-
monotonic behaviour upon lowering T. It first increases near
the critical temperature of the pure tetra-functional fluid, and
then decreases. For mixtures of bi- and five-functional parti-
cles (not shown) in 2D and in 3D the critical density increases
monotonically as T is lowered.17

To conclude this section on critical points, we compute
the critical composition xc, i.e., the fraction of bi-functional
particles (species B) at criticality, as a function of Tc. This
quantity, shown in Figure 5, is monotonically decreasing for
both types of mixtures, as predicted by the theory. There-
fore, as the temperature is lowered, the composition of the
fluid at criticality tends to favour more and more the bi-
functional particles. At very low temperatures xc tends asymp-
totically to one in mixtures of bi- and three-functional parti-
cles (2D), and to ≈ 0.9 in mixtures of bi- and tetra-functional
particles (3D).

B. Coexistence region

We proceed to analyse the phase boundaries. For the mix-
tures considered here, upon lowering the temperature the in-

FIG. 5. Reduced critical temperature, kTc/ε, as a function of composition
(i.e., fraction of bi-functional particles) at the critical point, xc, for mixtures
of bi- and three-functional patchy particles in 2D and bi- and tetra-functional
patchy particles in 3D. (a) Results from Monte Carlo simulation. (b) Results
according to Wertheim’s theory. The region investigated with MC simulations
is shaded in grey.

stability region is first encountered at the critical temperature
of the pure system, namely, T (A)

c . If we project the three-
dimensional phase diagram onto the ρA, ρB plane, then the
phase-coexisting region is a point lying on the ρB = 0 axis
at T = T (A)

c . If T decreases, the instability region expands to-
wards larger values of ρB, in line with the results for the crit-
ical parameters reported in Sec. III A. This T-dependence is
shown in Figure 6, which displays the phase boundaries and
the computed critical points projected onto the ρA, ρB plane
for both types of mixtures. The temperature dependence in the
explored T range is qualitatively different in the two cases.

The overall density of the low-density phase in the two-
dimensional 2–3 mixture, see Figure 6 (panel (a)), does
not change much upon changing T. The high-density phase
branch, on the other hand, displays a rather strong T-
dependence: as T is lowered, it extends to larger values of
ρ2 and smaller values of ρ3. Therefore, at all the investigated
temperatures the phase transition has the character of an ordi-
nary gas-liquid phase separation, with a rather broad separa-
tion in densities between the two phases.

Three-dimensional 2–4 mixtures, however, behave in a
different manner, see Figure 6 (panel (b)). Even though the
effect of T on the liquid branch is similar to that observed in
the 2D system, the phase originating from the gas-phase of
the pure system does not remain confined at low densities but
it moves at larger ρ2 and ρ4. Indeed, at the lowest tempera-
ture, the difference in overall density between the two coex-
isting phases is remarkably smaller than in the 2D case. In
this case the phase transition has a stronger demixing com-
ponent which tends to segregate the bi-functional particles in
the low-density phase. This may be ascribed to a change in
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FIG. 6. Projection of the phase diagram of the (a) 2D binary mixture in the
ρ2, ρ3 plane, and (b) 3D binary mixture in the ρ2, ρ4 plane according to MC
simulations. Symbols: densities of the coexisting phases for different reduced
temperatures T∗ = kT/ε. The symbols connected by the dashed line mark the
positions of critical points. The orange filled circle marks the position of the
critical point associated to the pure system of three (four) patches in 2D (3D),
occurring at T

(3)
c = 0.136 (T (4)

c = 0.157). Note that tie lines connecting two
coexisting points (not shown) are not vertical lines in this plane.

the balance between the entropy of mixing and the entropy of
bonding as the number of patches n on particles of species A
changes. When two particles of species A form a bond, the
result is a two-particle cluster with 2(n − 1) sites available for
bonding. By contrast, a cluster of two particles of species A
and B has n available sites. Therefore, the difference between
the number of available bonding sites on the two types of clus-
ters is n − 2 sites. That is, as n increases, forming a cluster of
dissimilar species is less favourable entropically than having
a cluster made up of particles of the same species. The gain in
the entropy of mixing, on the other hand, remains the same.
As a result, the tendency for phase separation increases with n.
Reference 17 contains a more detailed analysis on this topic.

