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Connectivity, dynamics, and structure in
a tetrahedral network liquid

Sándalo Roldán-Vargas,*ab Lorenzo Rovigatticd and Francesco Sciortinob

We report a detailed computational study by Brownian dynamics simulations of the structure and

dynamics of a liquid of patchy particles which forms an amorphous tetrahedral network upon

decreasing the temperature. The highly directional particle interactions allow us to investigate the

system connectivity by discriminating the total set of particles into different populations according to a

penta-modal distribution of bonds per particle. With this methodology we show how the particle

bonding process is not randomly independent but it manifests clear bond correlations at low

temperatures. We further explore the dynamics of the system in real space and establish a clear relation

between particle mobility and particle connectivity. In particular, we provide evidence of anomalous

diffusion at low temperatures and reveal how the dynamics is affected by the short-time hopping

motion of the weakly bounded particles. Finally we widely investigate the dynamics and structure of the

system in Fourier space and identify two quantitatively similar length scales, one dynamic and the other

static, which increase upon cooling the system and reach distances of the order of few particle

diameters. We summarize our findings in a qualitative picture where the low temperature regime of the

viscoelastic liquid is understood in terms of an evolving network of long time metastable cooperative

domains of particles.

I. Introduction

Most of the distinctive features of equilibrium relaxation
in disordered systems support the existence of microscopic
cooperative motion.1–3 Examples are the spatially hetero-
geneous dynamics4–7 (where large regions of the system relax
significantly faster, or slower, than the average), the non-Gaussian
distributions of displacements8–10 (resulting from averaging
coupled and non-equally distributed individual displacements),
or the non-Debye decays of the time correlation functions7,11

(which again represent a manifestation of the system hetero-
geneous relaxation). With these empirical features we have
composed a general dynamic catalog to characterize the slow
relaxation of viscous liquids. Nonetheless, the problem of
whether or not this dynamic phenomenology relies on an
underlying structure still remains open.2,3,12–14

So far this phenomenology has been found in a large variety
of systems such as molecular liquids,15,16 colloidal systems,17–19

polymer fluids,20,21 granular media,22,23 or spin glasses.24

In general these systems have been categorized by the wide
notions of glass and gel depending on their particular density
and temperature behaviors as well as their specific microscopic
properties.2,3,12,13,25–27 Thus, we discriminate between strong
and fragile glasses according to their viscosity temperature
dependence (Arrhenius or super-Arrhenius)28,29 or between
repulsive and attractive glasses18,19 depending on the character
of the microscopic interactions present in the system. Often in a
non-rigorous manner, we also distinguish glasses from gels
according to macroscopic criteria such as viscoelasticity or solid-
like behavior at low densities (gels) as well as microscopic criteria
such as the existence of an amorphous network structure, which is
typical of gelling systems.26,27 Apart from these available classifica-
tions, some of the phenomenological, microscopic canonical
models can help us not only to develop novel applications but
also to better understand the microscopic mechanisms involved in
the cooperative dynamics, and in its hypothetical structural origin,
present in gels and glass forming liquids.2,3,26,27

In the present work we study one of these models. By means
of Brownian Dynamics (BD) simulations, we investigate the
equilibrium dynamic and static properties of a gelling system which
develops an amorphous tetrahedral network upon decreasing the
temperature. In particular, we report a comprehensive study on
the interplay between connectivity, dynamics, and structure which
results in a qualitative microscopic picture for the viscoelastic
nature of the low temperature liquid.
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The system is composed of tetravalent patchy particles,
that is, particles with four sticky spots on their surface
which provide a strongly directional interaction with fixed
valence.30–33 Far from being merely a theoretical or computa-
tional idealization, patchy particles are nowadays amenable to
experimentation.30,31,34,35 Our particular realization consists of
particles with four attractive patches tetrahedrally distributed
on the particle surface.36,37 Despite its simplicity, this model
and similar models34,38–41 have already shown their capability
of capturing some of the fundamental structural features of
different classical systems with amorphous tetrahedral struc-
tures such as atomistic models of water, silicon, or silica.2,42–44

In general, due to their highly versatile functionality, these models
not only have the potential for promising applications45–47 but
can also allow us to reach a deeper understanding of some
of the intriguing phenomena manifested in gels and glassy
systems.27,48

Here we take advantage of the highly directional interactions
to analyze the system cooperativity by describing the potential
energy in terms of a distribution of bonds per particle.
We widely exploit this distribution of bonds to partition the
system into particle populations. This discrimination allows us
to establish a clear relation between connectivity and particle
mobility. Indeed, we study the dynamics of these particle popu-
lations in real and Fourier space by covering several tempera-
tures within a large range of spatial scales and times, from the
pure diffusive regime to the heterogeneous low temperature
dynamics. Of particular interest are the results concerning the
self and collective dynamics of the system in Fourier space. From
these results we show the decoupling between self and collective
dynamics at low temperatures within a certain range of the
wavevector q. At even smaller values of q we identify a dynamic
length scale which increases upon cooling the system and
signals the emergence of cooperative domains of particles. This
dynamic length scale reaches distances of the order of few
particle diameters. Thanks to the study of the structure factor
of different particle populations, we are also able to demonstrate
the existence of a second long-range length scale of static
nature which is quantitatively similar to the previous dynamic
length scale. This result suggests a clear connection between
structure and dynamics at large spatial scales. We synthesize all
these findings in a microscopic picture where the viscoelastic
nature of the low temperature liquid would be the result of a
viscous flow of cooperative domains of particles coupled to the
network elasticity, which is in turn mediated by inter-domain
connections.

The rest of this paper is organized as follows. In Section II we
present the model. Section III contains the results and consists of
three parts: in the first part we present those results concerning
the system connectivity. In the second part we explore the
dynamics of the system in real and Fourier space. The third part
is devoted to the system structure. Finally in Section IV we
summarize our main results and present our conclusions. We
also include an Appendix which contains technical results and
information concerning the structure and dynamics of the system
in Fourier space.

II. Model

We perform three dimensional BD simulations of tetravalent
patchy particles in the canonical ensemble. We fix the number
of particles N = 10 000 and the simulation volume V = L3, where
L = 25.98s, with s being the hard sphere-like particle diameter.
With these choices the number density is r = N/V = 0.57s�3. For
this value of density, our system is included in the so-called optimal
network density region, i.e. the region at which an unstrained
fully bounded network can form at low temperature.49 Under
these conditions the dynamics of the system exhibits an
Arrhenius behaviour, which is the defining characteristic of
strong glass formers. As a result, different from fragile glass
formers, the quantities we evaluate do not show any sign of
divergence at finite temperature.

The interaction potential we use comprises a spherical steep
repulsion and a short-range attraction that depends on the
distance between each pair of patches decorating the particles
(see Fig. 1). More precisely, the interaction between a generic
pair of particles 1 and 2 is given by

V(1,2) = VCM(1,2) + VP(1,2) (1)

where VCM(1,2) is the repulsive interaction between particles
1 and 2, whereas VP(1,2) represents the attractive interaction
between the patches of particles 1 and 2. Both interactions are
modeled as follows:

VCMð12Þ ¼
s
r12

� �m

(2)

VPð12Þ ¼ �
XM
i¼1

XM
j¼1

e exp �1
2

rij12
a

 !n" #
(3)

Here r12 is the distance between the centers of mass of particles
1 and 2, rij

12 is the distance between patch i on particle 1 and
patch j on particle 2, and M is the number of patches per
particle, which here we take as M = 4, the four patches
being tetrahedrally distributed on the surface of the particles.
Exponents in VCM(1,2) and VP(1,2) are taken as m = 200 and
n = 10 to resemble the functional behaviors of a hard sphere
and a square well interaction, respectively. We select a = 0.12s
as the patch linear size to ensure that there is no more than one
bond per patch, whereas e = 1.001 is chosen in such a way that

Fig. 1 Sketch of two particles with four patches tetrahedrally distributed
on their surface. The intersection between two patches, small yellow
spheres, results in an attractive interaction given by the interaction
potential VP(1,2) (see eqn (3)).
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the minimum of the attractive part of the potential energy in a
bounded configuration is u0 �min VP(12) = �1. Temperature, T,
is measured in units of the potential well (where Boltzmann’s
constant, kB, is taken as 1) whereas the time unit is s

ffiffiffiffiffiffiffiffiffi
mu0
p

, with
m = 1 being the mass of the particles. To integrate the equations
of motion we use a velocity Verlet algorithm with a fixed time
step dt = 0.001 (see for technical details ref. 36). All simulations
were performed using the oxDNA simulation package running
on GPUs.50

The potential employed in this work has been used in the
past as a model for patchy particles.36,37 Here, for the first time,
and thanks to the increased computer power available, we are
able to gain a much deeper insight into the dynamic behavior
of the system by looking at the individual contributions of
populations of particles. In addition, we have investigated
several temperatures within the range T A [0.1025,0.25], cover-
ing a slowing down of the dynamics of more than four orders of
magnitude.

