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Erasing no-man’s land by thermodynamically
stabilizing the liquid–liquid transition in
tetrahedral particles
Frank Smallenburg1*, Laura Filion2 and Francesco Sciortino1,3

One of the most controversial hypotheses for explaining the
origin of the thermodynamic anomalies characterizing liquid
water postulates the presence of a metastable second-order
liquid–liquid critical point1 located in the ‘no-man’s land’2. In
this scenario, two liquids with distinct local structure emerge
near the critical temperature. Unfortunately, as spontaneous
crystallization is rapid in this region, experimental support
for this hypothesis relies on significant extrapolations, either
from the metastable liquid or from amorphous solid water3,4.
Although the liquid–liquid transition is expected to feature
in many tetrahedrally coordinated liquids, including silicon5,
carbon6 and silica, even numerical studies of atomic and
molecular models have been unable to conclusively prove the
existence of this transition. Here we provide such evidence
for a model in which it is possible to continuously tune the
softness of the interparticle interaction and the flexibility
of the bonds, the key ingredients controlling the existence
of the critical point. We show that conditions exist where
the full coexistence is thermodynamically stable with respect
to crystallization. Our work o�ers a basis for designing
colloidal analogues ofwater exhibiting liquid–liquid transitions
in equilibrium, opening the way for experimental confirmation
of the original hypothesis.

Numerous studies have attempted to provide evidence of a
second critical point in water2,7–9, silicon10 and other tetrahedral
liquids. Unfortunately, in all cases its expected location is well within
the region where these liquids spontaneously crystallize and so
no conclusive evidence has ever been reported. To observe critical
fluctuations, the liquid must survive in its metastable supercooled
state long enough to equilibrate, and the experimental observation
time needs to be smaller than the spontaneous nucleation time. In
principle, these conditions are easier to meet in simulation studies,
in which heterogeneous nucleation is absent by construction and
homogeneous nucleation is slowed down by the small size of the
investigated sample. Despite these advantages, numerical evidence
for the existence of a liquid–liquid critical point (LLCP) has been
reported only for a small set of models1,11–16, and in some of the
cases, not in a definitive way. It has even been speculated17 (but
not confirmed by studies repeated by independent groups15,16,18) that
the LLCP is amisinterpreted liquid–crystal transition, casting doubt
on the relevance and appropriateness of this elegant hypothesis
for interpreting the behaviour of water and silica, two of the most
common substances on Earth.

If the liquid–liquid (LL) scenario has universal aspects, it
should be possible to isolate its key ingredients in terms of the

interparticle interactions to pinpoint the physical origin of the
phenomenon. It should also be possible to clarify the contradictory
results available in the literature and identify conditions in which
the LLCP can be unambiguously observed in experiments. This
requires a thorough investigation, not only of the liquid(s),
but also of the relative stability of the disordered and ordered
phases. Here, our investigation is inspired by two distinct recent
theoretical discoveries: that network interpenetration can facilitate
a LL transition19, and that bond directionality is crucial in
controlling crystallization20. According to the first, particles with
long arms and strong directional interactions can form fully bonded
interpenetrating network structures separated by a first-order
transition line. According to the second, when bonds are highly
flexible, the liquid phase can remain stable in an intermediate range
of densities down to very low temperatures. If the bond flexibility
destabilizes the crystal state more rapidly than the LL transition,
it might be possible to observe a genuine phase separation into
two thermodynamically stable liquid phases, with no interference
of crystallization at any temperature T .

