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We present a numerical study on the phase diagram for a simple model of Janus colloids, including
ordered and disordered structures. Using a range of techniques, we generate a set of crystal struc-
tures and investigate their relative stability field in the pressure-temperature and temperature-density
planes by means of free-energy calculations and thermodynamic integration schemes. We find that
despite the Janus colloids’ simple architecture, they form stable crystal structures with complicated
bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice. In addi-
tion, we find a phase consisting of wrinkled bilayer sheets, competing with both the fluid and the
crystal phases. We detect a metastable gas-liquid coexistence which displays a micellization-driven
re-entrant behavior. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4801438]

INTRODUCTION

The need for new functional materials spurred scientific
progress in the design and synthesis of colloidal particles with
well-defined shapes and interactions.1, 2 The particle surface
can be chemically modified to create attractive patches, re-
sulting in directional interactions.3–5 These so-called “patchy
particles,” which can be investigated in computer simulations
with surprisingly simple models,6–8 have been shown to form
several interesting structures such as micelles, vesicles, tubes,
and sheets.9–12

Recent work has shown that such models are extremely
powerful, and even applicable to more complex experimen-
tal systems such as gels of clay-platelets,13, 14 and to parti-
cles with more than one type of patch on their surface.15–17 In
particular, there has been interest in the design and stability
of patchy colloidal crystals since these show a high potential
for future photonic applications.18 Moreover, colloids are ex-
cellent experimental model systems, since they can be easily
studied with confocal microscopy.19

To numerically determine the complete phase diagram of
a model, including both ordered and disordered phases, two
main steps are necessary: (i) create a list of all possible (crys-
tal) structures and (ii) evaluate their chemical potential as a
function of temperature T, and pressure P. While methodolo-
gies for evaluating crystal free energies are nowadays well-
developed,20 finding the candidate lattices is still the subject
of ongoing research. For hard particles, a novel “floppy box”
Monte Carlo method was recently developed by Filion et al.21

where the simulation box can change both its shape as well as
its volume during the simulation. By using a small number of
particles (typically 1–12), unit-cell candidates can be gener-
ated at relatively low computational cost. The shape fluctua-
tions allow to find crystal structures that do not fit in a cubic
box. Recently, this method was extended to other, irregularly
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shaped, hard particles.22–26 For completion, we note that one
limitation of these methods is that quasi-crystals27 cannot be
directly identified in this way.

For patchy particles, most of the previous studies of
crystal phases relied on an “educated guess” of crystal
candidates.28–31 Only recently, genetic algorithms32, 33 and
floppy box methods34 have been extended to patchy colloids
in the attempt to generate a list of possible ground-state struc-
tures in a systematic way.

Here, we focus on Janus particles,35–44 i.e., colloidal
spherical particles whose surface is divided evenly into two
areas of different chemical composition, providing the most
elementary and geometrically simple example of a surfac-
tant particle,45 in which solvophilic and solvophobic areas
reside on different parts of the surface of the same particle.
Some proteins, e.g., hydrophobin46 and casein,47 have large
hydrophobic patches on their surface, similar to Janus col-
loids. The spontaneous organization of Janus colloids in finite
size clusters has received considerable attention.48–52 It has
been shown that these particles can form small-size aggre-
gates, resembling micelles, and vesicles.

To our knowledge, no detailed studies have been dedi-
cated to the complete phase diagram, including the crystal
phases, of Janus particles neither experimentally nor numer-
ically. Here, we do so, employing the well established one-
patch Kern-Frenkel (KF) potential,53 which models the repul-
sive hemisphere as a hard-core interaction and the attractive
one via a square-well potential, with a range equal to 20% of
the particle diameter. The two-patch analogue of this model
has been validated against experiments and has shown to suc-
cessfully describe the thermodynamics and self-assembly of
triblock Janus particles in 2D,7 as well as the fluid state in
3D.54 From the large number of candidate structures gener-
ated by the floppy box procedure, we select the few lattices
which are stable in a selected region of the T–ρ plane and
evaluate their coexistence lines, providing a complete pic-
ture of the model phase diagram. Here, we define the number
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density ρ = N/V, with N the number of particles, and V the
volume of the system. The thermodynamically stable crys-
tals we found are all formed by an underlying face-centered
cubic (fcc) or hexagonal-close-packed (hcp) lattice, but with
specific orientations of the particles. We found only one low-
density periodic structure, in the form of a wrinkled bilayer,
coexisting with a dilute, gaseous phase, and with orientation-
ally ordered crystals.

We also calculated the stability field of the gas (colloid
poor) and of the liquid (colloid rich) phases. A previous study
of the same model, but for a relatively large attraction range
(50% of the particle diameter), had revealed that a cluster
phase of micelles forms at low temperature, which progres-
sively gains stability with respect to the liquid phase.55 Here,
we show that the resulting re-entrant gas-liquid coexistence
is also found in this model. However, the gas-liquid coex-
istence is found to be metastable with respect to a broad
two-phase coexistence region of wrinkled bilayer-sheets and
a fluid phase.

MODEL AND METHODS

The model

We select the Kern-Frenkel potential53 (uKF) as a simple
model for non-overlapping, attractive Janus particles. uKF is
defined as

uKF(rij , n̂i , n̂j ) = uSW(rij )"(rij , n̂i , n̂j ), (1)

where uSW(rij) is a square-well interaction potential and
"(rij , n̂i , n̂j ) is a function depending on orientations of two
interacting particles:

uSW(rij ) =






∞ if rij < σ

−ε if σ < rij < σ + %

0 if rij > σ + %,

(2)

where σ is the hard-sphere particle diameter and % is the in-
teraction range of the square well attractions:

"(rij , n̂i , n̂j ) =






1 if

{
r̂ij · n̂i > cos θ and

r̂ji · n̂j > cos θ

1 if rij < σ

0 otherwise,

(3)

with r̂ij a unit vector pointing along the line joining the center
of particles i and j, and n̂i and n̂j are the unit vectors indicat-
ing the orientations of particle i and j. The choice of cos (θ )
= 0 corresponds to a coverage of 50%, i.e., to the Janus case.
A schematic representation of two Janus particles interacting
with this potential is given in Fig. 1. This model is able to
reasonably reproduce the physical behavior of colloids with
one hydrophobic and one hydrophilic hemisphere.43 The well
depth ε fixes the energy scale. The interaction range %= 0.2σ
was chosen such that the coordination shell of the particles in-
cludes only nearest neighbors.