III. Results
A. Connectivity

Despite its continuous potential energy, the system is character-
ized by construction of a highly directional short-range attrac-
tion very similar to that present in square-well-like models whose
dynamic and thermodynamic behaviors have been previously
investigated.34,38–41,47 In addition, the continuous potential
we use allows us to investigate the dynamic behavior at low
temperatures. The highly directional interaction imposed by
VP(1,2), eqn (3), induces a probability distribution, P(E), of
finding a particle with potential energy E which can be directly
understood in terms of a probability distribution of bonds. In
this respect, Fig. 2, which synthesizes the T-evolution of the
system connectivity, shows P(E) at different temperatures. The
distribution is characterized by five well-resolved and non-
overlapping peaks that can be discretized as a penta-modal

distribution. In particular, the peak at positive energies corre-
sponds to the population of unbounded particles which from
now on we will refer to as monomers. We clearly see how, upon
cooling the system, there is a progressive decrease of the
potential energy per particle.

To transform P(E) into a discrete penta-modal probability
distribution of bonds per particle we merely normalize the area
below each peak by the total area of the distribution to obtain
an accurate estimation of the fraction (or relative frequency) of
particles, N n, with a given number of bonds, n (A {0,1,2,3,4}).
Thus, N n is formally determined by:

N n ¼

ð�nþ1
�n

PðEÞdEð1
�4
PðEÞdE

: n4 0

ð1
0

PðEÞdEð1
�4
PðEÞdE

: n ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(4)

From the resulting discrete distribution of bonds we can imme-
diately estimate the average number of bonds per particle, N b,

as N b �
P4
n¼0

nN n, as well as the corresponding bond probability

per patch, pb � N b=4. In this respect, Fig. 3(a) shows the
T-dependence of the fraction of unbounded patches 1 � pb.
At low T, 1 � pb follows an Arrhenius law with an activation
energy of about 1.35. We notice that close to the ground state
(1 � pb E 0) theoretical predictions based on Wertheim theory
(in particular on the law of mass action between bounded and
unbounded pairs) suggest an Arrhenius law but with an activa-
tion energy of 0.5, that is, half of the depth of the potential
well.49,51,52 This large deviation between simulation and theory,
already observed in patchy models with highly directional
interaction,49 suggests a significant breakdown of the main
theoretical assumption which considers an independent
(random) bond formation process. Although this deviation still
demands a theoretical understanding, it points out that
connectivity in the model (in particular at low T) is clearly
influenced by a correlation between bonds. To provide further
evidence of the deviation between an independent bonding
process approach and data coming from the simulation, we can
consider a simple binomial distribution of bonds per particle,

N binomial
n , which, by definition, is based on the independence

between the different bonds of a given particle:53

N binomial
n ¼ 4!

n!ð4� nÞ!p
n
b 1� pbð Þ4�n (5)

Here, in order to evaluate N binomial
n at any T, we take pb as

obtained from our simulation. To precisely quantify the differ-
ence between the observed distribution of bonds per particle with
that expected from an independent bond formation process,
we compare in Fig. 3(b) N n for the whole set of populations

(n A {0,1,2,3,4}) with N binomial
n within the explored T range.

Theory and simulation data only coincide at high T, typically

Fig. 2 Probability density, P(E), of finding a particle with potential energy E
at different temperatures. We clearly observe five main peaks that can be
interpreted in terms of the number of bonds per particle. Note that there
are some particles with positive potential energy since the repulsive part of
the potential energy is not a pure hard-sphere interaction.
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above the percolation temperature T D 0.12,54 when there is
about one bounded patch per particle N b � 1ð Þ. Even though
each distribution follows its own Arrhenius behavior at low T,
the data show in a very clear way how the binomial approxi-
mation significantly worsens upon cooling the system, especially
in regard to the population of monomers, N 0. In fact, the
fraction of monomers at low T is significantly larger than that
expected for an independent (binomial) bond formation process.
This comparison indicates a separation of the population of
unbounded particles from the population of fully bounded
particles in the simulation which is larger than that expected
for an independent bond formation process.

The large statistical deviation between theory and simula-
tion data can be interpreted in terms of a spatial localization of
the unbounded particles, where the presence of an unbounded
patch in a given particle increases the probability of observing
another unbounded patch in the same particle, a kind of
correlation which is not contained in an independent bonding
process. Since the potential energy cost for breaking a bond is,
to a great extent, independent on the bonding environment,
this suggests a significant role of the entropic component in the

bonding free energy. Thus, for instance, if the weakly bounded
particles localize themselves, the entropic gain when breaking a
bond of one of these particles would be greater than the
entropic gain when breaking a bond of a fully bounded particle.
This entropic contribution enhances the population of the
weakly bounded particles (in particular of the monomers) with
respect to that expected for an independent bond-breaking
process. In simple macroscopic terms, since both the binomial
distribution of bonds given by eqn (5) and that obtained from
the simulation have the same potential energy, i.e., they come
from the same pb (or N b) value, and since the system is in
equilibrium at any T, the entropic gain must be the only reason for
the deviation. Thus, as compared with an independent bonding
process, the system minimizes its free energy by allowing more
particles to be unbounded. However, the deviation in the
population of monomers (and, in general, in the weakly bounded
particles) must be balanced by the deviations in the populations
of the almost fully bounded particles which (according to our
previous microscopic interpretation) would also be more localized
than what would be expected for an independent distribution
of bonds. This microscopic picture, i.e., the localization of the
particles according to their number of bonds (a kind of spatial
bonding heterogeneity), will play a central role in our picture of
the microscopic scenario describing the structure and dynamics
of the system.

B. Dynamics

The dynamic behavior of this model has been partially inves-
tigated in ref. 37. Here we explore the individual and collective
dynamics of the system in real and Fourier space. In particular we
thoroughly investigate the connection between dynamics and
system connectivity. Special attention is paid to the emergence of
non-Gaussian distributions of displacements at low temperature.
Finally, we concentrate on the self and collective mechanisms
that govern the relaxation dynamics of the system within a wide
range of spatial scales to finally propose a coherent microscopic
picture for the low T liquid.

1. Mean square displacement. Fig. 4 shows the T-dependence
of the diffusion coefficient, D, estimated via the long time limit of
the mean square displacement (MSD) (inset in Fig. 4). Interestingly,
D becomes Arrhenius at low T with an activation energy of about
5.4. We should note that although diffusivity was already studied
for this model in ref. 37, the value reported here for the activation
energy is larger than the one obtained previously by almost 20%.37

Such a difference is due to the much more lengthy simulations
performed here, which led to sensibly improved statistics for all
investigated quantities. This activation energy coincides with
the activation energy of (1 � pb)4 (see Fig. 3(b)) as previously
reported in other models of tetrahedrally bounded particles.49

This result was previously interpreted as evidence that diffusion
was completely dominated by the monomers. However, in
this model the T-dependence of (1 � pb)4 does not correspond
to the T-dependence of the population of monomers, N 0 (see
Fig. 3(b)). As a consequence, the understanding of the relation
D(T) B (1 � pb(T))4, which links the long time dynamics of the

Fig. 3 (a) Probability of observing an unbounded patch, 1 � pb, as a
function of 1/T (black line with solid circles). The figure also includes two
Arrhenius laws with activation energies 1.35 (red dashed line) and 0.5
(blue dashed line). (b) Relative frequency of particles with n bonds, N n,
(n A {0,1,2,3,4}) as a function of 1/T. Solid lines with full symbols represent
simulation data whereas dashed lines with empty symbols stand for the

theoretical prediction, N binomial
n , as obtained from an independent bond

formation process according to eqn (5). In particular, the figure highlights
the theoretical prediction for the expected frequency of monomers,

N binomial
0 ¼ 1� pbð Þ4, (dash-dotted line), which follows an Arrhenius law

with an activation energy of 4 � 1.35 = 5.4 (see (a)).
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system to a purely static observable, is still elusive. Nevertheless,
as we next show, the different T-dependence of (1 � pb)4 andN 0

does not exclude the significance on the total dynamics due to
the population of monomers (and in general that of the weakly
bounded particles).