The same results according to Wertheim’s theory are pre-
sented in Figure 7. As expected, the theory underestimates the
coexisting densities both in 2D and 3D. As shown in Sec. III
A, the 2D critical line tends asymptotically to ρ2 = 0 and ρ3

= 0, which makes it possible to find coexisting phases at arbi-
trarily low densities. By contrast, the 3D critical line ends at
finite densities ρ2 and ρ4. In addition, in the 2D mixture the
theory captures the overall behaviour of the system. In par-
ticular, the decrease of ρ2 and ρ3 at criticality, observed in
simulations, is well reproduced. In the 3D case, on the other
hand, there is a qualitative difference between numerical and
theoretical results. As the system is cooled down, there is an
increase of the critical ρ2 and ρ4 as computed in simulations,
while the theory predicts a decrease of the critical ρ4. This
difference is associated to a different slope of tie lines, i.e., of
the lines connecting the two coexisting phases. Tie lines for

FIG. 7. Projection of the phase diagram of the (a) 2D binary mixture in the
ρ2, ρ3 plane, and (b) 3D binary mixture in the ρ2, ρ4 plane according to
Wertheim’s theory for different reduced temperatures T∗ = kT/ε. The black
dashed line is the line of critical points of the mixture. Tie lines are not verti-
cal lines in this representation.

the lowest T systems are shown in Figure 8 (simulations data)
and in Figure 9 (theoretical results).

If tie lines have positive slopes, the coexisting points fol-
low the same trend as constant-composition lines which, in
this representation, are straight lines with zero intercept. This
means that high-density phases always have a higher density
of both species than the coexisting low-density phases. In the
systems studied here, this is true for the 2D numerical and
theoretical results and for the theoretical 3D mixture. By con-
trast, the numerical 3D system exhibits tie lines with negative
slope: the gas-like phases always have more bi-functional par-
ticles than their respective liquid-like phases. In this regard,
the theory fails to capture the demixing nature of the phase
separation occurring in the 3D system as observed in simula-
tions. On passing, we note that Wertheim theory predicts tie
lines with negative slopes in mixtures of particles with two
and six patches (not shown).

A different representation can be constructed by project-
ing the three-dimensional phase diagram onto the ρ, x plane,
i.e., total density against composition (molar fraction of bi-
functional particles). This is shown in Figure 10 (Monte Carlo
simulation) and in Figure 11 (Wertheim’s theory). This repre-
sentation makes it clear that the increase of the critical density
in the 3D systems is due to the contribution of the low-density
phase, which moves to larger densities and compositions as
the temperature is lowered in the vicinity of the critical tem-
perature of the pure four-patches fluid. In the 2D system, on
the other hand, the density range of the low-density phase
does not change strongly with T, while the composition in-
creases steadily. This results in the shift of the critical density
to smaller values.



164904-8 Rovigatti et al. J. Chem. Phys. 138, 164904 (2013)

FIG. 8. Tie lines for the lowest temperature system in (a) 2D and (b) 3D
(dashed lines). Orange diamonds pinpoint critical points. The shadow-cloud
construction is highlighted in panel (a). The dashed-dotted line is the dilution
line at fixed composition x = 0.181. It crosses the coexistence region in two
points which are part of the cloud curve (filled red squares). Their coexisting
partners are part of the shadow curve (open red squares).

This particular projection of the phase diagram hides
some of the differences we previously noted between theory
and simulations. Indeed, tie lines in this representation always
have negative slope.