Guided by the previously described discoveries, and
mimicking the DNA tetravalent nanostars that have recently
been experimentally investigated21–23, we develop a simple limited-
valence model in which bond length and bond flexibility can
be continuously varied. We attach to a central spherical core of
diameter σ four identical spheres, generating four arms arranged
in a tetrahedral geometry as depicted in Fig. 1. The centres of
the four arms are located a distance L from the centre of the core
sphere. The position of each of the arms in a tetramer is not fixed,
but rather can deviate from its ‘ideal’ tetrahedral position by a
maximum angle φ at no energetic cost, thus simply modelling
arm flexibility. An attractive patch is located on each of the four
arms, pointing directly away from the centre of the core. The
patches interact through the commonly used angular square-well
(of depth ε) Kern–Frenkel potential24 (Methods), with parameters
(the angular width cosθ and the interaction range δ) satisfying the
single bond per patch condition. When L=0 and φ=0, the model
reduces to a sphere of diameter σ with four tetrahedrally oriented
patches; for this case, previous studies have shown that the liquid
crystallizes on cooling, without any evidence of a LLCP (ref. 25).
In summary, the angle φ increases the bond flexibility beyond θ
and L controls the effective ‘softness’ of the interaction. In this
study we investigate more than 20 models, generated by different
combinations of L and cos φ. For each of these, we examine
(using successive umbrella sampling (SUS) grand-canonical
simulations26) approximately five to ten different T and two
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Figure 1 | Tetramer model. Each tetramer consists of five hard spheres of
diameter σ : a core at the centre and four ‘arms’ oriented along a tetrahedral
geometry. The centres of the arms are located a distance L from the centre
of the core. The vector connecting the centre of the core and each arm is
allowed to fluctuate within a variable angle φ from its ideal tetrahedral
position. In addition, there is an attractive patch on the surface of each arm
characterized by an angular width cosθ=0.95 and a bond range
δ=0.251σ , pointing directly away from the core. a, A two-dimensional
schematic diagram of the model, showing a central sphere with three (out
of four) arms, indicating the relevant angles and distances. b, The average
configuration (solid) and typical fluctuations (partly transparent) for a
tetramer with cosφ=0.9.
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Figure 2 | Conditions for liquid–liquid (LL) phase separation: arm length.
Diagram showing the region in which LL phase separation and
crystallization occur as a function of arm length L and temperture T in units
of the bonding energy (ε) for cosφ=0.9. The state points where LL phase
separation was observed are denoted by red crosses; the blue dots indicate
points where this was not the case. The solid line indicates the LL critical
temperature Tc, as determined from the successive umbrella sampling
simulations. The dashed line shows the equilibrium crystallization
temperature Tx at ρc, obtained from free-energy calculations performed for
L/σ =0.5,0.625,0.75,0.8375 and 1. The grey circles indicate spontaneous
crystallization into a body-centred cubic crystal in the density region
sampled by the LL critical fluctuations.

hundred different densities to provide an accurate description of the
thermodynamic behaviour (Methods).

First, we investigate the role of L at fixed arm flexibility.
At each state point, we record whether a LL phase separation
occurs, and whether the system crystallizes spontaneously during
the simulations. Typically, we very clearly observe a LLCP at
sufficiently low T . The critical number density ρc(L) is found to
be approximately the same if measured in units of the typical
distance between the centres of two bonded particles σ +L+ δ/2,
that is ρ∗c =ρc(L)(σ +L+δ/2)3≈0.97. Thus, the free volume at ρc
increases as a function of L, affecting both the bonding probability at
a given T and the ability of the system to form an interpenetrating
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Figure 3 | Conditions for liquid–liquid (LL) phase separation: bond
flexibility. Diagram showing the phase behaviour at ρc (the LL critical
density) in the bond flexibility (cosφ) versus temperature (T) plane for
L=0.5σ . The indicated regions are the same as those shown in Fig. 2. The
red crosses and blue dots indicate points where LL phase separation was or
was not detected in the successive umbrella sampling simulations; the grey
circles indicate spontaneous crystallization. The dashed and solid black
lines are based on free-energy calculations performed at cosφ=0.8, 0.825,
0.8375, 0.85, 0.875, 0.9 and 1. The four vertical dotted lines denote the
bond flexibility values for which the phase diagrams in Fig. 4 are drawn. ε is
the bonding energy.

network. As a result, the corresponding LL critical temperature Tc
depends significantly on the arm length. The results, summarized in
Fig. 2, show a non-monotonous dependence of Tc (solid line) on the
arm length. For L→0, the high packing fraction of the system near
the LLCP hinders phase separation, as the hard cores of the particles
make it difficult to compress part of the system into a denser liquid
phase. In fact, it seems that in our model, a small amount of softness
(L>0) is necessary to observe a LL transition at finiteT . AtL≈0.5σ ,
there is a maximum in Tc beyond which the LL transition is shifted
to smaller T . This is a trivial consequence of the decrease in ρcσ 3 as
a function of L; that is, the bonds required for phase separation at
larger L are formed at lower T because increasing the volume per
particle disfavours bond formation.