To deepen in the discussion advanced in the previous para-
graph we separate the total MSD into different populations. We
have already seen how for this system we can discriminate
between different particle populations, where each population
includes all the particles with a common number of bonds. This
is the case of Fig. 5, where we present the MSD for different
populations at different T values, where each population has a
common n (A {0,1,2,3,4}) at t = 0. In this respect, and according
to eqn (4), a given particle is considered to have n bonds when its
potential energy E A (�n,�n + 1) (formally, particles with n = 0
have E A (0,N) since the repulsive part of the potential energy,
eqn (2), is not a pure hard-sphere interaction). We note that,
due to their evolving bonding state, all the particles with a
given (initial) bonding state will change their number of bonds
with time, eventually covering all the possible bonding states
(n A {0,1,2,3,4}) to ensure ergodicity. Thus, by this discrimination
we follow the system from its short time dynamics (where the
initial bonding state is still present) to the long time dynamics
(where the initial bonding state is not present anymore). Fig. 5
shows how at short times, and for any T, the MSD increases more
rapidly upon decreasing the initial number of bonds, showing a
short time window where ballistic effects are relevant for the
weakly bounded particles. At intermediate times the separation
(the spread of the curves) of the MSD for the different popula-
tions increases upon cooling the system as a clear sign of a
dynamic heterogeneity. Thus, the weakly bounded particles
move in general larger distances than those strongly bounded
before reaching the intermediate plateau. This plateau is
typically reached at those times at which the weakly bounded
particles start losing the memory of their initial bonding state
(see ref. 37 for details on the bond lifetime scales of the
system). In particular, at low T (Fig. 5(c)) and for intermediate
times the difference in the height of the plateau is significant
when we go from n = 2 to n = 3. However from n = 3 to n = 4 the

difference is relatively small pointing out that 3 bonds are
probably sufficient to already arrest a particle. For the sake of
clarity, we should notice that here we are discussing the dynamic
heterogeneity associated with the populations of particles with a
different number of bonds and not a real spatial dynamic
heterogeneity. Indeed, a spatial dynamic heterogeneity, which
could also be present in the system, would not be detected by the
MSD since this observable does not include information on local
spatial correlations.

At long times, the different MSD values converge to a
common curve: the total MSD (black lines with black circles
in Fig. 5). This convergence typically occurs at the time at which
all the populations have almost completely lost the memory of
their initial number of bonds, i.e., at those times of the order of
the average bond lifetime (see again ref. 37 for details on the
bond persistence). In this respect, it is interesting to notice how
at long times, but before reaching the convergence, those
particles that were strongly bounded at t = 0 show an apparent

Fig. 4 Diffusion coefficient as a function of 1/T (black line with solid circles).
The figure also shows an Arrhenius law e�5.4/T B (1 � pb)4 B (e�1.35/T)4

(dashed line). Inset: Mean square displacement as a function of time at
different temperatures.

Fig. 5 MSD as a function of time at different temperatures and for the
different populations of particles discriminated by their number of bonds,
n, at t = 0. Each figure also incorporates the corresponding total MSD
(black lines with black circles) as in the inset of Fig. 4. Dashed lines
represent the asymptotic diffusive behavior (h(Dr

-
(t))2iHt).
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super-diffusive motion which is analogous to that shown by the
weakly bounded particles at short times (see for example blue
and green lines in Fig. 5(b) and (c)). This regime would corre-
spond to those times at which a significant fraction of the
initially fully bounded particles have already passed through a
weakly bounded state and performed a large displacement.
Reciprocally, for this time scale, the initially weakly bounded
particles show a sub-diffusive regime that would correspond to
their pass through a tightly bounded state (see for example red
and orange lines in Fig. 5(b) and (c)).

Concerning the total MSD, we also see two effects. First,
upon cooling the system the total MSD curve moves towards the
partial MSD corresponding to the particles with four bonds.
This is obviously due to the fact that N 4 ! 1 upon cooling the
system, leading the system to a complete arrest where the only
remaining population to construct the total MSD is that corres-
ponding to the 4-bounded particles. In addition, we anticipate
a subsequent discussion by pointing out that at low T, and for
the longest time investigated, the partial MSD values have not
yet completely converged to the total MSD (Fig. 5(c)), which
seems to reach the diffusive regime from which we extracted
the diffusive coefficient (Fig. 4).

2. van Hove function. Since the MSD does not contain the
total dynamic information of the system (it merely represents the
time evolution of the variance of the total distribution of displace-
ments), in systems with non-trivial dynamics it is worthwhile to
explore the total distribution of the individual particle displace-
ments through the self van Hove function, Gs(

-r,t):15

Gsð~r; tÞ ¼
1

N

XN
i¼1

d~r� D~riðtÞ½ �
* +

(6)

where Gs(
-
r,t) represents the fraction of particles which have per-

formed a given displacement D-
ri(t) = -

ri(t)�
-
ri(0) = -

r in a time t. For a
pure Gaussian distribution of displacements Gs(r,t)/r2 B e�r2/6Dt at
any time (note that here we directly consider a radial displacement
r and therefore we normalize by r2 since we have an isotropic
three-dimensional system).

Departures from the Gaussian behavior of the self van
Hove function have already been reported in the literature for
different systems8,10 where a clear indication of the non-
Gaussian dynamics is manifested by the emergence of a broad
exponential tail in Gs(r,t)/r2 B e�r/l(t), where l(t) is a character-
istic length that increases with time. In Fig. 6 we show Gs(r,t)/r2

for two different temperatures which correspond to the begin-
ning of the Arrhenius behavior (T = 0.115, see Fig. 4) and to the
lowest temperature investigated (T = 0.1025). In particular,
Fig. 6(a) shows three different time regimes. At very short times
(t C 1), i.e., times which are significantly smaller than the cage
residence time, Gs(r,t)/r2 is peaked around the origin, describing
the vibrational disorder with a behavior which is not far from a
Gaussian distribution. At intermediate times (t C 101–103), rare
events appear in the form of large individual displacements
and Gs(r,t)/r2 shows a clear exponential tail with a characteristic
length which increases with time. In this regime only a small
fraction of particles has performed jumps while the majority of

the particles are still vibrating in their local environment. Only
when all the particles have moved significantly, i.e., for times
typically longer than the residence time (t \ 104), Gaussian
behavior is recovered. This time almost coincides with the time
at which motion is already diffusive (Fig. 5(a)).

Fig. 6(b) shows Gs(r,t)/r2 for the lowest T investigated. In this
case, the final Gaussian regime is still not observed within the
time of our simulation and only the first two regimes can be
detected. Indeed, at long times the correlation length of the
exponential decay of Gs(r,t)/r2 is of the order of few particle
diameters, l(tlong)/sD 2. Apart from the long range exponential
behavior, at long times we can also appreciate some undulations
in Gs(r,t)/r2 at distances around r/s D 1 and r/s D 1.7 which
correspond to the first and second peaks of the structure factor,
S(q), where qpeak D 2p/r (see T = 0.1025 in Fig. 16, Appendix).
These undulations reflect how the tetrahedral structure of the
system at low T favors those displacements corresponding to the
nearest and tetrahedral neighbor distances.

It is interesting to notice that at low T and for the longest
time investigated (t D 107) motion seems to be already diffusive
(see the total MSD in Fig. 5(c) and the inset in Fig. 4). However,
as mentioned in the previous paragraph, the distribution of
displacements is non-Gaussian. Recently this diffusive but still
non-Gaussian behavior has aroused interest, it is the so-called
‘‘anomalous yet Brownian diffusion’’.9,10,55 There have been some
attempts to rationalize this anomalous diffusion but all of them
rely on a description of the heterogeneous dynamics of the system
with no explicit consideration of real spatial heterogeneities.8,56

In particular, the problem of whether or not this anomalous
diffusion can be understood in terms of an underlying

Fig. 6 Normalized self van Hove function Gs(r,t)/r
2 for different times at

(a) T = 0.115 and (b) T = 0.1025. The figure also shows for each T a characteristic
time s2D�1 as an indication of the emergence of the diffusive regime. In (b) we
also show an exponential decay with l/s = 2 (dashed line).
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heterogeneous structure remains unclear. Nevertheless we should
take into account that the observation of the non-Gaussian
behavior will, in principle, depend on the time observational
window. In other words, the Gaussian behavior will be recovered
as soon as the hypotheses of the Central Limit Theorem hold.57 In
this respect, the distribution of displacements will be Gaussian
when it results from the average of independent and equally
distributed particle displacements. However, at low T and for the
longest time investigated we have already pointed out that
the system still presents differences in the dynamics between
the populations of particles according to their initial number of
bonds. For instance, although at long times the total MSD
seems to be linear in time, the partial MSD values presented in
Fig. 5(c) have not yet converged, pointing out that the displace-
ments of the different populations are not equally distributed
over our time window.