C. Cloud and shadow curves

A common bi-dimensional representation of the phase di-
agram of binary mixtures is done by making a cut at a fixed
composition in the three-dimensional ρA, ρB, T phase dia-
gram. The intersection between the cutting plane and a fixed
temperature plane is usually called dilution line,39 because by
following it the density of the system can be varied without
changing the overall composition. The points at which the
dilution line intersects the phase boundary are the so-called
cloud points. Each of these points coexists with an infinitesi-
mal amount of the other phase which has, in general, a differ-
ent composition. These points are called shadow points. An
exemplification of this procedure is given in Fig. 8(a). The
shadow and cloud curves are then constructed by plotting the
sets of cloud and shadow points on the T, ρ plane. Note that
this cloud-shadow construction is a projection and therefore,
while the cloud points have the same composition, the com-
position of the shadow points varies, i.e., the tie lines are out-
of-plane. The spinodal curve lies inside the cloud curve and
the two lines touch at the critical point, which is always lo-
cated at the intersection of the shadow and cloud curves.21, 40

Figure 12 shows the cloud-shadow construction for the
2D system at a fixed composition x = 0.181. The orange dia-
mond marks the position of the critical point at kT/ε = 0.12,

FIG. 9. Theoretical results for tie lines at the lowest temperature system in
(a) 2D and (b) 3D (dashed lines). Open circles mark the positions of critical
points.

which happens to have the same composition. In line with the
results of Sec. III B, the curves resemble the usual bell-shaped
gas-liquid coexisting regions observed in pure systems.3, 41, 42

Both cloud and shadow curves have a low-density (high-
density) phase which is in coexistence with a high-density
(low-density) phase. In addition, all the coexisting branches
have a monotonic T-dependence. Indeed, both the low-density
cloud branch and the high-density shadow branch have nearly
T-independent densities, whereas the densities of the low-
density shadow branch and of the high-density cloud branch
are monotonically decreasing and increasing, respectively, as
in gas-liquid phase transitions of pure, simple fluids. All the
cloud-shadow constructions computed for the 2D mixtures
share the same qualitative features with the one shown here,
regardless of x. Theoretical results, shown in Fig. 12(b), are
qualitatively in line with simulation data.

The 4–2 mixture, as previously noted, behaves in a dif-
ferent way. Figure 13 shows the cloud and shadow curves
for a mixture with a fixed composition x = 0.09. The whole
cloud curve has a monotonic T-dependence and its behaviour
is qualitatively similar to the 2D case. The shadow curve, on
the other hand, exhibits several remarkable features. First of
all, the density of the low-density branch is rather high, being
half-way between the two branches of the cloud curve and
very close to the critical density. Moreover, its temperature
dependence is non-monotonic, first decreasing and then in-
creasing upon lowering T. The high-density branch seems to
be non-monotonic as well and, at a slightly lower temperature
than the lowest investigated T, a crossing between the cloud
and the shadow high-density branches is expected. We ascribe
the lacking of this feature in the theoretical curves, shown in
Figure 13(b), to the demixing character of the transition.
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FIG. 10. Projection of the phase diagram of the (a) 2D binary mixture and the
(b) 3D binary mixture in the ρ, x plane according to MC simulations. Sym-
bols: densities of the coexisting phases for different reduced temperatures
T∗ = kT/ε. The symbols connected by the dashed line mark the positions of
critical points. The orange point marks the position of the critical point of the
associated pure system with three (four) patches in 2D (3D). Note that the tie
lines are not vertical lines.

FIG. 11. Projection of the phase diagram of the (a) 2D binary mixture and
the (b) 3D binary mixture in the ρ, x plane for different reduced temperatures
T∗ = kT/ε according to Wertheim’s theory. The black-dashed line is the line
of critical points.