Figure 2 also shows the equilibrium crystallization temperature
Tx(L) along the critical isochore ρc. This line intersects the LL
critical-point lineTc(L) aroundL=0.82σ . The two lines separate the
parameter space into four regions with different phase behaviour:
the standard liquid region, present for all L at large T (denoted by I
in Fig. 2); the region where the system crystallizes and there is no LL
separation (II); the region where a LL phase separation exists, but is
metastable with respect to crystallization (III); and the region where
the LL is truly thermodynamically stable (IV).

We note that for small L we also observe spontaneous
crystallization into a body-centred cubic (bcc) crystal near the
LLCP. This is an effect of the large packing fraction sampled
by the critical fluctuations near the LL phase transition, which
favours the formation of the closely packed bcc crystal. As
expected for this bond flexibility (cos φ= 0.9), we never observe
spontaneous crystallization of the lower density diamond crystal20,25.
For comparison, we note that the typical (low-pressure) densities of
diamond and bcc, when measured in the same reduced units as the
critical density, are ρ∗diamond ' 0.7 and ρ∗bcc ' 1.4, respectively.

Next, we turn our attention to the effect of arm flexibility on the
LL phase transition. Figure 3 shows that increasing the flexibility of
the arms (that is, decreasing cosφ) lowersTc(cosφ). Stiff bonds thus
also favour LL phase separation in addition to crystal stability20,25,
explaining the difficulty in observing a stable LLCP in atomic
and molecular network-forming systems, where interactions (for
example, hydrogen bonds in water or sp3 electronic orbitals in
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Figure 4 | E�ects of bond flexibility on the phase behaviour. a–d, Phase diagrams for di�erent values of the bond flexibility cosφ, for L=0.5σ . Symbols
indicate state points where phase coexistences were calculated, with red symbols denoting metastable phase coexistences. The green regions indicate a
stable liquid–liquid coexistence, and the red shaded regions in c and d show the metastable LL coexistence region. The dotted lines in c and d delimiting the
body-centred cubic (bcc) region at high T indicate the expected behaviour of the fluid–bcc coexistence. Crystal structures with a higher density than the
bcc phase were not investigated, but are not expected in the density range where the LL phase separation occurs. Note that in b no crystal phases compete
with the LL phase separation, at any temperature. LDL: low-density liquid. HDL: high-density liquid. DC: diamond cubic.

silicon) are highly directional27. As in Fig. 2, the equilibrium
crystallization temperature Tx intersects Tc, around cos φ = 0.85,
dividing the diagram into four regions. Again, we find a region
(III) where the LL is metastable with respect to crystallization,
as proposed for the case of water-like systems, and a region (IV)
where the LL is truly thermodynamically stable. In this region, the
LL critical point can be experimentally accessed, without any fear
of crystallization.

To better elucidate the effect of the arm flexibility on the topology
of the phase diagram,we calculate the full phase diagrams, including
ordered and disordered phases, in the T–ρ plane for four different
values of cosφ at fixed L. The different panels in Fig. 4 show the
progression in the topology of the phase diagram on increasing
flexibility. For highly flexible bonds, (Fig. 4a, cosφ=0.8), we observe
a liquid–gas but no LL phase separation. In addition, there is a
wide region of densities where the liquid is the stable phase for all
T . For cosφ= 0.825 (Fig. 4b), we observe both gas–liquid and LL
critical points, but still no stable bcc or diamond crystal phase. This
is the main finding of this work: the evidence that there are cases in
which the LL transition can be studied without the interference of
crystallization at any T . For cosφ=0.8375 (Fig. 4c), we still observe
both the gas–liquid and the LL critical point. However, a triple point
between a low-density liquid (LDL), high-density liquid (HDL) and
bcc now exists: the LL phase separation becomes metastable with
respect to a LDL–bcc phase separation at kBT/ε≈ 0.057. We note
that in all cases, the gas–liquid and LL phase separations occur
at distinctly separated chemical potentials: a gas–HDL coexistence
never occurs. Finally, for cosφ=0.9 (Fig. 4d), the LL phase
separation becomes fully metastable with respect to crystallization.
In addition, as a result of the strong bond directionality, the diamond
phase becomes stable at intermediate density and low T (ref. 20).
Interestingly, for all cosφ values, the liquid side of the liquid–gas
coexistence line ‘bulges out’ to higher densities, analogous to the
phase diagram of water28.