Finding crystals in a floppy box

To find crystal structure candidates, we used the variable
box shape simulation strategy from Refs. 21 and 34. We per-

FIG. 1. Schematic 2D representation of two Janus spheres labeled i and j,
interacting with a Kern-Frenkel potential as defined in Eq. (1). The attractive
hemispheres are depicted in orange. The vector rij points from particle i to
particle j. The vectors n̂i and n̂j denote the orientations of particles i and j, re-
spectively. The light red area indicates the range of the interaction, % = 0.2σ
in this work. Note that this range corresponds to two times the width (in the
radial direction) of the light red zone attached to a single particle.

formed simulations at constant pressure P* = Pσ 3/kBT and
temperature T* = kBT/ε for different numbers of Janus parti-
cles N = {2, 3, . . . , 8} in a small floppy simulation box. Here,
kB denotes the Boltzmann constant. The lengths of the vectors
that span the box and the angles between them were allowed
to fluctuate. For each value of N, we performed the simulation
20 times with a different random seed. Each simulation was
started with a random configuration in the fluid state. Typi-
cally, we used O(107) rotation and translation moves per par-
ticle, and adjusted the shape and dimensions of the box every
N MC moves. The step sizes were calibrated such that the
acceptance probabilities were close to 50%. After the simu-
lations were completed, we selected the configurations from
the small floppy box with the highest number of bonds. These
configurations, providing the unit cell, were multiplied a num-
ber of times in three directions to generate a larger crys-
tal configuration. Subsequently, the resulting structure was
equilibrated, always in a floppy box containing between 100
and 1000 Janus particles. Because some of these simulations
yielded the same candidate (not necessarily in the same box-
shape), we looked for a similarity in structure. To this end,
we compared the average potential energy, average density,
pair-correlation function, and orientation distribution function
(Appendix A).

Crystal free energies

After identifying and classifying our structures, we per-
formed free-energy calculations in order to predict their sta-
bility and draw the phase diagram. The phases under consid-
eration are the fluid, sheets consisting of wrinkled bilayers,
and several crystal structures (Fig. 2). To calculate the abso-
lute free energy of the crystal phases we used the Frenkel-
Ladd method.56 Although there is plenty of literature on the
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FIG. 2. Free-energy calculations were performed for Janus particles in a fluid (left), wrinkled bilayer sheets (middle), and crystals (right). The blue hemispheres
have a hard-sphere character. The orange hemispheres are impenetrable as well, but in addition form attractive bonds, described by a square-well Kern-Frenkel
attraction with range % = 0.2σ .

subject,20, 57 we will briefly discuss the procedures that we
employed. Here, the reference system is an Einstein crystal
with fixed center of mass. The particles inside the Einstein
crystal are coupled to their lattice positions with a potential
that depends on coupling parameter λtr. The particle orienta-
tions are coupled with a parameter λor. The total reference en-
ergy inside the Einstein crystal is the sum of the translational
and the orientational reference Hamiltonians:

Href(λtr, λor) = Htr
ref(λtr) + Hor

ref(λor). (4)

The translational reference Hamiltonian is

Htr
ref(λtr) = λtr

N∑

i=1

(|ri − ri,0 − rcm|)2

σ 2
, (5)

where ri is the position of a particle i, ri,0 the location of its
spring-well, λtr is the translational coupling parameter, and
rcm is the position of the center of mass of the whole sys-
tem. The last term rcm is there to account for the collective
drift of the whole crystal. The reference rotational Hamilto-
nian can be chosen arbitrarily but must have the same sym-
metry as the coupled system. To match the symmetry of the
Janus particles, we employ an orientational (C∞v-symmetric)
Hamiltonian that reads

Hor
ref(λor) = λor

N∑

i=1

(1 − cos(ψ)), (6)

where λor is the orientational coupling parameter, and ψ is
the angle between the orientation of the particle and the ori-
entation inside the Einstein crystal. During the simulations in
the free-energy calculations, the particles feel a potential H′

that is the sum of the original Hamiltonian of the particles
H =

∑N
i,j>i uKF (rij , n̂i , n̂j ), plus the reference Hamiltonian

Href:

H′ = H + Href(λtr, λor). (7)

In this work, the positions and orientations are coupled with
the same sample parameter, i.e., λ = λor = λtr. In the fol-
lowing we define for the potential energy U and the total free
energy F:

f = F

N
, u = U

N
, (8)

where N is the number of particles, f is the free energy per
particle, and u is the potential energy per particle. The free

energy can be evaluated by coupling the system of interest to
a reference system with a known free energy. The difference
between the investigated system and the reference system is
then given by

%f = f (0) − f (λmax) = −
∫ λmax

0

〈
dHref(λ)

dλ

〉

N,V,T ,λ

dλ,

(9)

where λmax is a large value of the coupling parameter for
which all the particles are fixed to their ideal positions and
orientations in the Einstein crystal, such that the reference
Hamiltonian is dominant and all the particles are coupled to
the Einstein lattice. The absolute value for the free energy of
the real system is the sum of the following contributions:

f = %f + uen + fref, (10)

where %f is given by Eq. (9), uen is the Madelung-energy per
particle in the perfect Einstein crystal, and fref is the free en-
ergy of the reference system, which consists of a translational
and orientational part:

fref(λmax) = f tr
ref(λmax) + f or

ref(λmax). (11)

From Ref. 20, the translational free energy of an Einstein crys-
tal with fixed center of mass is given by

βf tr
Ein(λmax)

= − 1
N

ln

[(
1
*t

)3N (
πσ 2

βλmax

)3(N−1)/2

N1/2V

]

, (12)

where β = 1/kBT, and *t = h/
√

(2πmkBT ), with h Planck’s
constant, and m the mass of a particle. For the orientational
free energy of the reference system we use

βf or
ref(λmax) = − ln

1
*r

1 − e−2βλmax

2βλmax
. (13)

where *r = h2/(8π2IkBT) and I the moment of inertia of a
Janus particle. A derivation is given in Appendix B. In the fol-
lowing we choose *3 = *3

t *r = σ 3 as the thermal volume.
Please note that the coexistence lines are independent of the
choice of *t and *r. The absolute free energy can now be cal-
culated using Eq. (10). To evaluate %f (Eq. (9)) we performed
a series of NV T -simulations for different values of λ = λor

= λtr, evaluating the average of dHref/dλ. Subsequently, we
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fitted a spline using Akima-interpolation58 and integrated over
this spline, rewriting the integral in Eq. (9) as

%f = −
∫ ln λmax+c

ln c

λ

〈
dHref(λ + c)

dλ

〉

N,V,T ,λtr,λor

d(ln λ + c),

(14)

where c is a small value up to where the integral of the refer-
ence Hamiltonian has a negligible contribution. Since a con-
venient choice for the Einstein crystal is important, we elabo-
rate on this in Appendix C.

To evaluate the wrinkled bilayer reference free energy,
we applied the Einstein crystal methodology to a rather dense
configuration, such that the center of mass of the individual
sheets does not diffuse.