As done for the MSD, we have also separated the self van Hove
function into different populations. Thus Fig. 7 shows, for differ-
ent times and for the lowest T investigated, the contributions to
the total self van Hove function due to the different populations of
particles according to their number of bonds at t = 0. We should
note that in order to properly compute the contribution of each
population to the total self van Hove function we should re-scale
the self van Hove function of each population by its corres-
ponding fraction of particles, N n (n A {0,1,2,3,4}). Thus we

represent N nGsðr; t; nÞ
�
r2, where the total self van Hove function

results to be Gsðr; tÞ
�
r2 ¼

P4
n¼0
N nGsðr; t; nÞ

�
r2. Again, at any time

and for short displacements the main contribution to Gs(r,t)/r2 is

due toN 4Gsðr; t; n ¼ 4Þ
�
r2 (see blue lines in Fig. 7) since for short

displacements we are just computing vibrational motion and
therefore the main contribution should arrive from the biggest
population which at low T is that corresponding to the 4-bounded
particles. At short times and for long displacements (Fig. 7(a)) we
see how the main contribution to Gs(r,t)/r2 is mainly due to the

monomers N 0Gsðr; t; n ¼ 0Þ
�
r2

� �
or, in general, to the weakly

bounded particles (red line in Fig. 7(a)). This result was already
anticipated in the discussion concerning the MSD for the different
populations where we already noticed the short time super-
diffusive regime of the weakly bounded particles (Fig. 5(c)). At
intermediate times (Fig. 7(b)), particles start to lose their initial
bonding state and the long displacement contribution to the total
self van Hove function is mainly due to those particles which had
an intermediate numbers of bonds at t = 0 and which now have
presumably passed through a weakly bonding state (green and
orange lines in Fig. 7(b)). Finally, at long times (Fig. 7(c)), and
when most of the particles have lost the memory of their initial
number of bonds, we see how the main contribution (for short
and long displacements) is mostly due to the biggest population,
n = 4 (blue line in Fig. 7(c)). In contrast to short and intermediate
times, where each population shows its own slope for the
exponential tail at long distances, at long times (and once most
of the particles have lost the memory of their initial number of
bonds) all the populations present a clear exponential tail with
an almost common slope (l(tlong)/s D 1.2, Fig. 7(c)).

Once we have studied the distributions of the individual
particle displacements through the self van Hove function, we
now consider the collective dynamics of the system in real
space through the distinct van Hove function, Gd(-r,t):15

Gdð~r; tÞ ¼
1

N

XN
i¼1

XN
jai

d ~r�~rjðtÞ þ~rið0Þ
� 	* +

(7)

where Gd(-r,t) counts all those correlations between particle i at
t = 0 and particle j at t Z 0 (8i a j) which are compatible with a
given -

r. Again, as previously done for the self van Hove func-
tion, we present in Fig. 8 Gd(r,t)/4pr2r at different temperatures,
where we normalize by 4pr2r to compute the correlations
according to the radial coordinate r by also adding the number
density to have Gd(r,t = 0)/4pr2r � g(r), being g(r) the radial

Fig. 7 Partial self van Hove functions N nGsðr; t; nÞ
�
r2 at T = 0.1025 for the

different populations of particles according to their initial number of
bonds, n (A {0,1,2,3,4}). (a) t = 102, (b) t = 104, and (c) t = 106. The figure
also shows the corresponding Gs(r,t)/r

2 for the total number of particles
(black lines with solid circles). In (c) we also show an exponential decay
with l/s = 1.2 (dashed line) which is slightly different from that present in
Fig. 6(b) since there is a difference between the longest time in this figure
and that corresponding to Fig. 6(b) (t = 106 and t = 6 � 106 respectively).

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
1 

D
ec

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
' d

i R
om

a 
L

a 
Sa

pi
en

za
 o

n 
13

/0
7/

20
17

 0
9:

36
:0

3.
 

View Article Online

http://dx.doi.org/10.1039/C6SM02282K


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 514--530 | 521

distribution function.15 Thus at any T and for t = 0 we just have
the corresponding radial distribution function which shows the
tetrahedral structure previously discussed, where we see two
main peaks at r/s D 1 and r/s D 1.7 which are related
(according to a simple Bragg’s interpretation) to the two main
peaks in S(q) (Fig. 16) via qpeak D 2p/rpeak.

The most interesting effect arrives upon cooling the system.
Whereas at the beginning of the Arrhenius regime (Fig. 8(a)) the
system completely loses the memory of its dynamic correla-
tions, i.e., Gd(r,tlong)/4pr2r D 1 8r, at low T (Fig. 8(b) and (c)) we
see how the system still presents a remaining correlation even
for the longest simulation time. Thus at long times and low T,
and although the double peak structure has almost disappeared,
a significant fraction of particles still occupies the position that
was occupied by other particles at t = 0 (a typical feature of
systems where hopping motion is present), i.e., Gd(r,t)/4pr2r
increases as r - 0. In particular at long times and for the lowest
T (Fig. 8(c)), Gd(r - 0,t)/4pr2r 4 1, that is, part of the dynamic
correlations still survive although most of the particles have
individually moved a significant distance (see Fig. 5(c)).

Certainly the system starts to lose the remaining memory for
the longest simulation time (pink curve in Fig. 8(c)). However,
although Gd(r - 0,t)/4pr2r starts to decrease it is still far from
the complete ergodic behavior Gd(r,tlong)/4pr2r D 1 (8r) which is
indeed reached at intermediate temperatures (Fig. 8(a)). Indeed,
the system shows a significant rigidity at low T (accounted for
by the height of the maximum of Gd(r - 0,t)/4pr2r) compared
with other strong glass forming-liquids58 which is presumably
due to the highly directional interaction (i.e., to the small
angular bond opening).

Before concluding this section, we should note that the
separation of the distinct van Hove function into particle
populations, as previously presented for the MSD and the self
van Hove function, does not have a straightforward interpretation.
The distinct van Hove function connects different particles at
different times, thereby missing the information of the number
of bonds of the two correlated particles at a common time due to
the evolving bonding state of the particles. Thus, a systematic
study of this function would consider all the possible combina-
tions between populations of particles with n bonds at t = 0 and
m bonds at t Z 0 (n,m A {0,1,2,3,4}).

3. Non-Gaussian parameter. An alternative procedure to
determine and quantify the non-Gaussian statistics associated
with the dynamics of a system at a given time relies on the
estimation of the so-called non-Gaussian parameter, a2(t):59

a2ðtÞ ¼
3

5

ðD~rðtÞÞ4

 �
ðD~rðtÞÞ2h i2 � 1 (8)

where h(D-
r(t))4i and h(D-

r(t))2i (i.e., the MSD) are, respectively,
the fourth and second moments of the distribution of displace-
ments at time t in three-dimensional space. For a Gaussian
distribution a2(t) = 0 whereas non-Gaussian distributions are
manifested through a positive value of a2(t). Fig. 9 shows a2(t) at
different temperatures. The three different regimes documented
by the self van Hove function are also manifested in a2(t). First,
at short times, a2(t) D 0 indicating that the distribution of the
displacement is almost Gaussian. At intermediate times, we
reach a maximum that indicates the time at which the distribu-
tion of displacements is farthest from the Gaussian behavior.

Fig. 8 Normalized distinct van Hove function Gd(r,t)/4pr2r at different
temperatures and for several times.

Fig. 9 Non-Gaussian parameter a2(t) as a function of time at different
temperatures.
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The position and height of this maximum increases upon cooling
the system, reaching values at low T which are significantly higher
than those reported for both fragile and strong glass forming-
liquids such as binary mixtures of Lennard-Jones particles,60

models of supercooled water,61 or viscous silica62 but compar-
able to other recently reported network liquids with competing
gel–glass phases.63 Finally, at long times, a2(t) decreases, and the
distribution seems to recover the Gaussian statistics, a2(t) = 0.
However, we should mention that this contrasts with our
previous discussion concerning the self van Hove function for
which the system at low T and long times still presented a clear
exponential tail, thereby not having recovered completely the
Gaussian statistics. In this respect, we should notice that the self
van Hove function captures the whole distribution of displace-
ments and is thus a better estimator of the non-Gaussian statistics
than a2(t), which merely checks the relation between the second
and fourth moments that would be expected for a Gaussian
distribution.

