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Abstract. We evaluate the phase diagram of a model of tetrameric particles where the arms of the tetrahe-
dra are made by six hard cylinders. An interacting site is present on each one of the four vertices allowing
the particles to form a bonded network. These model particles provide a coarse-grained but realistic repre-
sentation of recently synthesised DNA origami tetrahedra. We show that the resulting network is sufficiently
empty to allow for partial interpenetration and it is sufficiently flexible to avoid crystallisation (at least on
the numerical time scale), satisfying both criteria requested for the observation of a liquid-liquid critical
point in tetrahedrally coordinated particles. Grand-canonical simulations provide evidence that, in silico,
the model is indeed characterised, in addition to the gas-liquid transition, by a transition between two
distinct liquid phases. Our results suggest that an experimental observation of a liquid-liquid transition in
a colloidal system can be achieved in the near future.

1 Introduction

Debate on the possibility of a liquid-liquid (LL) phase
transition in one-component systems is still active [1–9].
Starting from the initial observation of a van der Waals
loop at supercooled temperatures (T ) in numerical simula-
tions [10] of a rigid water model (the ST2 potential [11]),
several models of particles have been investigated, from
primitive models [12–14] to more refined representation of
tetrahedrally prone atomic systems (carbon [15,16], sili-
con [17–20], silica [21,22]), searching for evidence and sup-
port of the LL critical point (LLCP) thermodynamic sce-
nario. Experimental attempts to directly reveal the LLCP
in one-component systems, especially in water, have failed,
mostly due to the nucleation of the samples into the stable
ice phase. Indeed for water the supposed critical point, if
exists, is located in a region where the liquid is strongly
metastable with respect to the crystal, in the so-called
“No man’s land” [23]. This region is limited by homoge-
neous nucleation from high T and by the glass transition
from low T , preventing any practical measurement and
thwart direct experiments aimed at exploring the critical
point. Experimental evidence based on approaching the
no-man’s land from the glass side strongly supports the
existence of two distinct liquid phases [24–27].

According to simulations, the two liquid phases differ
in their local density and local ordering. The low den-
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sity phase can be considered as a realisation of a ran-
dom tetrahedral network [28], in which all particles par-
ticipate in four bonds, but in a disordered structure. The
denser phase is also characterized by an extended network
formed by more distorted and strained bonds. Ideally, in
very soft potentials, the dense phase is associated to two
inter-penetrated networks, which retain their individual-
ity only up to the third bonded neighbour distance [29].
It has been shown that the possibility to generate two
inter-penetrated disordered network structures (e.g. the
softness of the pair interaction potential) favours the on-
set of a liquid-liquid transition [30–32]. Recent theoret-
ical and numerical work has attempted to quantify the
parameters in the interaction potential controlling the ex-
tension of the no-man’s land and the relative stability of
the liquid as compared to the crystal phase in tetrahe-
dral particles. It has been shown that crystal nucleation
in hexagonal (and cubic) diamond structures is very sen-
sitive to the directionally of the intra-particle bonds [33,
34]. If bonds are highly flexible the configurational entropy
(e.g. the number of distinct bonding patterns) monopo-
lizes the total entropy of the system promoting a liquid
phase which remains stable down to vanishing tempera-
tures [35]. Interestingly, it has been shown [31,36,37] that
bond flexibility also suppresses the liquid-liquid transition,
but at a slower pace, offering the possibility to generate
conditions in which it is possible to observe the LLCP in
the absence of crystallization. Thus softness (e.g. ability
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to inter-penetrate) and bond flexibility appear to be the
crucial ingredients for giving rise to a one-component sys-
tem which displays an experimentally accessible (e.g. in
equilibrium as opposed to metastable equilibrium) liquid-
liquid critical point. This implicitly suggests that within
the realm of soft matter —where a detailed control of par-
ticle shape and interactions, coupled to bulk production of
the particles themselves, is possible— a system of colloidal
particles with a clear experimentally detectable LLCP can
in principle be realized.