Equations of state

The equations of state P(ρ) of the different crystals were
calculated via multiple series of NPT-simulations in a floppy
box. For the fluid, a cubic box was used. In the case of the
wrinkled bilayer sheets we had to take special care to avoid
strong finite-size effects related to the translational entropy
of the individual sheets. To this end, we implemented shifted
boundary conditions to connect the individual bilayer sheets.
To improve statistics, we employed a scheme using volume
trial moves, similar to the pressure evaluation at constant vol-
ume described in Ref. 59. However, at very low pressures
Pσ 3/kBT % 0.01 where particles in two adjacent sheets in-
teract only sporadically, resolving the equation of state be-
comes computationally expensive and depends on different
finite-size effects related to the curvature fluctuations of the
sheets.

Determining the coexistence lines between different
phases

From the free energy F(ρ1, T) evaluated via the Einstein
crystal method, we calculated the free energy F(ρ2, T), at den-
sity ρ2 via

F (ρ2, T )
NkBT

= F (ρ1, T )
NkBT

+
∫ ρ2

ρ1

P (ρ)
kBTρ2

dρ . (15)

The chemical potential µ(ρ2, T)/NkBT can be determined by
simply adding the term P(ρ2)/ρ2kBT. Alternatively, one can
calculate along a constant pressure P path the Gibbs free en-
ergy G(T , P ) ≡ F + PV . In this case, from the original state
point G(T1, P), one obtains G(T2, P):

G(T2, P )
NkBT2

= G(T1, P )
NkBT1

+
∫ T2

T1

H (T )
NkBT 2

dT , (16)

where H = U + PV . In this case µ(T, P) = G(T, P)/N.
Coexistence is defined by the intersection of the chemical

potential of distinct phases along a constant T or a constant-P
path. In this way, we establish the most stable crystal phases
among all the candidate crystal structures, i.e., those with the
lowest chemical potential for given {P, T}.

From the coexistence points, the coexistence lines can be
obtained using the method of Kofke,60 i.e., by integrating the

Clausius-Clapeyron equation:
(

dP

dT

)

coex
= sII − sI

vII − vI
= hII − hI

T (vII − vI)
, (17)

where sI and sII denote the entropy per particle of two coex-
istence phases, labeled as I and II, vI and vII are the corre-
sponding volumes per particle, and hI and hII are the enthalpy
values per particle. We employed a fourth-order Runge-Kutta
predictor-corrector scheme61 to perform the integration.

Thermodynamic integration at constant density

The free energy of the fluid can be calculated using ther-
modynamic integration over β at constant density and adding
the hard-sphere contribution. We evaluate the hard-sphere
contribution of the free energy using the Carnahan-Starling
equation:62

βfHS = ln(ρ*3) − 1 + 4η − 3η2

(1 − η)2
, (18)

where *3 is the thermal volume of a single particle, and η

is the packing fraction and ρ = N/V the density. The free
energy becomes

βfint = βfHS +
∫ β

0
〈uint(β ′)〉β ′dβ ′, (19)

where the integrand is evaluated using constant NV T -
simulations starting at high temperature. We used this free-
energy calculation to evaluate the free energy of the fluid
phase to calculate coexistence of the fluid and the crystal
phases.

Cluster free energies—Calculating the cluster
distribution and coexistence with the bilayer sheets

At low temperature the fluid consists of a distribution of
clusters of strongly bound Janus particles. It is virtually im-
possible to equilibrate these clusters and special strategies are
required to obtain thermodynamic information.63 Here, we
employed a technique that was already successfully applied
to different patchy particles.64 For this, we consider a system
of N Janus particles in a volume V at temperature T. In the
cluster gas phase, these particles form finite clusters with a
cluster size distribution Nn, satisfying

N =
∞∑

n=1

nNn, (20)

where Nn is the number of clusters consisting of n particles.
We approximate the free energy of the cluster gas as that of
an ideal gas of clusters, plus a hard-sphere contribution:

βF (N,V, T )

=
∞∑

n=1

Nn

[
ln Nn − 1 − lnZn + 4η − 3η2

(1 − η)2

]
, (21)

where η = πρσ 3/6 is the packing fraction, and Zn is the parti-
tion function of a cluster of size n. In essence, this means that
we model the cluster fluid as a fluid of hard spheres with an
effective volume given by η/ρc, where ρc is the total density
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of clusters in the system. The partition function of a cluster of
size n reads

Zn = 1
(4π )n*3nn!

∫

V

drn

∫
d!ne−βU (rn,!n)c(rn,!n). (22)

Here, rn and !n denote the positions and orientations of the
Janus particles, respectively. The function c(rn, !n) is a con-
straint function that equals 1 if the n particles form a sin-
gle continuous cluster, and is 0 otherwise. Since the partition
function for a monomer is Z1 = V/*3, this free energy re-
duces to the Carnahan-Starling hard-sphere free energy in the
case where only monomers exist.62 Taking the differential of
Eq. (21) with respect to the volume yields the pressure P in
terms of the cluster distribution:

βPσ 3 = 1 + η + η2 − η3

(1 − η)3

∑

n

ρnσ
3. (23)

The chemical potential is given by

βµ = βF

N
+ βP

ρ
. (24)

The equilibrium cluster size distribution can be obtained by
minimizing the free energy with respect to Nn, while satisfy-
ing the constraint in Eq. (20). This yields

Nn

Nn
1

= Zn

Zn
1
e

(n−1) 4η−3η2

(1−η)2 . (25)

The relations between the various Zn can be obtained
directly from a grand-canonical Monte Carlo (GCMC)
simulation.64, 65 By imposing the constraint of having only a
single cluster in a GCMC simulation, the probability P(n) of
observing a cluster of size n reads

P(n)
P(1)

= Zn

Z1
eβµ(n−1). (26)

Hence, the ratio Zn/Z1 can be directly obtained for all n
from the GCMC simulation. Note that Zn/Z1 is independent
of µ, and we can therefore safely set µ = 0 in our grand-
canonical simulations. A few examples of calculated cluster
size distributions for Janus particles in our system are shown
in Fig. 3.

The requirement that all the particles in the simulation
form a single cluster is maintained by simply rejecting any
MC moves that would break up the cluster. Since the simu-
lation box needs to be large enough to contain all possible
cluster configurations, the probability of inserting a new par-
ticle into the cluster is very low unless some form of biased
insertion is used. Here, we performed insertions by randomly
selecting an existing particle in the cluster, and choosing the
position r of the newly inserted particle uniformly in a shell at
distance σ < |r| < σ + δ around the chosen particle. This en-
sures that there is always at least one nearby particle available
for bonding, but areas where multiple shells around existing
particles overlap will be sampled multiple times. To correct
for this, any insertion performed at a location where k shells
overlap is immediately rejected with probability (k − 1)/k.
The modified acceptance rules for inserting and deleting par-

FIG. 3. Cluster size distributions ρn/ρ at a density ρσ 3 = 0.01 as a function
of cluster size n for four different temperatures kBT/ε = 0.20, kBT/ε = 0.21,
kBT/ε = 0.22, and kBT/ε = 0.23. Here, ρn is the number density of clusters of
size n. The lines indicate the results from the single-cluster simulations, and
the points are directly obtained from NV T -simulations. Note that the equi-
libration of large clusters at low temperatures is difficult, likely explaining
the deviations for kBT/ε = 0.20. In the inset, a cluster consisting of 28 Janus
particles is shown.

ticles read

acc(n → n + 1)

= min
[

1,
nv

*3(n + 1)
eβ[µ−U (rn+1,!n+1)+U (rn,!n)]

]
, (27)

acc(n + 1 → n)

= min
[

1,
*3(n + 1)

nv
e−β[µ+U (rn,!n)−U (rn+1,!n+1)]

]
, (28)

where v is the volume of a spherical shell of thickness δ

around a particle. Note that insertions and deletions which
break the cluster are never allowed.