To gain intuition on the microscopic mechanism, we present
in Fig. 10 a2(t) separated into different populations of particles
according to their number of bonds at t = 0, as previously done
for the MSD and the self van Hove function. Thus Fig. 10 shows
a2(t) for the different populations at the beginning of the
Arrhenius regime (T = 0.115, Fig. 10(a)) and for the lowest T
investigated (T = 0.1025, Fig. 10(b)). At intermediate T (Fig. 10(a))
we see how the main maxima corresponding to the different
populations almost appear at a common time (t E 103), suggest-
ing that the time needed for all populations to disseminate the
memory of their initial bonding state (and therefore their initial
degree of mobility) is almost similar. This time is also similar to
the bond lifetime reported in ref. 37 for the same temperature.
However, at low T (Fig. 10(b)) the maxima corresponding to each
population appear later for those particles that are more tightly
bounded at t = 0, although the order of the time associated
with the total a2(t) is still similar to the bond lifetime for this
temperature.37 In this respect, we can speculate with the idea
that at low T there is a difference between the bond lifetime of
the different populations. We also point out that the total a2(t)
(Fig. 10(a) and (b)) has a maximum that occurs earlier than the
partial a2(t) associated with the different populations, an effect
which is related to the way all the populations are mixed when
performing the average to obtain the total a2(t). Also interesting
is the effect which is present at short times in the form of a less
obvious maximum. These short time maxima, which are fairly
insensitive to temperature, have been enhanced in the inset of
Fig. 10(b) since their relative height with respect to the main
maxima is too small (short time maxima at T = 0.115, Fig. 10(a),
are directly observable). These short time maxima increase their
height upon decreasing the n value, reflecting that the intra-cage
motion of the particles is ‘‘less Gaussian’’ for the free particles
than for the tightly bounded particles. This suggests that the free
particle local environment is more heterogeneous and, therefore,
the short time displacements of the weakly bounded particles
are less equally distributed.

We finally illustrate the rare event dynamics present in the
system at low T by showing in Fig. 11 the displacement of some

selected particles (jumpers) which clearly show their intermit-
tent dynamics manifested through sporadic large displace-
ments (jumps) at the single particle level. Although not
statistically relevant, the figure indeed suggests that the single
particle motion can be described in terms of a vibrational
(stationary) dynamics (where the particle is vibrating in a
confined cage created by their neighbors) which is interrupted
by large jumps whose time duration is significantly smaller
than the time spent during the local vibrations. Fig. 11 also
shows that during the jumps, the selected particles move over
distances of the order of few particle diameters.

4. Scattering functions: cooperative domains. Next we present
the study of the relaxation time at different spatial scales for
both self and collective scattering functions15 (some selected
low-T correlation functions are presented in the Appendix,
Fig. 17). The large box size of our simulation (see Section II)
allows us to reach wavevectors of qs = 2p/L D 0.25, that is, more
than one order of magnitude smaller than the inverse of
the nearest neighbor distance. We measure the corresponding

Fig. 10 Non-Gaussian parameter a2(t) at different temperatures, (a) T = 0.115
and (b) T = 0.1025. Here a2(t) is separated into different populations of particles
according to their initial number of bonds, n (A {0,1,2,3,4}). The figure also
shows the corresponding a2(t) for the total number of particles (black
lines with solid circles). The inset in (b) shows in a double log plot the
details of the maxima corresponding to the local short time behavior of the
particles separated by their initial number of bonds (colors in the inset are
as in the main figure whereas symbols have been introduced as a guide
for the eye).
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relaxation times associated with the self and collective scatter-
ing functions, tself(q) and tcoll(q), by fitting the final a-decay of
the corresponding correlation function by means of a stretched
exponential function15 (see Appendix). By analogy with the
distinct van Hove function, here we study those correlations
included in the collective scattering function for the total set of
particles and, therefore, we do not discriminate them into
particle populations. We also note that similar relaxation times
as those presented here were reported in ref. 37. However, we
are now able to better understand the underlying physics
behind the current results since the data reported herein have
been obtained through much lengthier simulations, providing
a more solid ground for the interpretation that follows.

We first present in Fig. 12 the comparison between tself(q)
and tcoll(q) as a function of q. At large q (wavevectors typically
greater than the main peak of the structure factor) both tself(q)
and tcoll(q) follow the expected common trend (for any T) by
converging to a common curve (this trend has been checked in
this system for values as large as qs = 30). Also at any T, tself(q)
monotonically increases upon decreasing the q value, showing
that the relaxation time of the individual particle dynamics
increases upon increasing the observational spatial scale. tcoll(q)
shows a non-monotonic behavior at intermediate q whose
oscillations are in phase with the structure factor (de Gennes
narrowing64,65). However the complete behavior of tcoll(q) within
the explored q-range cannot be explained by a behavior in phase
with the structure factor (see the departure in Fig. 12 between
the q�2S(q) trend and tcoll(q) for T = 0.1025). At intermediate
q (values around the tetrahedral peak of the structure factor)
tself(q) and tcoll(q) start to decouple upon cooling the system.
This effect can be followed by the increasing separation of tself(q)
and tcoll(q) which reaches nearly one order of magnitude at the
position of the tetrahedral peak for the lowest T investigated
(tcoll(q) D 10 � tself(q) at T = 0.1025 for qs = 4.5). Since at low T
(and for intermediate wavevectors) tcoll(q) 4 tself(q), we can infer
that the system maintains its dynamic collective correlations at

distances even larger than that associated with the tetrahedral
peak, although the particles have individually moved even
larger distances. Despite the system at low T presents an
amorphous tetrahedral structure, this phenomenology at inter-
mediate distances reminds us the archetypal crystal behavior,
where particles can diffuse despite the structure being perma-
nent. As we next discuss, this long-lasting correlation present in
the system will be associated with a dynamic length scale of the
order of the inverse of the q value at which tself(q) and tcoll(q)
cross, that is, the spatial scale at which the relaxation time
associated with individual particle relaxation starts to overpass
that of the collective particle relaxation.

Interestingly, the crossing between tself(q) and tcoll(q) in
Fig. 12 appears at shorter q values upon cooling the system,
suggesting the emergence of a dynamic length scale associated
with the collective dynamics which increases upon decreasing
the T value (vertical arrows in Fig. 12). Thus, the crossing
between tself(q) and tcoll(q) at a given q*(T) allows us to define
a dynamic length scale, x(T), as x(T) B q*(T)�1. By a simple
inspection of the left-shift of q*(T) upon decreasing the T value,
we can conclude that x(T) increases by almost a factor of 2
within the explored T-range. However, more systematic work
is needed to determine and rationalize a precise functional
behavior for x(T). We should note that similar low T-values
(i.e. values of the order of few particle diameters) have already
been reported in the literature with regard to glass-forming
liquids for different dynamic length scales but they are typically
based on different methodologies as that exposed here.2,3 For
instance, multi-point dynamic susceptibilities have been used to
estimate the size of dynamic cooperative regions,6 the response
of the dynamic structure factor to an external potential has been
proposed to infer the existence of a diverging dynamic length
scale,66 local pair correlators have been analyzed to prove
the emergence of dynamic heterogeneities,5 and point-to-set

Fig. 11 Displacement of some selected jumping particles as a function of
time at T = 0.1025. The particles perform sporadic large displacements
over short time intervals while most of the time remain vibrating. Each
color represents the displacement of one selected particle. We highlight
that, in contrast to the previous figures, here the time axes is linear in order
to clearly illustrate the real interval duration.