As an intermediate step in the direction of realising
an experimental system displaying a liquid-liquid transi-
tion we provide here a numerical evaluation of the phase
behaviour of rigid tetrameric structures with sticky at-
tractive corners, mimicking both in shape and in inter-
particle interaction recently synthesised nano-metric DNA
origami constructs. Specifically, Liu et al. [38] were able to
manufacture a DNA tetrahedral cage-like structure using
DNA origami technique. The six “arms” of the structure
are made by sticking together ten double strand helices
of DNA which act as rigid cylinders, measuring approx-
imately 8.3 nm × 36 nm. Single strands of DNA are at-
tached at the four vertices of the tetrahedron, to provide
T -controlled adhesion between vertices of distinct tetra-
hedra. Liu et al. [38] manufactured these particles to link
them to gold DNA-coated nanospheres to create a dia-
mond superlattice of nano-objects via self-assembly and
to realize two variant diamond lattices.

The numerical results reported in this article confirm
the possibility to observe both the standard gas-liquid crit-
ical point and the liquid-liquid one. They prove that the
tetrahedron shape succeeds in generating the requested
“softness” (e.g. that it is possible to interpenetrate two dif-
ferent fully bonded networks without hard-core overlaps).
The present results will provide a guidance for future ex-
perimental work aiming at the laboratory observation of
a liquid-liquid critical point in tetrahedral particles.

2 The model

We present here a coarse-grained model for the tetrahe-
dron origami, sketched in fig. 1. The bundle of 10 DNA
helices [38] forming each of the six sides is modelled as an
hard cylinder with diameter 8.3 nm and length 36 nm, as in
the experiment. Six of those cylinders with fixed relative
orientations define the particle structure. To model the
interaction between vertices of distinct tetrahedra, exper-
imentally realised via self-complementary DNA binding,
we introduce a square-well site-site interaction of depth
ǫ and width Δ. The interacting site is located at the in-
tersection of the three cylinder axis. The energy scale ǫ
is selected as unit of energy. The square-well range Δ is
fixed to 6.22 nm, consistent with a length of DNA base
pairs attached to each vertex of about six nucleotides. This
range satisfies the single-bond-per-site condition. We note
on passing that in the experimental system, the binding
DNA sequences could perhaps also be engineered to favour
specific relative orientations between bonded tetrahedra.

Fig. 1. (a) Cryo-electron microscopy scan of an origami tetra-
hedron. (b) Sketch of the self-assembled origami. (c) Detailed
sketch of the origami corner. Panels (a-c) are redrawn from
ref. [38]. (d) Sketch of the particle investigated in the present
study. It is composed of 6 rigidly connected hard cylinders.
The diameter of each cylinder measures 8.3 nm and its length
is 36 nm. (e) Sketch of two bonded particles via the interaction
site located on each of the four vertexes. A bond with energy
ǫ is formed when the interacting sites of two distinct particles
are closer than 6.22 nm.

3 Numerical methods

3.1 Standard Monte Carlo simulations in the NVT
ensemble

We perform canonical Monte Carlo simulations to inves-
tigate the diamond and BCC crystals (defined by the po-
sition of the particle center of mass). We generate config-
urations with a total number of particles N = 216 (cube
of length L = 350 nm) and N = 250 (L = 270 nm) respec-
tively. To probe the crystal stability we run simulations
at kBT/ǫ = 0.063 verifying that all possible bonds remain
formed. On the fully bonded networks we measure the
structure factor, the radial distribution function and the
angular bond flexibility [39].

3.2 Successive umbrella sampling simulations in the
µVT ensamble

We perform grand-canonical successive umbrella sampling
(SUS) simulations [40] in a cubic box of side length
L = 250 nm with periodic boundary conditions at different
T . In this method, the probability of finding N particles
in the box (with 0 < N < Nmax) is rebuilt joining the
relative probabilities P (N + 1)/P (N) evaluated in Nmax

distinct grand-canonical simulations in which N is con-
strained to fluctuate between the N and N + 1 values.
This methods capitalizes on parallel computing, since each
node can evaluate a distinct probability ratio. In addition,
P (N + 1)/P (N) can be made order one with an appro-
priate choice of the chemical potential μ (or equivalently
activity z), significantly reducing the numerical error. For
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Fig. 2. Representation of (a) diamond and (b) BCC lattices
formed by the studied particle. (c) Visual definition of the angle
Φ, the angle between bonded triplets. The blue sphere indicates
the center of mass of the particle. (d) Distribution of the angle
Φ that is used to estimate flexibility [39]. The variance of the
distribution provides a measure of bond flexibility. Data refer
to a simulation in the liquid phase at kBT/ǫ = 0.077 and ρ =
6.27 · 10−6 nm−3.

each T , P (N) can be re-weighted to a different μ value to
explore the desired average system density. In our calcula-
tions, we select Nmax = 180, corresponding to a maximum
tetrahedra number density ρ = 1.152 · 10−5 nm−3.