To properly sample all cluster sizes, we use umbrella
sampling:57 we run separate simulations for each cluster size
n, where only clusters of size n and n + 1 are allowed.
From each simulation we obtain a single ratio Zn+1/Zn. Ad-
ditionally, we use parallel tempering to improve the sam-
pling of different cluster configurations at low temperatures:57

within an umbrella sampling window, we simulate clusters
for a range of different temperatures and allow switch moves
that swap configurations between two systems with different
temperatures.

After performing the simulation for each window, we
combine the results to calculate Zn for every simulated clus-
ter size n, and numerically solve Eq. (25) to obtain the cluster
size distribution. We can then use this to calculate the full
Helmholtz (and Gibbs) free energy of the system following
Eq. (21). Note that the density of the system does not affect
the simulations: knowing the individual cluster partition func-
tions allows us to calculate the free energy for any system den-
sity where the clusters can be considered as non-interacting.

Successive umbrella sampling

Successive umbrella sampling (SUS)66 grand-canonical
simulations have been performed for a rather large box size
(L = 14σ ) to locate the gas-liquid coexistence curve. SUS
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provides the full density probability, P(ρ) (or equivalently
P(N )) of observing the system at density ρ (or equivalently
with N particles in the box) at fixed temperature T, chemical
potential µ, and volume V . In the SUS method, the explored
particle range (0, N) is partitioned in many small windows of
size %N (%N = 2 in the present case). For each window, a
grand-canonical MC simulation records the number of time a
state of N particles is visited. Simulations are complemented
with appropriate boundary conditions, constraining the num-
ber of particles to remain within the window’s range.67 Com-
bining the histograms for different windows allows us to eval-
uate the full density probability, P(ρ). The coexistence points
at fixed T are then obtained by re-weighting P(ρ) until the
two peaks (associated to the coexisting low- and high-density
phases) have the same area. Under these conditions, the peak
average density provides a precise estimate of the coexistence
density.

The evaluation of P(N ) allows us to calculate the coex-
isting pressure. Indeed P(0) = 1/Zgc, where Zgc = eβPV is
the partition function in the grand-canonical ensemble. From
this simple relation one obtains P = −kBT lnP(0)/V .

RESULTS

Stable crystals and their structure

The floppy box procedure produces a large number of
candidate crystal structures. Most of them do not survive
when copied in a large simulation box and equilibrated at the
same T and P at which they have been generated in the orig-
inal floppy box and/or at different T and P values. This sig-
nificantly reduces the number of candidate crystal structures
whose stability needs to be evaluated. In addition, many of
the crystals generated in the original floppy box result in the
same macroscopic lattice. The application of the criteria listed
in Appendix A takes care of the elimination of the duplicate
structures.

In the lowest energy structures that we found, Janus par-
ticles are packed on a face-centered-cubic (fcc) lattice. In
their fully bonded state (i.e., at sufficiently low temperature),
there are nine bonds connected to each patch, correspond-
ing to an energy per particle U/Nε = −4.5. Groups of four
particles form tetrahedra in which the hard-sphere sides are
pointed inwards, and the attractive hemispheres are directed
outwards (Fig. 4, the orange hemispheres are attractive). Sev-
eral polymorphs can exist, i.e., there are multiple ways in
which the orientations of the particles are pinned on the fcc-
lattice. We name all these crystals of type I, differentiat-
ing with lower case letters the different bonding patterns. In
Figs. 4(a)–4(d), the four polymorphs Ia–Id that were discov-
ered with the floppy box method are depicted. Note that dif-
ferent polymorphs can either have four or eight orientation
spots on the unit-sphere, depending on the different ways in
which the tetrahedra are oriented.

In addition, we also calculated the distribution of relative
patch-orientations O(n̂i · n̂j ), where θij ≡ n̂i · n̂j is the inner
product between the orientations of all pairs of Janus parti-
cles i and j (Fig. 4(e)), so also the relative angles between
particles on large distances are incorporated in this distribu-

tion. For crystal I, the peak at n̂i · n̂j = −0.335 corresponds
to a relative angle of 109.5◦, which is a clear fingerprint of the
tetrahedral arrangement of the orientations within the crys-
tal structure. The peak near n̂i · n̂j = 1.0 indicates that the
orientational order is long-ranged, i.e., particles on different
locations point almost exactly in the same direction. To as-
sert the change of the orientations in time, we calculated the
time-correlation of particle orientations 〈n̂i(t) · n̂i(0)〉 at low
temperature (Fig. 4(f)). There are slight differences in the (av-
erage) orientational freedom of the particles inside the differ-
ent polymorphs.

We also found one fully bonded crystal on a hexagonal-
close-packed (hcp) lattice, that we name crystal II. The unit
cell of crystal II was found in a small floppy box using eight
particles. The unit-cell representation in a rectangular box is
shown in Fig. 5(a). Fully bonded, the structure has an energy
per particle U/Nε = −4.125.

We did not systematically investigate the polymorphs
of crystal II. In the orientational distribution of crystal II
(Fig. 5(c)) peaks near n̂i · n̂j = −1.0 and n̂i · n̂j = 1.0 show
that particles are pointing in exactly the same, as well as in
the opposite directions. The broadness of the distribution con-
firms that particles in crystal II (Fig. 5(c)) have more freedom
to rotate than those in crystal I (Fig. 4(e)).

In order to calculate the equations of state for the dif-
ferent crystals and to evaluate their melting temperatures, we
have performed several standard constant-pressure simula-
tions, sometimes observing spontaneous transitions between
different structures. In the course of heating crystal II we
discovered a transition, characterized by a sudden jump in
the internal energy (Fig. 5(b)), around kBT/ε = 0.25 toward
a new phase that we name W. This new phase, still hcp,
has a distinct orientation distribution, showing peaks indi-
cating an increased probability of very specific relative ori-
entations (Fig. 5(c)). A unit cell of the structure is given in
Fig. 6(a). Interestingly, structure W had not been predicted
by the floppy box method. On cooling back, the W structure
remained metastable down to very low temperature.