Fig. 12 Relaxation times corresponding to the collective (full symbols),
tcoll(q), and the self (empty symbols), tself(q), scattering functions as a
function of q at different temperatures (T = 0.1025 – blue squares,
T = 0.105 – green diamonds, T = 0.11 – orange triangles, and T = 0.115 –
red circles). Vertical arrows mark the crossing between tself(q) and tcoll(q) at
q*(T) (Bx(T)�1). Also included in the figure is a gq�2S(q) trend (black dashed
line), where we took the S(q) corresponding to T = 0.1025 and fixed the
prefactor g to have gq�2S(q) = tcoll(q) at large q.
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correlation functions have been used to detect long-range
dynamic correlations.67

Appealingly, here the increasing dynamic length scale
suggests a heuristic microscopic picture for the low T regime
where the system would be conformed by cooperative domains
of particles or, more precisely, by dynamically correlated
regions (CRs). The T-dependent linear size of these CRs would
be given by x(T) B q*(T)�1. Thus, upon cooling the system the
CRs would become larger and the network liquid would
become stiffer. The effect of the CR dynamics at low T is that
tcoll(q) remarkably drops by more than one order of magnitude
for q smaller than the CR length scale (typically qs t 2.5
at T = 0.1025). Moreover, and in order to ensure the final
ergodicity of the system, the set of particles defining the CRs
will change with time (typically at a time of the order of the
tself(q) � tcoll(q) crossing).

Let us now discuss separately the behavior of tself(q) and
tcoll(q) to distinguish between their different q-regimes at
different T values. Thus, Fig. 13(a) shows tself(q) from the high
T regime (T = 0.14) to the lowest T investigated. At T = 0.14 we
have tself(q) D q�2D�1 within the whole q-range, i.e., the
behavior expected for a pure diffusive process. Upon cooling
the system we see a clear departure of tself(q) from the diffusive
behavior which is more pronounced at large q. Indeed, upon
cooling the system tself(q) tends to be q independent at inter-
mediate q (Bq0) whereas for small wavevectors a q�1-dependence
appears (see qs t 1.5 at T = 0.1025 in Fig. 13(a)).

We first discuss the intermediate q-dependence of tself(q) at
low T (in particular at T = 0.1025). At intermediate q, we see a
clear departure of tself(q) from q�2D�1, where tself(q)q2D B 100
at qs = 10. Thus, at low T and for intermediate spatial scales
(typically 2 t qs t 8), the time needed to decorrelate the self-
scattering function clearly exceeds the time q�2D�1, which is
the time that all the particles would need to move a distance of
the order of 2p/q if the process were diffusive with coefficient D.
Since the system at low T presents a hopping dynamics, decorr-
elation at intermediate q requires that most of the particles
perform at least one jump, thus leaving their local environment.
Since these jumps are intermittent we should wait a common
(constant) time for all intermediate q values in order to allow the
particles to perform their jumps and escape from their local
environment. In this respect, we should note that the value of
tself(q)q2D E 100 around the main peak of the structure factor
provides us with an estimation of the so-called translational
decoupling,8 that is, the ratio between the time associated with
the real intermittent dynamics present in the system at inter-
mediate spatial scales (i.e., the mean cage residence time) and
the time that would be expected from a continuous diffusive
dynamics at the same intermediate spatial scales. This transla-
tional decoupling appears to be significant in the present system
at low T compared with other values previously reported for
fragile and strong glass forming liquids.8

We now consider the interesting q�1 behavior of tself(q)
at low T and short q. Before entering into the microscopic
picture to interpret such a behavior we recover our previous
discussion on the anomalous diffusion but restated in terms of

the self scattering function. In principle, for a Gaussian dis-
tribution of displacements the self scattering function, Fself(q,t),
would read:68,69

Fselfðq; tÞ ¼
1

N

XN
j¼1

ei~q�D~rjðtÞ

* +
¼ e�

1
6
q2 ðD~rðtÞÞ2h i (9)

If, in addition, we suppose that motion is diffusive (h(D-
r(t))2i = 6Dt)

that would give us tself(q) B q�2 (which is indeed the result in
Fig. 13(a) at high T). As discussed in the MSD section, at low
T we reach the diffusive behavior at long times, however
tself(q) B q�1 instead of tself(q) B q�2. Thus the only reason
for not having the expected tself(q) B q�2 behavior at low T and
short q is the inconsistency of the Gaussian property. Thus,
merely by probing the behavior of tself(q) at low T and long times,
we can conclude that the distribution of displacements is non-
Gaussian, a result that we already proved by directly observing
the exponential tail in the self van Hove function. This additional
confirmation for the non-Gaussian statistics is not surprising
since Fself(q,t) essentially contains (via Fourier transform) the

Fig. 13 (a) Log–log plot of the relaxation time corresponding to the self
scattering function, tself(q), as a function of q at different temperatures.
Dashed lines (with colors according to each T) represent the diffusive
behavior q�2D�1 expected for a high T liquid. At low T we have also
included a q�1 trend at short q and a constant q0 trend at intermediate and
large q (black dotted-dashed lines), (b) log–log plot of the relaxation time
corresponding to the collective scattering function, tcoll(q), as a function of
q at different temperatures (colors and symbols are as in (a)). Also included
in the figure is a gq�2S(q) trend (dashed lines with colors according to each
T), where we took the S(q) corresponding to each T and fixed the prefactor
g to have gq�2S(q) = tcoll(q) at large q. We highlight by a vertical arrow the
emergence of a shoulder at T = 0.1025 whose presence does not appear in
the structure factor (see Fig. 16).
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same information on the distribution of displacements as the
self van Hove function does.15,70 Therefore, if motion is diffu-
sive a behavior of tself(q) not compatible with Bq�2 (in this case
Bq�1) represents an alternative testimony on the non-Gaussian
statistics of the distribution of displacements.

In order to gain intuition on the microscopic scenario that
produces the q�1 behavior of tself(q) at low T and short q, we
should notice that the q�1 trend starts at those q values at
which we already documented the crossing between tself(q) and
tcoll(q) (i.e., around qst 2 for T = 0.1025, Fig. 12). This dynamic
length scale was previously interpreted in terms of a linear size
of cooperative domains of particles. Again, we can exploit the
idea that the system at low T is composed by a set of dynamic
CRs. Taking into account the different mobility of the particles
according to their number of bonds, we can speculate that the
cores of the CRs are presumably formed by the less mobile (tightly
bounded) particles whereas their borders would be delimited by the
more mobile (weakly bounded) particles (this idea will be deeply
explored in the next section). Thus, the CRs would continuously
evolve by losing and gaining weakly bounded particles at the
border, thereby changing the position of their borders. The char-
acteristic time to change position (and also refresh the composition
of the CRs with new particles) would be given by the crossing
between tself(q) and tcoll(q). We note on passing that the q�1

behavior should not be associated with an individual particle
ballistic motion, since the particle MSD for this regime is not
quadratic but almost linear in time (see the MSD section).
Nevertheless, we stress that, since we have a viscoelastic liquid,
apart from the border displacement, the CRs will also be
connected between each other at any time to transmit the
network elasticity and therefore move in a coherent manner.

We should highlight that, to the best of our knowledge,
this q�1 behavior has not been previously documented in such
a clear way for a viscous system in equilibrium. Indeed, similar
behaviors have only been documented and rationalized in
out-of-equilibrium gelling systems as a result of their aging
dynamics.26,71,72 Finally, to close our discussion on the q-dependence
of tself(q), we should note that our heuristic scenario based on the
emergence of a collective correlated dynamics should be system-
atically studied to not only reach a formal description but also
probe its q extension to smaller wavevectors and for even lower T
values than those reached in the present study. In this respect, we
should consider, as already anticipated in our discussion on the
self van Hove function, that as soon as the Gaussian behavior
will be recovered (i.e., for times able to relax the equilibrium
fluctuations at smaller q values than those reached in the present
simulation) the Central Limit Theorem will hold again, conver-
ging again to the diffusive regime (q�2D�1). Indeed, this seems to
be the tendency for the smallest q investigated here, for which
tself(q) and q�2D�1 have almost reached a common value (see
Fig. 13(a) for T = 0.1025).

As done for tself(q), we now present separately the q-dependence
of tcoll(q) in Fig. 13(b). As mentioned before, at any T and for
intermediate q, tcoll(q) shows the typical oscillations in phase with
the corresponding structure factor. Indeed the expected gq�2S(q)
behavior for the high T liquid64,65 already discussed in Fig. 12

seems to be a good qualitative approximation to describe the
intermediate and large q-dependence of tcoll(q). In particular at
high T (see T = 0.14 in Fig. 13(b)) we can reproduce in a rather
good qualitative manner the total q-dependence by taking
g D D�1.70 The most intriguing behavior arrives at low T and
short q. At low T and around qs A [2,3], tcoll(q) starts to develop
a shoulder which is placed again at the crossing between tcoll(q)
and tself(q) (linear size of the CRs). We should notice that this
shoulder is indeed a dynamic signature which is not contained
in the structure factor (see Fig. 16). At even smaller wavevectors
(where tself(q) B q�1, qst 1.5), tcoll(q) significantly drops reaching
an almost constant value. However, the precise mechanism
governing the constant relaxation time of the collective micro-
scopic dynamics at such short wavevectors is still unclear.