Several important results stem from the extensive study reported
in this Letter. In addition to the identification of two important
control parameters (softness and flexibility), our study demonstrates
the generality of the LL phenomenon in tetrahedral particles.
Beyond a minimum flexibility (cos φ) and a minimum softness
(L) all models show a genuine LL critical point. Our study also
shows that both the LL transition and crystallization are favoured
by bond directionality, which destabilizes the homogeneous fluid
at densities around ρc by constraining the topology of the
bonding pattern. As shown in Fig. 3, for short bonds and highly
directional interactions (that is, for flexibility values typical of
atomic and molecular systems) the competition between these
phenomena is inevitably won by crystallization. This is the region

of φ and L parameters typical of water, silica and silicon, and
explains the exquisite sensitivity of the numerical results to the
model parameters29. Variations in excluded-volume effects and/or
directionality can significantly promote crystallization and suppress
the possibility of approaching the LL critical point under metastable
conditions. As shown in Figs 3 and 4, our calculations confirm
that both for L→ 0 and cos φ→ 1 (the values appropriate for
the case of water, see ref. 27 and Supplementary Information),
spontaneous crystallization prevails, consistent with experimental
results. Nonetheless, our simple model shows that, depending on
two key parameters, a LL phase transition is a general feature of
tetrahedral liquids that has to be considered when studying such
systems.Moreover, as speculated a long time ago in the case of water,
the pattern of anomalies departing from the critical point affects the
behaviour of the system even in the region where the fluid is stable8.
These anomalies, for example, extrema in the density, isobaric heat
capacity, and isothermal compressibility, occur in the present model
as well, and are discussed in the Supplementary Information.

Finally, we have shown that sufficiently flexible bonds and
sufficient softness give rise to awindowwhere the full LL coexistence
is thermodynamically stable. Interestingly, this range of flexibilities
is within reach in the soft-matter realm. Patchy particles where
the number and position of patches is fully controllable (including
tetrahedral geometry)21–23 are nowadays experimentally realizable.
These advances open up the possibility of synthesizing colloidal
particles with the finely tuned softness and bonding flexibility
required to experimentally explore the LLCP in the absence of
crystallization. The new generation of patchy colloids may well
provide the long-sought experimental evidence that a single-
component liquid can phase separate into two distinct liquids.

Methods
In our model, each particle consists of a core sphere with four tetrahedrally
oriented arms (Fig. 1). The central sphere and the arms are modelled as
interpenetrating hard spheres with diameter σ , with the centre of each arm
located a distance L from the centre of the core. On the surface of each arm is a
single attractive patch, pointing directly away from the central core. The patch is
modelled, using a standard Kern–Frenkel potential24, as a square-well type
attraction of depth ε: two particles are either bound or unbound, with no
intermediate energy levels. The opening angle of the patch is given by
cosθ=0.95, and the maximum interaction range δ=0.251σ . This choice ensures
that each patch can form a bond with only a single other patch. Furthermore, to
model arm flexibility, each arm can freely rotate around the core sphere within a
maximum angle φ from its ideal (tetrahedral) position. Note that there are no
hard-core interactions within a particle: spheres belonging to the same tetramer
can overlap.

All simulations were performed following a Monte Carlo scheme. Each
Monte Carlo simulation included translation moves, rotation moves rotating a
full tetramer, rotation moves rotating only the core sphere, and rotation moves
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that rotate a single arm around the core. In addition, we added volume moves for
isobaric simulations, and particle insertion and deletion moves for
grand-canonical SUS (ref. 26) simulations.