Although particles retain their hcp-stacking, like in
crystal II, the orientations are aligned throughout the crys-
tal in wrinkle-like patterns (Figs. 6(b) and 6(c)). The wrinkles
are defined inside the {111} plane of the hcp-crystal and ex-
hibit a typical half-period corresponding to ten particles. In
Fig. 6(d) the time-correlation function 〈n̂i(t) · n̂i(0)〉 of crys-
tal W is shown. Clearly, the correlation fades as the tempera-
ture and the structure appears to continuously transform into
hcp-packed with random particle orientations (hcp-r). The T-
dependence of the relative orientation distributions in crystal
W is reported in Fig. 6(e). On increasing T, the distribution of
the orientations becomes flat, confirming the random orienta-
tions of the particles at high T.

To quantify the underlying structure of the crystals (i.e.,
neglecting orientations) we used the projection of the order
parameters q̄4 and q̄6, as described in Ref. 68. This projec-
tion is drawn in Fig. 6(f) for both the stable and metastable
candidate crystals mentioned above.

In addition to the crystals previously discussed, we iden-
tified several other crystals using the floppy box method. We
found that for all of these structures the chemical potential
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FIG. 4. Different polymorphs of structure I, the attractive hemispheres are shown in orange. From top to bottom (a)–(d) Ia, Ib, Ic, and Id. From left to right:
(i) the unit cell as found in the floppy box; (ii) a representation of the unit cell in a rectangular box; (iii) a distribution of orientations of the particles plotted
on the surface of a unit-sphere. (e) Orientations for the polymorphs of I, and (f) time-correlation of the particle orientations 〈n̂i (t) · n̂i (0)〉 at low temperature
kBT/ε = 0.05 and pressure βPσ 3 = 20, lines are guides to the eye.

(µ) was higher than for I, II, or W, and that they are thus
metastable.

For example, crystal I (fcc) melts spontaneously into
a metastable bilayer-like crystal that also exists on the
fcc-lattice when the temperature or the pressure is increased,
although II (hcp) would be the stable crystal under these con-
ditions. The explanation can be found in the fact that there is a
free-energy barrier associated with the change of lattice from
I to II, which makes the pathway from I to a metastable crys-

tal more likely. Finally we note that, similar to other known
methods to find crystal structures, there is no way to tell with
absolute certainty whether all stable crystal structures have
been found, since there can exist phases that are not readily
captured with small unit cells, like the W phase that we found
here.

Finally, while performing constant µV T -simulations to
investigate the gas-liquid coexistence and critical point, we
observed the spontaneous formation of extended aggregates
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FIG. 5. Unit cell of crystal II inside a rectangular box. The attractive hemispheres are shown in orange. From left to right: front view and side-view. (b) Bonding
energy per Janus particle versus temperature for structures II and W. There is a transition from II to W. Upon cooling, structure W did not melt back into II but
remained meta-stable. (c) Orientation distributions of crystal II (kBT/ε = 0.19, ρσ 3 = 1.172) and W (kBT/ε = 0.30, ρσ 3 = 1.062) inside their stability regions.

at kBT/ε ≤ 0.18, suggesting the presence of a novel addi-
tional ordered phase. From such an aggregate, we were able
to extract a unit cell (Fig. 7(a)), which, once duplicated in
two directions, comprises a wrinkled bilayer-sheet structure
(Fig. 7(b)). A side view of a simulation box containing six
wrinkled bilayer sheets connected via shifted periodic bound-
ary conditions is shown in Fig. 7(c).

Crystal relative stability

To evaluate the relative stability of the different crystals
and the bilayer sheets, we calculate the P dependence of µ

for several T. Results are reported in Figs. 8(a)–8(e). At kBT/ε
= 0.23, there is a coexistence between crystal II and crys-
tal W, as well as a coexistence between the fluid and the bi-
layer sheets. At kBT/ε = 0.21, the stable phases are the fluid
and bilayer sheets at lower pressure and structure II at higher
pressure. On cooling, at kBT/ε = 0.19, the equation of state
of the fluid becomes hard to evaluate directly due to the ex-
treme slow dynamics, and we calculated the free energy us-
ing grand-canonical Monte Carlo simulations to calculate the
cluster free energy, as described earlier. Among the crystals,
II is still the most stable structure. On further cooling, at kBT/ε
= 0.17, the coexistence point between crystals I and II ap-
pears. Structure I becomes more stable at smaller P. At kBT/ε
= 0.15, structure I is the most stable crystal at all shown pres-
sures. It is interesting to note that the differences in µ between
the different crystals is often a small fraction of the thermal

energy kBT, making it particularly difficult to identify the cor-
rect stable structure.

Although we did not perform a systematic search to find
all the possible polymorphs of crystal I, we calculated the free
energy for Ia–Id (Table I). For this, we chose two tempera-
tures T and a density ρ for which the crystal phase was found
to be stable. At sufficiently high temperatures, the number of
bonds per particle is slightly different for each polymorph.
We observed that there are differences in the free energy be-
tween the polymorphs of crystal I. The most stable candidate
that we found was Ia, closely followed by Ib and Ic, and fi-
nally crystal Id (Fig. 4). By comparing Id with Ia, we note
that reducing the number of orientations inside the unit cell

TABLE I. Calculated potential energies and free energies for different poly-
morphs of crystal I. The calculations in the table were performed at kBT/ε
= 0.05 and kBT/ε = 0.15 at constant density ρσ 3 = 1.070, well inside the
stability region of crystal I. Energies refer to the configurations on which the
free-energy calculation was performed.

kBT/ε Crystal ρσ 3 U/Nε F/NkBT

0.05 Ia 1.070 −4.500 −74.67
0.05 Ib 1.070 −4.500 −74.49
0.05 Ic 1.070 −4.500 −74.42
0.05 Id 1.070 −4.500 −73.68

0.15 Ia 1.070 −4.494 −14.67
0.15 Ib 1.070 −4.492 −14.50
0.15 Ic 1.070 −4.489 −14.43
0.15 Id 1.070 −4.485 −13.70
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FIG. 6. (a) Unit cell of crystal W in a rectangular box. The attractive hemispheres are shown in orange. (b) Crystal W inside a rectangular simulation box.
One wrinkle is high-lighted (attractive hemispheres in green). (c) Bonds inside crystal W, depicted with sticks. (d) The correlation of particle orientations
〈n̂i (t) · n̂i (0)〉 between time 0 and time t for different temperatures, all at pressure Pσ 3/ε = 4.0, lines are guides to the eye. (e) The relative orientation
distributions O(n̂i · n̂j ) for W at 5 different temperatures at density ρσ 3 = 1.11. The distribution becomes flat as the particle orientations become random
(hcp-r). (f) The projection of order parameters q̄4 and q̄6, as defined in Ref. 68 for crystals Ia (kBT/ε = 0.05, ρσ 3 = 1.115), Ib (kBT/ε = 0.05, ρσ 3 = 1.12), II
(kBT/ε = 0.19, ρσ 3 = 1.172), and W (kBT/ε = 0.30, ρσ 3 = 1.062).

can lower the free energy with as much as 1 kBT per particle.
Interestingly, the more stable polymorphs possess a higher de-
gree of orientational freedom, as can be deduced from the
lower correlation between the orientations in Fig. 4(f). This
suggests that free energy differences can be ascribed to differ-
ences in orientational entropy.