C. Cooperative domains: a structural signature

We have explored the dynamics of the system by paying special
attention to its relaxation time at different spatial scales. In this
respect, we have found a distinctive length scale which char-
acterizes the collective dynamics and increases upon cooling
the system. This length scale has been interpreted as a linear
CR size. So far, these CRs would conform the microscopic
picture of the low T liquid from a purely dynamic viewpoint.
However, it is not clear whether or not the dynamic CR picture
also manifests as a structural property.

To further explore the possibility of a long range static
spatial correlation we proceed by assuming that the correlated
distribution of particles with n bonds previously discussed has
a static counterpart, originating regions formed by completely
bounded particles, surrounded by particles with one or more
broken bonds. This idea (already anticipated in the previous
section) would also be coherent with our interpretation of the
system connectivity (Section III.A), where we already interpreted
the system bonding dependence at low T in terms of a spatial
localization of particles according to their number of bonds. We
should also notice that this picture is indeed reminiscent of the
structural signatures expected in the vicinity of a liquid–liquid
transition, a possibility first proposed for liquid water,73 and
later for supercooled silicon,74 which has been recently demon-
strated to be a generic feature of tetrahedral networks.43

Motivated by these considerations we have separated the
total structure factor of the system, S(q), into partial structure
factors of particles with a given number of bonds, Sn(q). In this
respect, Fig. 14(a) and (b) show Sn(q) at different T values
for those populations constituted by particles with n = 2 and
n = 3 bonds respectively. Certainly, and according to the idea
exposed in the previous paragraph, we could also expect to
detect a structural pattern for the n = 0 and n = 1 populations.
However, at low T these populations are too small to give us
a reliable statistics (N n o 0:01 for n A {0,1} at T = 0.1025).
In addition, we could also consider the population of four-
bounded particles; however, they represent the majority of the
particles in the system at low T (N 4 ¼ 0:76 and N 4 ¼ 0:70 for
T = 0.1025 and T = 0.105 respectively). Thus, we also omit S4(q)
since its long range structure is partially hidden by the under-
lying total structure given by the total S(q). To identify the
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structure of the different Sn(q) as a distinctive structural prop-
erty of a given population, we have also included in Fig. 14(a)
and (b) the structure factors of different sets of randomly
chosen particles whose number of particles coincides with
the number of particles of the corresponding partial structure
factor, Sn(q), at the same T. For instance, for T = 0.1025 we have
N 2 ¼ 0:035 (Fig. 14(a)) and N 3 ¼ 0:19 (Fig. 14(b)), and therefore
we added in the corresponding figure the structure factor of a set
of randomly chosen particles with 0.035N and 0.19N particles,
respectively, as obtained from the same simulation at T = 0.1025
(black lines with empty symbols in both Fig. 14(a) and (b)).

In Fig. 14(a) and for intermediate q we do not clearly see the
most obvious structure (main and tetrahedral peaks) that we
have in the total S(q) at the same T values (Fig. 16). This
is obviously due to the small number of particles forming the
n = 2 population (e.g.N 2 ¼ 0:053 at T = 0.105 andN 2 ¼ 0:035 at
T = 0.1025). However at short q (typically qs t 3) S2(q) starts to
increase upon cooling the system. Despite some noise at very
short q, this small-q structure is characteristic of the n = 2
population since the corresponding randomly chosen sets of
particles show a structure factor which does not reveal any
long range structure, being almost crowded around S(q) = 1.

This effect is more pronounced for the n = 3 population,
Fig. 14(b), for which N 3 has a statistically reliable value for
all T values represented. In this case, and due to the significant
value of N 3, S3(q) shows part of the intermediate q structure
present in the total S(q) (tetrahedral and main peaks). Again, we
clearly see how upon cooling the system S3(q) reveals at short q
and low T a clear long range structure: S3(q) monotonically
increases as q - 0. This behavior is not present in the
corresponding randomly chosen sets of particles, which again
remain crowded around S(q) = 1.

At this point, it is tempting to link the structural pattern
observed at short q and low T for the different Sn(q) represented in
Fig. 14(a) and (b) to the dynamic picture previously discussed.
Thus, in particular, we see how S3(q) at T = 0.1025 starts to
increase upon decreasing the q value from a local minimum
placed around qs D 2.8 (see Fig. 14(b)). This value almost
coincides with the dynamic length scale, x(T) B q*(T)�1, detected
by the tself(q) � tcoll(q) crossing and by the shoulder in tcoll(q) at
the same T (see Fig. 12 and 13(b)), i.e. the dynamic length scale
that we associated with the CRs. With this idea in mind, the
short q behavior at low T of S2(q) and S3(q) would indicate the
long range inter-domain structure, which indeed would start at
the typical static domain size (qs t 3 at low T).

By the procedure presented here we can indeed establish a
value for a static length at low temperature (typically T = 0.1025
and T = 0.105) which is quantitatively similar to that obtained
for the dynamic length scale at the same T. However, the
current data do not allow us to obtain accurate values for the
static length at higher temperatures. For that reason we can
merely compare the dynamic and static length scales at low T
but we cannot establish whether or not this correlation is
maintained at higher T values. Despite the fact that the physical
consistence of the equivalence between dynamic and static
lengths present in the system at low T needs to be rationalized,
it is clear that with the methodology exposed here we can
document the existence of both lengths, with values quantitatively

Fig. 14 Partial structure factor, Sn(q), for n A {2,3} at different T values:
(a) log-linear plot of the structure factor, S2(q), of those particles having
two bonds and (b) log-linear plot of the structure factor, S3(q), of those
particles having three bonds. In (b) we also marked with a vertical arrow the
position of the local minimum at which a long range correlation start for
T = 0.1025 (qs D 2.8). Both figures also show for each T the structure
factor of a set of randomly chosen particles whose number of particles
coincides with the number of particles of the corresponding partial
structure factor at the same T (black lines with symbols as in the
corresponding partial structure factor). Included in the legend of both
figures are the fraction of particles for each T N n; n 2 f2; 3gð Þ.

Fig. 15 Configuration snapshot at T = 0.1025. The code for the number of
bonds – color in the figure is: n = 4 – grey, n = 3 – green, n = 2 – yellow,
n = 1 – blue, and n = 0 – red. The fully-bounded particles are partially
transparent for the sake of clarity.
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compatible at low T. Finally we point out that the short q
behavior of S2(q) and S3(q) at low T should still be explored in
a more systematic way to better characterize its functional
behavior, which here seems to be compatible with a power
law behavior, S(q) B q�a with a 4 0, characteristic of a fractal
system.75–77

Finally, to illustrate the static correlations, we present in
Fig. 15 a snapshot corresponding to a given configuration of the
system at T = 0.1025. This figure clearly shows that fully-
bounded particles (depicted in transparent grey) tend to cluster
into core domains which are surrounded by less-bounded
particles (green, yellow, blue, and red particles), which indeed
would form the border of the domains. The snapshot thus
provides a visual support to the presence of the static CRs of
fully-connected particles.

IV. Summary and conclusions

We have presented a study on the dynamics and structure of a
system of tetravalent patchy particles by means of Brownian
dynamics simulations.36,37 We have explored in depth the equili-
brium temperature evolution of the system under different static
and dynamic views with the final scope of proposing a micro-
scopic picture for the viscoelastic nature of the low-temperature
liquid. In this respect, we have exploited the highly directional
interaction between the particles for describing the system
connectivity in a very precise manner where the particles have
been discriminated into different populations according to their
number of bonds. This discrimination has allowed us to perform
a rich description of the system by which we have revealed a clear
link between connectivity, particle mobility, and structure.

We have shown how in the system the distribution of the
potential energy per particle can be interpreted in terms of a
penta-modal distribution of bonds per particle. By this distribu-
tion of bonds we have thoroughly characterized the increasing
connectivity of the system upon decreasing the temperature. In
particular, we have proved how at high T the distribution of
bonds can be understood in terms of a binomial distribution
which is based on the assumption of an independent bonding
process. However, we have also seen how, upon cooling the
system, the assumption of bond independence breaks down.
Thus, at low T, it appears a bond correlation which entropically
favors the presence of more weakly bounded particles than those
expected from an independent bond formation process.