4 Results and discussions

4.1 Softness and flexibility

To provide evidence that the shape of the particle is soft
enough to allow for interpenetration of two different net-
works we build both diamond (ρdiam = 5.66 · 10−6 nm−3)
and BCC (ρBCC = 1.21 · 10−5 nm−3) —which is com-
posed of two inter-penetrated diamond structures— lat-
tices putting in a randomly oriented particle on each lat-
tice site. A MC simulation at kBT/ǫ = 0.063 with only ro-
tational moves shows that particle rotations quickly gener-
ated fully bonded structures in both cases. Figure 2(a), (b)
show the resulting structures.

The angular bond flexibility can be estimated [39] by
evaluating the bond angle distribution P (Φ). This quan-
tity is defined as the probability to find an angle Φ between
a triplet of bonded tetramers as depicted in fig. 2(c). The
distribution, reported in fig. 2(d) for a liquid state at the
optimal network density (e.g. for ρ ≈ ρdiam), is well rep-
resented by a curve centred around 108.8, close to the
tetrahedral value 109.5◦ with variance σΦ = 13.6. The
width of the distribution provides a measure of the bond
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Fig. 3. Structure factor S(q) from low T simulations in the
liquid phase at ρ = 6.27 · 10−6 nm−3. Note the pre-peak, an
indication of tetrahedral order.

flexibility [39]. The observed σΦ value corresponds to an
angular opening in an equivalent patchy particle model of
θmax = 21◦ (cos θmax = 0.93). For this flexibility value,
LLCP is expected to be weakly metastable compared to
the crystal phase and hence accessible in simulations and
experiments.

As a further test of the directionality of the bond be-
tween particles, fig. 3 shows the structure factor S(q) be-
tween the centres of the tetrahedra evaluated in the liquid
phase at ρ = 6.27 · 10−6 nm−3. S(q) is defined as [41]

S(q) ≡
〈ρqρ−q〉

N
, (1)

where ρq =
∑N

i=1 exp(−iq · ri), 〈. . .〉 denotes the ensem-
ble average and the average over wave vectors q with the
same modules q ≡ ‖q‖, reflecting rotational invariance. ri

indicates the center-of-mass position of particle i. The cal-
culated S(q) shows the pre-peak structure typical of tetra-
hedral liquids, originating from next-nearest-neighbour or-
dering imposed by the bond directionality. As for the vari-
ance of P (Φ) the amplitude of the pre-peak provides an
estimate of the bond flexibility [39]. The presence of a clear
pre-peak confirms the presence of a detectable tetrahedral
local order.

4.2 Density dependence of the potential energy

In square-well based models, the energy provides a direct
counting of the number of bonds per particle in the sys-
tem. Its density dependence, at constant T , is particularly
informative. Previously investigated models of tetrahedral
particles [33,42–44] show that at low T the potential en-
ergy displays a non-monotonic dependence on ρ, with a
well-defined minimum at the so-called optimal network
density, signalling the density at which the geometrical
constraints allow for the formation of an unstrained fully
bonded disordered network. The position of the minimum
is usually close to the density of the diamond lattice. In
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Fig. 4. Potential energy per particle as a function of ρ for two
values of T . The lines are guide to the eyes.

models with softer interactions, an additional secondary
minimum appears at even higher densities, which it has
been associated with the network inter-penetrating struc-
ture. The presence of a region of negative curvature in the
ρ dependence of the potential energy can be considered as
a possible precursor of a thermodynamic instability [45].

Figure 4 shows that in the present model a clear max-
imum is observed in the ρ dependence of the potential
energy, strongly supporting the possibility that in this
model a liquid-liquid transition could be observed at low
T . As expected, the first minimum is located at approxi-
matively the diamond density, e.g. the density at which a
fully bonded network may form.

4.3 Phase behaviour

The probability P (N) of observing N particle in a fixed
volume V (in the μV T ensemble) provides information on
the phase behaviour. In single-phase conditions, P (N) has
a single maximum centred on the average number of par-
ticles 〈N〉 from which the corresponding system density
ρ = 〈N〉/V can be estimated. On approaching a critical
point, P (N) develops a two peak structure which become
more and more resolved on cooling. The value of the chem-
ical potential for which the two peaks have equal area
provides the coexistence μ, while the number of particles
averaged over each peak provides the values of the two
coexisting densities.