Metastable gas-liquid coexistence

Previous Gibbs-ensemble MC investigations of the same
model for interaction range % = 0.5σ have shown that Janus
particles, modeled with the KF potential, undergo a gas-liquid
phase separation.55 Unconventionally, the density of the coex-
isting gas increases on cooling approaching the liquid density

FIG. 7. (a) Unit cell of a wrinkled bilayer sheet consisting of 18 particles. The attractive hemispheres are shown in orange. (b) Top view of a single sheet (in
perspective). (c) Snapshot of a simulation box containing 6 wrinkled sheets that are connected via shifted boundary conditions.
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FIG. 8. Chemical potential curves obtained at constant temperatures (a) kBT/ε = 0.15, (b) kBT/ε = 0.17, (c) kBT/ε = 0.19, (d) kBT/ε = 0.21, and (e) kBT/ε
= 0.23. Note the coexistence points between Ia and II at kBT/ε = 0.17, and between II and W at kBT/ε = 0.23. The coexistence points between the crystals
and the bilayer sheets are given as well. The coexistence point between the liquid and the bilayers is only shown here for kBT/ε = 0.23. (f) The probability of
finding the system with N particles in the simulation box for different temperatures, as obtained with Successive Umbrella Sampling (SUS)66 grand-canonical
simulations. As the temperature decreases, the splitting of the peaks gets more pronounced as the (metastable) coexistence region widens.

at low T. Formation of a lamellar phase did not allow for in-
vestigation at lower T where a lower critical point could exist.

The anomalous T-dependence of the coexisting gas den-
sity was explained in term of a progressive formation in
the gas phase of micelles and vesicles, a phase thus char-
acterized by low energy and low entropy per particle (due
to the reduction of the orientational degrees of freedom
associated to the self-assembly process55, 69). A simple and
clear mean-field-theoretical model focusing on the competi-
tion between self-assembly and phase separation supported
such interpretation.70 Here we have repeated the calculation
of the coexistence curve for the shorter range % = 0.2σ by
using a more sophisticated methodology which allowed us
to evaluate the entire distribution of density fluctuations at

different T and evaluate the coexisting densities. The inves-
tigation of an aggregating system is particularly difficult, be-
cause the simulation box has to be sufficiently large to allow
for the presence of a sufficiently large number of large aggre-
gates. Aggregation also generates a size-independent signal
in the density fluctuations, in the window of densities corre-
sponding to a single (or a few) aggregates.71–74 For this rea-
son, the box must in addition be sufficiently large so that the
contribution of the size-independent signal is negligible. For
the present model, we have been forced to work with a cu-
bic box of size L = 14σ and investigate the N window 0 ≤ N
≤ 1500.

The resulting distribution P(N ), which can be trivially
converted to P(ρ), is shown for different temperatures in
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Fig. 8(f). On cooling, both the peak describing the low-density
phase and the peak describing the high-density phase move
to the right, confirming the unconventional behavior previ-
ously found for the % = 0.5σ case.55 The gas phase is
a cluster phase of non-interacting (except for the excluded
volume contribution) micelles and vesicles. In this phase, par-
ticle orientations are rather well-defined, to satisfy the ag-
gregate geometry. The liquid phase is a homogeneous phase
in which particles are orientational disordered. The critical
point is located at kBTc/ε = 0.200 ± 0.002 (Fig. 8(f)), and
Pcσ

3/kBTc = 0.004, while the critical density is ρcσ
3 = 0.195

± 0.005. We confirm that the P along the coexistence is nega-
tively sloped in the P–T plane (not shown here), similar as for
the % = 0.5σ case. This finding, by virtue of the Clausius-
Clapeyron equation, indicates that the gas entropy is smaller
than the liquid entropy.55

Phase diagram

Collecting together all previous results, it is now possible
to draw the complete phase diagram of Janus particles. First,
the coexistence points were obtained from the calculated
chemical potential isotherms Figs. 8(a)–8(e), and the coex-
istence between the crystal phases, the bilayer sheets, and the
fluid were obtained. Subsequently, these points have been se-
lected as starting points of the Kofke integration procedure60

to trace the coexistence curves in the T –P (Fig. 9(a)) and T –ρ
planes (Fig. 9(b)).

At sufficiently high P yet low T, the maximally bonded
crystal I is the most stable (Fig. 9(a)). Above kBT/ε ≈ 0.15,
structure II becomes more stable despite the fact that it has a
lower number of bonds per particle. Entropy becomes a more
relevant factor in the free energy and the ability to explore

different orientations compensates for the bond breaking. We
recall that, in contrast to I structures, particles in II are on
an hcp-lattice. We also recall that on heating, type I structures
convert into differently oriented crystals still on an underlying
fcc lattice. These heated I structures, which consist of bilayers
on the fcc-lattice, are metastable and therefore do not appear
on the phase diagram.

Upon further increasing the temperature, structure W
becomes more stable than structure II. Although the particles
in structure W are still on an hcp-lattice, the orientations
form “wrinkles” throughout the crystal. The orientational
order progressively decreases on increasing the temperature
towards random orientations on an hcp-lattice (hcp-r). We
found that the hcp packing remains slightly more stable
than the fcc packing for the temperatures mentioned here,
although in the limit of high T the fcc crystal should finally
become more stable (not shown in the figure), characteristic
of a hard-sphere system.75

We also find that the wrinkled bilayer sheets are thermo-
dynamically stable for 0.145 ! kBT/ε " 0.23. Interestingly,
the stability field of the wrinkled bilayer sheets is given by
a closed shape between the fluid and the crystals. Indeed we
find that the wrinkled bilayer sheets phase coexists both with
the fluid as well as with the crystal phase. The densities of the
fluid followed from the calculation of the cluster distribution.
From low to high temperature, the coexisting crystal phase is
I, II, or W, respectively. The triple point between the fluid,
bilayer sheets, and crystal W is located near kBT/ε ≈ 0.23.
For temperatures kBT/ε ! 0.23, the fluid coexists with crystal
W, or the hcp-random crystal.