FIG. 12. (a) Cloud (black circles) and shadow (green squares) curves for
the 2D binary system at fixed x = 0.181. Each point on the gas branch of
the cloud curve (filled circles) is in coexistence with the point on the liquid
branch of the shadow curve at the same temperature (filled squares), and vice
versa (empty symbols). Lines with arrows point out the connection between
cloud and shadow points. (b) Theoretical results for the same system at the
same value of x. The orange diamonds signal the position of the critical point
of the mixture having the same composition.

FIG. 13. (a) Cloud (black circles) and shadow (green squares) curves for the
3D binary system at fixed x = 0.09. The symbol filling has the same meaning
as in Fig. 12. The orange diamond signals the position of the critical point
of the mixture having the same composition, extrapolated from the location
of the nearby computed critical points. (b) Theoretical results for the same
system at the same value of x.
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IV. CONCLUSIONS

We have extended the successive umbrella sampling
method22 to binary mixtures in order to simulate the full bulk
phase diagram. The method consists in dividing the simula-
tion cell into a set of overlapping windows of variable size,
which is set by the number of particles of each species al-
lowed in a particular window. Each window is then sam-
pled by means of Grand Canonical Monte Carlo simulations,
counting the number of times that different microstates, char-
acterized by the number of particles of each species, appears
in each window. This gives the probability distribution of mi-
crostates, and thus the desired thermodynamic properties of
the system. We have tested the validity of the new method by
computing the phase behaviour of patchy colloidal mixtures.
We have compared the results with the theoretical predictions
of Wertheim’s first order perturbation theory.

We have analysed two types of colloidal mixtures: bi-
and three-functional patchy particles in two dimensions, and
bi- and tetra-functional patchy particles in three dimensions.
In the first case, bi- and three-functional patchy colloids in
2D, simulation and theory are in excellent agreement. The
agreement is quantitative for those variables that do not in-
volve the density, such as temperature or composition. The
theory underestimates the density (a well know problem of
Wertheim’s first order perturbation theory) as it neglects the
formation of closed loops. As a consequence the agreement
between the predicted densities and those found in the simu-
lations is only qualitative. The phase behaviour of these mix-
tures is similar to that of bi- and three-functional particles
in three dimensions:2, 17 the critical density vanishes as the
critical temperature approaches zero, suppressing condensa-
tion and yielding an increasingly large region of phase space
where empty liquids are stable. Thus, dimensionality does not
change the topology of the phase diagram of these mixtures.
This was to be expected since the energy and entropy of bond-
ing dominate the behaviour of such mixtures and this is deter-
mined by the functionality of the particles, rather than by the
spatial dimension.

Three-dimensional mixtures of bi- and tetra-functional
colloids, however, exhibit a different behaviour. The results
of Wertheim’s theory predict that as the critical temperature
decreases the critical density first increases, then decreases
and tends asymptotically to a value, which is different from
zero. The simulation confirms the initial increase of the crit-
ical density but the non-monotonic behaviour could not be
confirmed by simulations as it occurs (according to the the-
ory) at very low temperatures, a region not accessible by the
current simulation techniques. Despite the qualitative descrip-
tion of the mixture’s critical behaviour, the theory fails to
describe adequately the shadow and cloud curves for these
mixture. The origin of this discrepancy may be related to the
formation of closed loops of particles, neglected by the theory,
which increase in number as the functionality of the particles
increases.

In summary we have developed and tested a new sim-
ulation scheme to investigate the phase diagram of binary
mixtures of patchy colloidal particles. The new method can
be applied to a large variety of problems, such as the sur-

face and confinement properties of patchy colloidal mixtures,
or the study of the bulk and percolation properties of the re-
cently predicted bicontinuous gels or bigels.10–12 In mixtures
of patchy particles these bigels may be equilibrium structures,
when they occur in the empty liquid regime11 or dynami-
cally arrested structures when they occur inside the liquid-
vapour or the liquid-liquid binodals, as in ordinary binary
mixtures.12 A detailed investigation of the connectivity and
other physical properties of these structures, in and out of
equilibrium, is bound to reveal novel features with potential
applications.
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