We have also performed an extensive study on the temperature
evolution of the individual and collective dynamics exploring its
relation with the system connectivity. For instance, we have dis-
cussed the low-T Arrhenius evolution of the diffusion coefficient, D.
In this respect, we have introduced a novel methodology to
discriminate the mean square displacement into different popu-
lations of particles according to their number of bonds at t = 0.
By this methodology we have established a clear relation
between the number of bonds and particle mobility. Thus, we
have followed the partial mean square displacement of the
different populations of particles for different temperatures

and over a long time window where different regimes (e.g.
super and sub-diffusive) have been documented for the differ-
ent populations.

We have carried out a similar analysis for the complete
distribution of displacements by intensively exploring the
van Hove function of the system. At high and intermediate
temperatures, the partial and total self van Hove functions
show the Gaussian behavior expected for a high-T liquid.
However, at low T we have found a noticeable non-Gaussian
behavior manifested through a long exponential tail which has
been characterized for the different populations of particles at
different time scales. In particular, our methodology has allowed
us to report the intermittent dynamics of the weakly bounded
particles at short times, which manifests itself by large displace-
ments (jumps) at the single particle level. Despite at low T and
long times the dynamics is already diffusive, the non-Gaussian
behavior of the self van Hove function has permitted to document
in a very clear way the anomalous yet Brownian diffusion present
in the system.9,10,55 Our study has been complemented with an
alternative procedure, based on the non-Gaussian parameter,
to quantify the non-Gaussian statistics. In addition, we have
analyzed the collective dynamics of the system in real space by
means of the distinct van Hove function. In this respect, we
have shown the notorious rigidity of the low-T liquid, which
appears to be significant when compared with other strong and
fragile glass forming liquids.58,60–62

We have also investigated the dynamics of the system in
Fourier space through the self and collective scattering func-
tions. In this respect, we have covered several temperatures
within a large range of the wavevector, q, by analyzing the
q-dependence of the self and collective relaxation times, tself(q)
and tcoll(q). In particular, at low T we have shown how tcoll(q) and
tself(q) decouple at intermediate spatial scales (qs \ 3), where
tcoll(q) exceeds tself(q) by more than one order of magnitude.
Thus, the system retains its dynamic collective correlations
at spatial scales even larger than that associated with the tetra-
hedral distance, despite the particles having individually moved
even larger distances. At short q, tself(q) finally overpasses tcoll(q)
at a certain q value which we have identified as a dynamic length
scale which increases upon cooling the system. The dynamic
length scale is linked to the size of dynamic domains of particles
which evolve in a cooperative manner, and reaches a value of the
order of few particle diameters at the lowest T investigated.

Looking into the q-dependence of tself(q), we have shown how
at high temperatures tself(q) reproduces the behavior expected
for a high-T liquid, i.e. it shows a q�2D�1 behavior within the
explored q range. However, at low T we have documented the
emergence of a q-independent behavior at intermediate q
and a q�1-dependence at short q (qs t 2). In particular, the
q�1-dependence of tself(q) appears as an interesting feature of
the low T dynamics of the system which so far had only been
detected in out-of-equilibrium gelling systems as a consequence
of their aging dynamics.26,71,72

Finally, we have investigated the emergence of long-range
static correlations compatible with the detected dynamic length
scale. We again took advantage of our methodology to separate
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the low T structure factor of the system into partial structure
factors according to the particle number of bonds. In order to
reveal the cooperative-domain picture suggested by our
dynamic results, we have studied the structure factor of those
populations of particles with n = 2 and n = 3 bonds to reveal the
static extension of the domains. Indeed, at low T we have found
that a structure is present at small q, where the partial structure
factors show a monotonically increasing behavior as q - 0.
Interestingly, the values at which the small-q structure emerges
are very similar to those reported for the long range dynamic
length scale (qst 3), suggesting a plausible connection between
structure and dynamics which extends to large spatial scales.

In summary, we have documented the rich dynamic and
structural phenomenology present in a tetrahedral network
liquid of tetravalent patchy particles. The resulting microscopic
scenario has been interpreted in terms of a dynamic-static
domain picture which accounts for the viscoelastic nature of
the low T liquid. This picture relies on the basis of a viscous
flow of cooperative domains of particles where the network
elasticity is mediated by the inter-domain connections. To reach
our description of the low-T liquid we have supported our inves-
tigation with a new methodology consisting in the discrimination
of the system connectivity in terms of particle populations, where
each population corresponds to all the particles with a given
number of bonds. We believe that the methodology employed in
this work could reveal similar results and even new insights in
other gel- and glass-forming liquids.

Appendix: structure and dynamics in
Fourier space

In this Appendix we present results on the static structure
factor of the system as well as some crude data corresponding
to the self and collective scattering functions for supporting
part of the discussion present in the main text. In addition we
present the protocol for obtaining the relaxation times tself(q)
and tcoll(q) and discuss their reliability at low T and short q.

Fig. 16 shows the structure factor, S(q), of the system at
different temperatures (a previous discussion on the structure
factor of this system has been already presented in ref. 37).

Whereas at high temperatures (T = 0.14) the structure of the
system is essentially that corresponding to a hard-sphere liquid
with a main peak at qs D 7, upon cooling the system we clearly
see the signature of an archetypal tetrahedral structure by the
emergence of an additional tetrahedral peak at qs D 4.5. Thus,
due to the judicious choice of density and patch size, the
system at low T exhibits no crystalline order but an amorphous
tetrahedral network structurally similar to that present in
atomistic systems such as silica or silicon,2,58 classical water
models,42 or models of colloidal gels where double peak
structures are imposed by means of three-body interactions.78

Concerning the collective and individual relaxation of the
system, we measure the corresponding relaxation times associated
with the self and collective scattering functions, tself(q) and tcoll(q),
by fitting the final a-decay of the corresponding correlation
function by means of a stretched exponential function15 of the
form e�(t/ta(q))b(q)

and then integrate over the time domain:

tdynðqÞ ¼
ð1
0

e� t=taðqÞð ÞbðqÞdt ¼ taðqÞ
bðqÞG

1

bðqÞ

� �
(A.1)

where dyn A {self,coll} whereas ta(q) and b(q) are the two para-
meters entering into the stretched exponential fit for a given q
value, G(x) being Euler’s gamma function.

In order to show the reliability of our results for tself(q) and
tcoll(q) at low T and short q, we show in Fig. 17 the correlation
functions from which we extracted tself(q) and tcoll(q) for
the lowest T and the shortest q values investigated. In
particular Fig. 17(a) shows log(Fself(q,t)) in a double linear plot.

Fig. 16 Structure factor, S(q), for the total number of particles at different
temperatures.

Fig. 17 (a) Linear–linear plot of log(Fself(q,t)) for qsA [0.35,2] at T = 0.1025
(we added solid symbols to highlight the longest correlation times),
(b) Fcoll(q,t) for qs A [0.35,2] at T = 0.1025. The inset in (b): b(q) exponents
of the stretched exponential fit (eqn (A.1)) as a function of q.
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Despite at short q our correlators do not completely decay
(e.g. Fself(qs = 2;tlong) D 0.2), their time dependence (typically
qs t 1) seems to be consistent with a pure exponential decay
(see the linear time dependence of log(Fself(q,t)) for qs t 1),
that is, they already seem to present the Debye decay expected
for the q - 0 limit. In addition, Fig. 17(b) shows Fcoll(q,t) at
T = 0.1025 for the shortest explored q values. We see how the
different Fcoll(q,t) are almost crowded, indicating that their
tcoll(q) values are quite similar (q-independent regime for
qs t 1.5, blue curve in Fig. 13(b)). We can also notice that
from qs Z 1.5, Fcoll(q,t) starts to relax more slowly consistent
with the emergence of the shoulder documented in Fig. 13(b).
We also present in the inset of Fig. 17(b) the corresponding b(q)
exponents as obtained from our stretched exponential fit
(eqn (A.1)). At intermediate q, b(q) shows the typical oscillations
in phase with the structure factor. In addition, b(q) starts to
increase upon decreasing the q value after reaching a minimum
placed at qsD 2, a value which is again close to the tself(q)� tcoll(q)
crossing, and compatible with the linear size of the correlated
regions (Fig. 12), signaling that for this value the system presents its
maximum degree of heterogeneity. From this maximum b(q) - 1
as q - 0, indicating that the degree of heterogeneity tends to
disappear at large spatial scales.
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