Using the chemical potential of the fluid obtained from
the calculations of the cluster distribution, it follows that
there is a coexistence between the dilute fluid and the wrin-
kled bilayer sheets. At low temperatures kBT/ε " 0.2, the

FIG. 9. Phase diagram for Janus particles with range % = 0.2σ . (a) The temperature-pressure representation. Units are in kBT/ε and βPσ 3 for temperature and
pressure, respectively. The pressure is plotted on a logarithmic scale. The labels denote crystal I, II, W, and the hexagonal-close-packed crystal with random
orientations (hcp-r). (b) The representation in the density-temperature plane. Units are in ρσ 3 and kBT/ε for density and temperature, respectively. The dotted
line on the left boundary of the wrinkled bilayer sheet phase denotes an upper bound for the fluid-sheet coexistence region.
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coexistence pressures are located in the region where it be-
comes difficult to resolve the equation of state of the bilayer
sheets, as described in the Model and Methods section. More-
over, the spaces between the individual sheets can be suffi-
ciently large to contain monomers or even small clusters. In
a true equilibrium, these spaces would likely be filled with a
gas that has approximately the same density as the coexisting
gas. Hence, we expect that inside the fluid-sheet coexistence
region, the observed phase would correspond to a mixture of
sheets and a dilute gas. In the phase diagram we have indi-
cated with a dotted line an upper bound of this coexistence
region. The gas-liquid coexistence calculated from the SUS-
simulations is entirely embedded in the region where the fluid
and the wrinkled bilayer sheets coexist (Fig. 9(b)) and thus
metastable.

CONCLUSIONS

In this article, we focused on the stable crystal phases
that can be formed by Janus particles. We implemented the
recently proposed floppy box method21 complemented by
Monte Carlo simulations, free-energy calculations, and ther-
modynamic integration schemes to investigate these crystals
and their stability regions. In addition, we used cluster free-
energy calculations and successive umbrella sampling to char-
acterize and calculate the stability of the fluid phases, and to
identify a region in which a phase consisting of wrinkled bi-
layer sheets is stable. Combining all the information, we con-
structed the equilibrium bulk phase diagram.

The low-temperature crystals are characterized by exten-
sively bonded face-centered-cubic structures, in which there
are nine bonds connected to each patch. The low T crystals
convert to stable hcp-packed crystals with fewer bonds per
patch but more rotational freedom. Interestingly, we found
a transition into a phase containing wave-like patterns or
“wrinkles” of the particle orientations on the hcp lattice. At
high temperatures, hcp- and fcc-crystals with almost random
orientations emerge. We emphasize the lesson learned from
the W structure, which has a very large unit cell (80 parti-
cles) and which was not captured by the floppy box method,
as only eight particles were used there. All dense stable crys-
tals are based on an underlying fcc or hcp structure. The only
lower density structure identified is the wrinkled sheets phase,
roughly 25% less dense than the fcc or hcp crystals. It appears
that multiple patches are required to generate stable crystal
densities even lower than the wrinkled sheets phase.8, 28–30

We have confirmed, with a more sophisticated methodol-
ogy, that Janus particles undergo a gas-liquid phase separation
that is metastable with respect to a phase consisting of wrin-
kled bilayers coexisting with a (dilute) fluid.

The development of the methodology for calculating fi-
nite temperature phase diagrams for patchy colloidal particles
paves the way for calculations in which the role of the range,
the patch size, and the number of patches are carefully investi-
gated. The relative role of these parameters in controlling the
crystal phases will then become clear. We plan to do so in the
near future. A first exploratory work, showing structures that
can form for patch coverage fractions smaller than 0.5, was
already published recently.9
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APPENDIX A: SELECTION AND COMPARISON
OF THE CANDIDATE CRYSTAL STRUCTURES

To categorize the equilibrated crystal structures we im-
plemented an algorithm that groups the crystals based on
their similarity in density, number of bonds per particle, ra-
dial distribution function g(rij), and the relative particle orien-
tation distribution O(n̂i · n̂j ) of the relative patch-orientations
of two particles i and j, which can be at any distance from
each other inside the simulation box. To this end, we mutu-
ally compared all combinations of structures a and b given a
selection criterion C to construct a matrix MC with elements
mC

ab ∈ {0, 1}. Specifically, structures a and b are considered
identical according to criterion C if mC

ab = 1 and not the same
if mC

ab = 0. To mutually compare the energies, we used the
following similarity-criterion:

m1
ab =

{
1 if |(〈Ua〉 − 〈Ub〉)/(〈Ua〉 + 〈Ub〉)| < d1

0 otherwise,
(A1)

with d1 being the maximum relative energy difference al-
lowed for 2 structures to be considered similar. To compare
unit cells coming from the small floppy box, where the total
number of bonds is low, we can set d1 = 0. After the unit
cell is multiplied in 3 directions, we can set it to a low num-
ber, e.g., d1 ≈ 0.05. For the densities—at a given pressure and
temperature—the similarity relation becomes

m2
ab =

{
1 if |(〈ρa〉 − 〈ρb〉)/(〈ρa〉 + 〈ρb〉)| < d2

0 otherwise,
(A2)

where d2 is the maximum relative density difference. For unit
cells, it generally does not make much sense to compare the
densities, since the fluctuations are relatively high due to the
low number of particles. For crystals containing more than a
few hundred particles, a typical value for d2 ≈ 0.05. To com-
pare structural information containing the distances between
the centers of mass of the particles for two different structures
a and b we compared their radial distribution functions:

m3
ab =

{
1 if corr(ga(rij ), gb(rij )) > d3

0 otherwise,
(A3)

where corr(ga(rij), gb(rij)) is the normalized cross-correlation
function between the two radial distribution functions of
structures a and b, and d3 is the threshold for two structures to
be considered similar. To study the orientations of the parti-
cles, we used the orientation distribution by plotting the prob-
ability O12(n̂i · n̂j ) to find two particles i and j aligned at angle
θij = n̂i · n̂j . Now, we look for similarity in the orientations
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of two structures a and b by

m4
ab =

{
1 if corr

(
Oa

12(n̂a
i · n̂a

j

)
,Ob

12

(
n̂b

i · n̂b
j

))
> d4

0 otherwise,
(A4)

where corr(Oa
12(r),Ob

12(r)) is the normalized cross-
correlation function between the two radial distribution
functions of structures a and b, and d4 is the minimal value of
the orientational correlation that two structures are ought to
have in order to be similar. Typically, d3 and d4 were chosen
somewhere between 0.9 and 1.0. Finally, we combine all
the information above to construct a matrix S of which the
elements sab as follows:

sab =
{

1 if mC
ab = 1 ∀C ∈ L

0 otherwise,
(A5)

where L is the list of criteria, in this case L = {1, 2, 3, 4}.
From the matrix S we can identify the structures using that if
Sab = 1, then a and b belong to the same group of structures.
The strong point of this method is that it uses the combination
of multiple properties to group structures. If a certain prop-
erty is not suitable for whatever reason, it can be omitted as
long as the other ones guarantee that the structures can still
be categorized properly. The exact choice of properties and
values for dn should be chosen carefully for each system, and
the different groups of crystals within it.