To detect LL phase separation, we used SUS simulations, generating the
relative free energy as a function of the density26. To calculate the phase diagrams
in Fig. 4, and the crystallization lines in Figs 2 and 3, we performed free-energy
calculations using standard thermodynamic integration techniques. For the liquid
phases, we used a high-temperature fluid as a reference state, where we obtained
the Helmholtz free energy F by combining the chemical potential µ (evaluated
from a SUS simulation) and the pressure P at the same density ρ (taken from an
NPT Monte Carlo simulation), using:

f ≡F/N =µ−P/ρ

where N is the number of particles. We then used thermodynamic integration by
integrating the temperature along an isochore:

β2f (ρ,T2)=β1f (ρ,T1)+

∫ β2

β1

dβ u(ρ,T )

with u(ρ,T ) being the average potential energy per particle, β=1/kBT and kB
being Boltzmann’s constant. Typically, at sufficiently low temperatures20, the
energy as a function of temperature takes the form

u/ε=−2+c exp(−βε/2) (1)

where −2 is the ground-state energy (where each particle has four bonds) and c
is a (density-dependent) constant. This allows for straightforward extrapolation of
the free energies to arbitrarily low temperatures after the regime in equation (1)
is reached. This regime is accessible in our simulations for all cases where the
fluid does not crystallize at low T (that is, cosφ . 0.9). System sizes for the SUS
simulations were chosen such that near the LL transition the system contained
N ≈150 particles. Other free-energy calculations were performed with similar or
larger N .

The investigated crystal structures were diamond and bcc (corresponding to
ice Ic and ice VII in water, respectively). Both are fully bonded structures and as
such have the (same) lowest possible potential energy. Depending on cosφ and L,
there will be a variety of other fully bonded crystal structures. However, the
structures commensurate with an ideal tetrahedral geometry will always have the
highest entropy and hence will be more stable at the densities where they are
accessible. Thus, the only crystals that might compete with the LL phase
separation are diamond and bcc. At high density (that is, beyond the bcc
density), the stable crystalline phases will be controlled by a competition between
packing, energy and entropy, but as these phases will not change the stability of
the LL phase transition, they are outside the scope of this Letter. Similarly, we do
not expect these crystal phases to affect the phase diagrams in Fig. 4, with the
possible exception of the (dashed) high-density liquid–bcc lines in Fig. 4c,d.

To determine free energies for the crystal phases, we used an Einstein crystal
approach30, for each T where a phase coexistence was calculated. Subsequently,
using NPT Monte Carlo simulations, we employed thermodynamic integration
along the density at constant temperature:

βf (ρ,T )=βf (ρref,T )+
∫ ρ

ρref

d(ρ ′)
〈
βP
ρ ′2

〉
ρ′

where ρref is the density where the reference free energy was calculated. Phase
coexistences were determined using common tangent constructions
(see Supplementary Fig. 4 for examples).

To determine whether spontaneous crystallization occurred in our SUS
simulations, we used a bond-order parameter to find the largest crystalline cluster
in the system. First, we determine the neighbours of each particle using a
solid-angle-based nearest-neighbour method31. We then calculate for each
particle the complex vector ql , the expansion of its environment in terms of
spherical harmonics Ylm, with l being the order of the symmetry of the crystal,
and −l≤m≤ l :

qml (i)=
1

Nb(i)

Nb∑
j=1

Ylm(r̂ij)

Here, Nb is the number of neighbours of particle i, and r̂ij is the normalized
vector connecting particle i to particle j. For the purpose of finding crystalline

clusters, two particles are considered bonded when their environments are
sufficiently similar. To determine this, we calculate:

dl(i, j)=Re

(
ql(i) ·q∗l (j)∣∣ql(i)

∣∣ ∣∣ql(j)
∣∣
)

To detect bcc clusters, we choose l=6, consider two particles bonded if
dl(i, j)>0.6, and label any particle that has at least 5 bonds as a crystalline
particle. For diamond, two particles are considered bonded if either
dl(i, j)<−0.87 or −0.3<dl(i, j)<0.1 (ref. 25), and only particles with 4 bonds are
considered crystalline. Systems were considered to have crystallized
spontaneously when more than 10% of the system was crystalline. Note that
although the q6-based order parameter is sensitive to multiple crystal structures,
visual inspection of the detected clusters consistently showed a bcc structure
in all cases.
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