We find that P (N) shows a bimodal shape under two
different conditions: at low T and low ρ we observe the
standard gas-liquid (gl) phase separation, with a (scaled)
critical temperature kBT c

gl/ǫ ≈ 0.096 and a critical den-

sity of about ρc
gl ≈ 2.96 ·10−6 nm−3. We also find an addi-

tional phase separation, involving two distinct liquid (ll)
phases at a critical temperature kBT c

ll/ǫ ≈ 0.085 and a
critical density of about ρc

ll ≈ 8.53 · 10−6 nm−3. Indeed,
in both cases (see fig. 5(a), (b)), at constant T and μ,
P (N) develops a two peak structure. The phase diagram
thus contains two distinct instability regions, associated
to the two transitions. For T < T c

ll on increasing density,

6·10
-6

8·10
-6

1·10
-5

1.2·10
-5

ρ [nm
-3

]

0

0.02

0.04

0.06

0.08

0.1

0.12

P
(ρ

)

k
B
T/ε = 0.100

k
B
T/ε = 0.085

k
B
T/ε = 0.077

k
B
T/ε = 0.071

(b)

0 2·10
-6

4·10
-6

6·10
-6

8·10
-6

1·10
-5

ρ  [nm
-3

]

0

0,05

0,1

0,15

P
(ρ

)

Liquid-Liquid separation

Gas-Liquid separation(c)

0 1·10
-6

2·10
-6

3·10
-6

4·10
-6

5·10
-6

6·10
-6

ρ [nm
-3

]

0

0,02

0,04

0,06

0,08

0,1

0,12

P
(ρ

)

k
B
T/ε = 0.100

k
B
T/ε = 0.095

k
B
T/ε = 0.091

k
B
T/ε = 0.087

(a)

Fig. 5. Distribution of density fluctuations P (ρ) evaluated via
grand-canonical simulations at V = 1.56·107 nm3. All distribu-
tions are centred around the critical density. (a) Distributions
around the gas-liquid transition. (b) Distributions around the
liquid-liquid transition. High T values show a single peak so no
phase separation is observed. The onset of a two-peak structure
in P (ρ) on cooling indicates the onset of a phase separation.
(c) Comparison between the gas-liquid P (ρ) and the liquid-
liquid P (ρ) at kBT/ǫ = 0.077. The values of the chemical po-
tentials are βμgl = −14.32 and βμll = −13.36, respectively.

the system moves from the gas phase to the low-density
liquid (LDL) phase which transforms again, on further in-
creasing ρ, in the high-density liquid (HDL) (see fig. 5(c)).
The resulting phase diagram is shown in fig. 6.
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The green (gas-liquid) and blue (liquid-liquid) regions indicate
thermodynamically unstable states.

5 Conclusions

In this article we have demonstrated that model particles
with the same shape and attractive spots of the recently
created DNA-decorated tetrahedra origami show in silico
a liquid-liquid critical point. The model particle is com-
posed of a tetrahedral scaffold formed by rigid cylinders
with square-well interaction sites at the vertices. The ex-
cluded volume of the particles, significantly smaller than
the one of spheres, allows for particle interpenetration
(softness), the first criteria requested for the observation
of a liquid-liquid critical point. The tetrahedral coordina-
tion and the intermediated bond flexibility which results
from the square-well interaction satisfy the second criteria
for the existence of a LL transition. In this respect, the
observation of the LLCP, not only strengthen the general-
ity of the LL phenomenon, providing a single-component
model with a clear LL transition, but it has also the addi-
tional value of providing a first strong confirmation of the
ideas presented in ref. [31].

The strong similarity between the investigated model
and the DNA-decorated tetrahedra origami hopefully will
be of guidance to transform this in silico demonstration
into a real-world realisation, providing the first experimen-
tal observation of a liquid-liquid transition in a tetrahedral
particles system.
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MCSA-ITN-2014, Grant No. 642774).
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44. José L.F. Abascal, Carlos Vega, J. Chem. Phys. 133,

234502 (2010).
45. Peter H. Poole, Francesco Sciortino, Ulrich Essmann, H.

Eugene Stanley, Phys. Rev. E 48, 3799 (1993).