APPENDIX B: DERIVATION OF THE ORIENTATIONAL
FREE ENERGY OF THE REFERENCE SYSTEM

The orientational partition function for a single particle
Zor reads

Zor = 1
4π*r

∫ 2π

0
dφ

∫ π

0
dψ sinψe−βU or

ref(φ,ψ), (B1)

where *r = h2/(8π2IkBT), and I is the moment of inertia of a
Janus particle. Using this definition, the orientational partition
function Zor now becomes

Zor = 1
4π*r

∫ 2π

0
dφ

∫ π

0
dψ sinψe−βλor(1−cos(ψ)). (B2)

By substituting dx = dψsinψ we obtain

Zor = 1
4π*r

∫ 2π

0
dφ

∫ 1

−1
dxe−βλor(1+x). (B3)

Using βf = − ln(Z), the reference orientational free energy
is given by

βf or
ref = − ln

1
*r

1 − e−2βλor

2βλor
. (B4)

APPENDIX C: DETAILS CONCERNING AN
APPROPRIATE CHOICE OF THE EINSTEIN CRYSTAL

The Einstein crystal that is used as a reference should be
carefully chosen, and there should be a continuous, integrable
path from the real crystal to the Einstein crystal. We gener-
ally used configurations that contained more than 3000 par-
ticles. Since our particles interact via a discrete square-well

potential, it occasionally happens that particles in the crystal
are located just on the edge of their interaction region or that
they are almost touching. As a result, a very small fluctuation
in position or rotation can already change its interaction en-
ergy with a few kBT (the energy associated with breaking or
forming a bond). If we were to use this crystal directly as an
Einstein crystal, high values of the coupling constant lambda
would be required to couple the particles to the lattice of the
Einstein crystal. This is undesirable because it would require
a relatively large number of simulations.

To avoid the need to perform simulations at extremely
high values of λ, we slightly adjust the positions of the par-
ticles inside the interacting Einstein crystal before we start
the free-energy calculations in such a way that they are lo-
cated more towards the center of their interaction regions and
sufficiently far from each other to couple them to the ideal
Einstein lattice at values of βλ = O(104). In practice, a good
estimate of “sufficiently far” can be obtained from Eqs. (4)
and (6). The distance from the center of their Einstein spring
corresponding to a reference interaction energy U tr

Ein = (kBT )
at βλ = 104 is 0.01. Analogously, the radial zone, represent-
ing the angle between the real orientation and the ideal Ein-
stein orientation, would correspond to ψ ≈ 0.015. This im-
plies that if the distance between the particles and between a
particle and a broken or formed interaction is comparable to
this distance/angle, all the particles will be strongly coupled at
βλ = 105.

To configure the Einstein crystal with the adjusted po-
sitions and orientations we perform a constant NV T Monte
Carlo simulation where the particles interact via the same
Kern-Frenkel square well potential as they do in any other
simulation (1). However, we now impose an additional
square-shoulder potential with magnitude / that steadily pro-
gresses with simulation time and pushes the particles outside
the regions that are on the edges of the interaction wells and
close to the hard-cores of other particles:

utot(rij , n̂i , n̂j ) = uSSH(rij )"SSH(rij , n̂i , n̂j ) + uSW-KF,

(C1)
where uSSH(rij) is a square-shoulder repulsion potential and
"SSH(rij , n̂i , n̂j ) is a function depending on the orientations
of the two interacting particles i and j, and uSW-KF is the
square-well Kern-Frenkel potential given by Eq. (1).

uSSH(rij ) =






/ if σ < rij < σ + δ

/ if σ + % − δ < rij < σ + % + δ,

0 otherwise,

(C2)

where σ is the hard-sphere diameter and % is the interaction
range of the square well attractions, and / is the height of the
square shoulder potential:

"SSH(rij , n̂i , n̂j ) =





1 if

{|r̂ij · n̂i − cos(θ )| < γ or

|r̂ji · n̂j − cos(θ )| < γ

0 otherwise.
(C3)

The height of the shoulder-potential / was chosen to in-
crease progressively with each step in the process. Typically,
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FIG. 10. (a) The interaction energy of the particles inside crystal Ib at kBT/ε = 0.17 during the process of adjusting the positions for the Einstein crystal. (b)
The translational and rotational coupling energy in the free energy calculation of crystal II at kBT/ε = 0.21 as a function of coupling parameter βλ. In this case,
λtr = λor. Symbols # (red) and / (blue) denote the translational coupling energy without and with adjusting the particle positions and orientations inside the
Einstein crystal, respectively. Symbols © (green) and ♦ (yellow) denote the corresponding orientational coupling energies. Note that by adjusting the positions
and orientations in the Einstein crystal, the curve approaches the limits of 1.5 for the average translational coupling energy and 1.0 for the average rotational
coupling energy corresponding to the perfect Einstein crystal already at lower values of λ.

we used 60 cycles of 300 translation or rotation moves per
particle. For each cycle, / was increased by a factor 1.3, start-
ing from 0.001 at cycle 0 to reach 6864.4 in cycle 60. As a
result, particles will be pulled out of regions near the edge of
the interaction region. The parameters δ and ω have to be set
such that the particles were adjusted in a proper way with-
out totally breaking up the crystal. We used δ = 0.015σ and
γ = 0.015 in this work, but in principle these values have to
be set empirically for each system. A typical curve of how
the square-well interaction energy changes during the adjust-
ment of the positions for the Einstein crystal is depicted in
Fig. 10(a) for the case of crystal Ib. In the first cycles, the
square shoulder potential / was very low, and the struc-
ture did not change. At somewhat higher values for / a
number of bonds were pushed toward the middle of the
interaction region, and some were pushed totally out of it and
were broken, resulting in a temporary increase of the inter-
action energy. At a later stage in the simulation, the broken
bonds were formed again. It is desirable that the maximal step
size is sufficiently large to overcome the square-shoulder bar-
rier, i.e., greater than 2δ for the translations and greater than
2γ for the rotations.

In Fig. 10(b) we show the integration and the resulting
values for %F in the case where we used the Einstein crystal
without modifying anything, and in the case where the particle
positions were adjusted using the potential in Eq. (C1) and the
procedure described above.

We stress here that during the free-energy calculations
the square-shoulder potential is not present. Therefore, for
simulations performed at low values of λ ≈ 0, the particle po-
sitions and rotations relax to those representing the real crys-
tal of interest. If this were not the case, the obtained free en-
ergy would not reflect the crystal of interest, but another one.
Hence, it should be carefully checked that the average inter-
action energy is the same as for an equilibrated configuration
of the real crystal of interest.

Finally, we note that at the highest volume fractions, even
this strategy will have limited effect, since the particles will
be close together and high values of λ are required to avoid
an interplay of hard-core exclusions.
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